
NCITS J20 DRAFT December, 1997
of ANSI Smalltalk Standard revision 1.9

Draft American National Standard for Information
Systems - Programming Languages - Smalltalk

Notice
This is a draft proposed American National Standard. As such, this is not a completed standard. The
Technical Committee may modify this document as a result of comments received during public review
and its approval as a standard.

Permission is granted to members of NCITS, its technical committees, and their associated task groups to
reproduce this document for the purposes of NCITS standardization activities without further permission,
provided this notice is included. All other rights are reserved. Any commercial or for-profit reproduction is
strictly prohibited.

NCITS J20 DRAFT December, 1997 ii
of ANSI Smalltalk Standard revision 1.9

Copyright
Copyright  1997 National Committee for Information Technology Standards
Permission is granted to duplicate this document for the purpose of reviewing the draft
standard.

NCITS J20 DRAFT December, 1997 iii
of ANSI Smalltalk Standard revision 1.9

Table of Contents

 Page

FORWARD vi

1. GOALS AND SCOPE .. 5

2. CONFORMING IMPLEMENTATIONS AND PROGRAMS .. 7

3. THE SMALLTALK LANGUAGE ... 8

3.1 COMPUTATIONAL MODEL OF SMALLTALK EXECUTION... 9
3.2 THE SYNTAX OF SMALLTALK PROGRAMS ... 10
3.3 SMALLTALK ABSTRACT PROGRAM GRAMMAR ... 11
3.4 METHOD GRAMMAR.. 18
3.5 LEXICAL GRAMMAR .. 31
3.6 IMPLEMENTATION LIMITS.. 35

4. SMALLTALK INTERCHANGE FORMAT... 35

4.1 INTERCHANGE FORMAT BNF SYNTAX .. 36

5. STANDARD CLASS LIBRARY... 40

5.1 DEFINITIONS AND CONCEPTS... 40
5.2 STANDARD GLOBALS .. 49
5.3 FUNDAMENTAL PROTOCOLS.. 51
5.4 VALUABLE PROTOCOLS... 79
5.5 EXCEPTION PROTOCOLS .. 88
5.6 NUMERIC PROTOCOLS ... 114
5.7 COLLECTION PROTOCOLS .. 156
5.8 DATE AND TIME PROTOCOLS... 249
5.9 STREAM PROTOCOLS ... 273
5.10 FILE STREAM PROTOCOLS ... 288

6. GLOSSARY.. 296

7. INDEX OF PROTOCOLS... 302

8. REFERENCES ... 304

NCITS J20 DRAFT December, 1997 iv
of ANSI Smalltalk Standard revision 1.9

 Forward

Smalltalk is designed to be a "single paradigm language with very simple semantics and syntax for
specifying elements of a system and for describing system dynamics." The principle is explained
by the designers of the original Smalltalk-80 language.

There is a continuing growth of interest in the language. Its use has spread beyond the education
and research community to the commercial applications in recent years. Data from many sources
(including polls in conferences and reports from independent consultants) indicate the growing
popularity of Smalltalk as an object-oriented programming language.

There are currently at least five vendors of Smalltalk implementations. Although the actual number
of Smalltalk users is unknown, we believe it to be high. (It has been estimated that Digitalk Inc.,
alone, had sold over 100,000 Smalltalk/V licenses by 1993.)

The growth, spread and potential of Smalltalk led to a need for a standard that will protect the
users' interest in compatibility and portability. The J20 technical committee was formed in the
summer of 1993 to develop the ANSI Smalltalk standard. Many people and organizations in and
outside of the committee have contributed to the document. The following is the list of the formal
committee members.

Yen-Ping Shan, Chairman
Glenn Krasner, Vice-Chairman
Bruce Schuchardt, Project Editor
Rick DeNatale, Secretary

Organization Represented Name of Representative
Andersen Consulting.. Philippe Monnet
The Gallery Group, Inc... Tony Click
GemStone Systems, Inc. ... Bruce Schuchardt
 Patrick Logan
IBM .. Yen-Ping Shan
 Rick DeNatale
 Brian Barry
 David G. Thomson
Intuitive Systems, Ltd... Blair McGlashan
McKesson Corp. .. Douglas Surber
ParcPlace-Digitalk.. Glenn Krasner
Quasar Knowledge Systems, Inc. .. David Simmons
 Andrew Demkin
Texas Instruments, Inc... Andy Hoffman
 Mary Fontana

In addition, the following individuals have made significant contributions to the development of this
standard:
 Allen Wirfs-Brock Juanita Ewing
 David N. Smith Pat Caudill
 Brian Wilkerson Fred Chan
 Aaron Underwood Mike Kahl
 Thom Boyer Bruce Conrad
 Daniel Lanovaz Jim Fulton
 Ken Huff

NCITS J20 DRAFT December, 1997 5
of ANSI Smalltalk Standard revision 1.9

1. Goals and Scope

The goal of the J20 Committee was to produce a written standard for the Smalltalk language such
that:

1. working only from the standard, a conforming implementation can be produced,

2. Smalltalk programs which conform to the standard will have the same execution semantics on
any conforming implementation, and

3. the standard shall be sufficiently complete to allow useful Smalltalk programs to be
constructed.

The standard does not specify the full range of class libraries one would expect to find in a
Smalltalk implementation. For example, it specifies neither user-interface nor database
frameworks. It does provide facilities to create such classes that will work on compliant
implementations having identical external facilities to support them.

Subject to the preceding points, the standard should:

1. constrain the nature of current and future implementations as little as possible, and

2. minimize impact on legacy code and implementations.

Although it was not the intent of the committee to produce a conformance tool or conformance test
suite, the ability to define such conformance measures should be considered as a test of whether
the standard is adequately unambiguous.

The following chapters specify the Smalltalk language in a way that is consistent with these goals.
Chapter 2 specifies the terminology of conformance used in the standard. Chapter 3 specifies the
language syntax and semantics. Chapter 4 specifies a standard interchange format for Smalltalk
programs. Chapter 5 specifies the standard class library. Chapter 6 is a glossary of terms used in
the document. This is followed by an index of the protocols found in Chapter 5 and a list of
references that, while not part of the standard, are referred to in the text of the standard.

Most current Smalltalk implementations provide syntax and semantics only for Smalltalk methods.
In particular, they do not provide an explicit definition of program construction, for example class
creation and global creation and initialization. These program constructs, rather, are provided via
some combination of programming tools and imperative operations, i.e. the evaluation of
expressions in the language.

The Committee decided that neither tools-based definitions nor imperative-based definitions of
these important program constructs were adequate for a language standard. As a result, Chapter 3
not only provides syntax and semantics for Smalltalk methods, but also gives an explicit,
declarative syntax and semantics for all constructs in a Smalltalk program.

Chapter 4 gives a syntax for the format of files to be used for the interchange of Smalltalk programs
among conforming implementations. The Standard is not defined in terms of file contents, but this
file format syntax is intended to allow conforming programs to be moved between conforming
implementions.

The Object Library specification in Chapter 5 has scope that meets the Committee's goals, and is
implemented in a way that allows for specificity and allows for a significant amount of implementor
latitude.

The scope of the Library is roughly an intersection of existing Smalltalk products' libraries. That is,
it includes numbers, data structures (collections), basic objects (nil, Booleans, etc.), blocks,
exceptions, and files. The intent is that the functionality specified would be both complete and
adequate to use for interesting applications. The standard attempts to minimize these definitions

NCITS J20 DRAFT December, 1997 6
of ANSI Smalltalk Standard revision 1.9

within the constraints of completeness and usability, so that implementors are not burdened with
providing significantly more functionality than needed and so that the size of the base library could
be kept relatively small.

The standard does not attempt to specify areas where current implementations differ in significant
ways. In particular, as the goal statement implies, we did not include graphics, user interface, or
database accessing objects in the library. Future revisions of this Standard may include a wider
scope, especially if implementations converge.

Traditionally Smalltalk class libraries has been specified via their implementation, providing the
definition of a particular set of classes, including their state (instance variables) and method
implementations. This approach has major drawbacks to use as a library specification; it constrains
implementors to using exactly the implementation specified, and it can lead to less verifiable
specifications.

Rather than take this approach, we specify the Library in terms of the external behavior of the
library objects. Implementors can take advantage of various implementation techniques as long as
they deliver the specified external behavior. And this behavior must be rigorously specified.

The main drawback of this approach, in particular with respect to the implementation-based
approach, is that the standard cannot specify the behavior of programs that subclass classes that
implement the Standard Library. This is because, the behavior of such a subclass would be
dependent upon implementation details of its superclass that are beyond the scope of this
standard. Implementations are free to have instance variables and internal methods in their
implementations of these classes and those variables and methods cannot be guaranteed not to
conflict with compliant programs' instance variables and methods. For this reason, compliant
programs cannot subclass most classes that implement the Standard Library. The standard does
specify a limited set of classes, including most notably Object, may be subclassed by compliant
programs. Implementation are required to implement these classes in a manner that will not conflict
with the definition of subclasses.

The standard uses a particular technique for specifying the external behavior of objects. This
technique is based on a protocol, or type system. The protocol-based system is a lattice (i.e.
multiply inherited) based system of collections of fully-specified methods that follow strict
conformance rules (which, by the way, is possible with protocol/type systems but is not feasible in
implementation-based systems).

A protocol will specify the external behavior of those objects in the Library that the Standard
defines. In addition, a relatively small number of named Globals, objects whose behavior is defined
by a protocol, are specified. From these Globals, from the syntax-defined objects (e.g., program
literals), and from the objects returned from messages sent to these objects, are produced the full
set of objects defined in the Standard.

Note that the protocol mechanism is only of use to the specification, it is not a part of the Smalltalk
language. The standard does not require implementations to implement a protocol mechanism.
Implementations of the Standard only must provide object that conform to the protocol's
specifications. These objects may be instances or they may be classes; there is no requirement
that even the "class-like" protocols need to be implemented with classes. The standard does not
require that each protocol isbe implemented with separate objects--there may well be
implementations where single objects conform to multiple protocols. As long as the external
behavior of the objects is what is specified, then the implementation is conforming and programs
that use these objects should be conforming.

NCITS J20 DRAFT December, 1997 7
of ANSI Smalltalk Standard revision 1.9

2. Conforming Implementations and Programs

A Smalltalk implementation conforms to this standard if it implements all defined features as
specified in the standard.

In places the standard defers particulars of a feature to an implementation while still requiring that
the feature be implemented. Such a feature is denoted implementation defined and a conforming
implementation must document it.

If a feature is denoted undefined a conforming implementation may accept a program using the
feature, but must document that it does so. A conforming implementation is not required to accept
an undefined feature. A program that is dependent upon the use of an undefined feature does not
conform to the standard.

There are also places where the standard explicitly denotes something as unspecified. Most
notably, the protocol section allows an unspecified return value. The specifics of such features are
not defined by the standard although some reasonable behavior is required. Conforming
implementation must support the feature but need not documented the details of the
implementation.

A Smalltalk program conforms to the standard if it only makes use of features defined in the
standard. It may use implementation-defined features or unspecified featuresand still be
considered a conforming program, though doing so may limit the program's portability.

If a feature is denoted erroneous a conforming implementation must reject a program using the
feature.

The following table shows how a conforming implementation treats language features.

 Implementation-
Defined

Unspecified Undefined Erroneous

Must Accept √√√√ √√√√
Must Reject √√√√
May Vary √√√√ √√√√ √√√√
Must Document √√√√ √√√√ if accepted

NCITS J20 DRAFT December, 1997 8
of ANSI Smalltalk Standard revision 1.9

3. The Smalltalk Language

A Smalltalk program is a description of a dynamic computational process. The Smalltalk
programming language is a notation for defining such programs. This definition of the Smalltalk
language consist of two parts. The first part defines the abstract computational model for Smalltalk
programs. It defines the environment within which a Smalltalk program executes and defines the
entities that exist within that environment. The second part defines the notation used to specify
Smalltalk programs. It defines the syntax and semantics of the language. Taken together the two
parts are intended to define the semantics of a Smalltalk program, but avoid requiring any specific
implementation techniques.

The Smalltalk language defined in this chapter is an uniformly object-oriented programming
language. It is uniform, in the sense that all data manipulated by a Smalltalk program is
represented as objects. The language is a descendent of Smalltalk-80 [Gold83,Gold89]. The
primary difference between ANSI Smalltalk and Smalltalk-80 is that ANSI Smalltalk provides for
fully declarative specification of Smalltalk programs. In addition, implementation dependencies and
biases have been eliminated from the language.

Rationale
Smalltalk program construction has traditionally been performed in the context of a "virtual image" [Goldberg93]. A virtual
image consists of a set of objects. These objects include not only those that define a class library that is intended to be used
and extended by application programs, but also objects that implement the interactive Smalltalk programming environment
itself. In such an environment, a Smalltalk application program is constructed by directly or indirectly executing imperative
Smalltalk expressions that extend and modify the objects within the virtual image to include the classes and variables
necessary to implement the functionality of the program. Smalltalk has not included the concept of a program as a distinct
entity. In practice, a Smalltalk program is the state of a virtual image when work is declared completed. The image contains
the objects that are the implementations of classes, global variables and pools, but not the imperative expressions that
created them. Therefore, to transfer a program to another virtual image, it is necessary to synthesize and externalize
expressions that will recreate the program elements. However, the types of some program elements may not be readily
discernible by examining their implementation artifacts. For example, in some implementations it is not possible to
distinguish a pool from a global variable whose current value is a dictionary with strings for keys. More generally, it is not
possible to synthesize the original initialization expressions for global variables. It is only possible to produce expressions
that reproduce their current values.
Lack of a program definition in traditional Smalltalk environments leads to an undue reliance on the virtual image. Images
can become obsolete or broken. Because the program is encoded in the image, the program is in danger of becoming
inaccessible if the image becomes outmoded or corrupt.
Smalltalk's imperative program construction model also requires that the same virtual image be used both for program
creation and program delivery. This makes it very difficult to support situations where the development must be performed in
a computing environment that is different from the target execution environment.
Because of the issues identified above this standard has chosen to use a declarative model to define Smalltalk programs.
This requires the introduction of additional declarative abstractions to the language for program elements that previously
had only been defined in terms of implementation artifacts. All elements of a Smalltalk program are described existentially at
a level of abstraction that does not overly constrain implementations of the language. The meaning of such a Smalltalk
program should be understandable solely from the definition of the program without actually executing a program
construction processor or making use of a pre-initialized execution environment.
The use of a declarative specification model has little direct impact upon Smalltalk programmers. Even though Smalltalk has
traditionally been implemented using an imperative program description model, the perception of most Smalltalk
programmers is of a declarative model. This is because Smalltalk programmers typically create and edit programs using a
browser that presents the classes that make up the program in a declarative style.
With the declarative language model the use of reflection is not required (although it is permitted) in order to define a
Smalltalk program. The following are a few other implementation assumptions made about the traditional execution
environment for Smalltalk programs that are eliminated using this declarative model:
• A system dictionary exists.
• All classes, globals, and pools are in this system dictionary.
• Pools are realized using dictionaries.
• Global and pool variables are represented as associations.

NCITS J20 DRAFT December, 1997 9
of ANSI Smalltalk Standard revision 1.9

• Each class has an associated metaclass.
• Methods are objects.
It is possible to create an implementation that conforms to this standard that contradicts none of these assumptions.
However, it is equally possible to create a conforming implementation where none of the assumptions is true.

3.1 Computational Model of Smalltalk Execution

A Smalltalk program is a means for describing a dynamic computational process. This section
defines the entities that exist in the computational environment of Smalltalk programs.

A variable is a computational entity that stores a single reference (the value of the variable) to an
object.

A message is a request to perform a designated computation. An object is a computational entity
that is capable of responding to a well defined set of messages. An object may also encapsulate
some (possibly mutable) state.

An object responds to a message by executing a method. Each method is identified by an
associated method selector. A behavior is the set of methods used by an object to respond to
messages.

A method consists of a sequence of expressions. Program execution proceeds by sequentially
evaluating the expressions in one of more methods. There are three types of expressions:
assignments, message sends, and returns.

An assignment changes the value of a variable.

A message send causes execution of the currently active method to be temporarily suspended and
for program execution to continue starting with the first expression of another method. A message
send directs a message to an object. The object is called the receiver of the message. A message
consists of a method selector and a set of arguments. Each argument is a reference to an object.
When an object receives a message, the method selector of the message is used to select the
method from the object's behavior that corresponds to the selector. The method becomes the new
locus of execution. Special processing takes place if the receiver's behavior does not include a
method corresponding to the message's method selector.

A return terminates execution of a method and causes execution to resume within the method that
executed the message send that activated the method containing the return. Execution continues
immediately following the message send expression. The return provides a value (an object
reference) that becomes the value of the message send.

Within the text that defines a Smalltalk program, identifiers, called variable names, are used to refer
to variables. A variable name is bound to a variable over some extent of the program definition.
The extent within a program of such a binding is called the scope of the variable. The only
operations a program may perform upon a variable are to access its current value or to assign it a
new value.

The encapsulated state of an object consists of a (possibly empty) set of variables. Such variables
are called instance variables. Normally each variable is bound to an associated instance variable
name. The state of an object may also include a set of unnamed instance variables that are
accessed via numeric indices. In addition, the state of an object may be represented in an
implementation dependent manner. Other than instance variables, all variables are discrete
execution entities that exist independently of any objects. Variables that are not instance variables
are called discrete variables. A discrete variable whose scope is the entire program is a global
variable. Other types of discrete variables are pool variables, class variables, and temporary
variables.

The objects that exist during program execution consist of both statically created objects and
dynamically created objects. A statically created object is an individual object that is explicitly

NCITS J20 DRAFT December, 1997 10
of ANSI Smalltalk Standard revision 1.9

defined by the text of a Smalltalk program. Typically these are either literals or class objects. Some
statically created objects are bound to an object name within some scope. Such objects are called
named objects. The most commonly occurring named objects are class objects.

Dynamically created objects are not individually defined by the program, instead they are
dynamically created as a side effect of the execution of a method. Dynamically created objects do
not have names. They are typically referenced as the value of a variable.

Smalltalk does not provide an explicit mechanism for destroying objects. Conceptually, once an
object is created it continues to exist for the duration of the program's execution. In practice, many
objects are used for only a portion of a program's execution and then logically ignored. Smalltalk
implementations use garbage collection techniques to automatically detect and reclaim the
resources associated with objects which are no longer of use to the program. During program
execution each object must continue to exist, preserving its state, for as long as it is possible to
execute any statement that may reference a variable having that object as its value. The garbage
collector is free to reclaim the resources associated with any object when it can prove that
continued execution of the program will never reference that object.

Immediately prior to the execution of a Smalltalk program all statically created objects are in their
initial state as defined by the Smalltalk program and the values of all discrete variables are
undefined. Execution proceeds by sequentially executing each initializer in the order specified by
the program definition. If a program accesses any variable that has not been explicitly initialized
either by an initializer or by an assignment statement its value will be the object named nil.

Rationale
The vast majority of Smalltalk application programs do not utilize the reflective capabilities available in traditional Smalltalk
implementations. For this reason, we view such reflective capabilities as artifacts primarily used in the implementation of
incremental program facilities and do not mandate their presence in all Smalltalk implementations. Given this view, the
standard execution model only needs to define the entities that are part of a programmer's view of a running Smalltalk
program. These are variables and objects with state and behavior. Implementation artifacts such as compiled methods,
method dictionaries, or associations representing variables are excluded.
Class objects have no special significance other than having names and having behaviors and state distinct from that of
their associated instance objects. Unlike classic Smalltalk definitions [Goldberg83], they are not defined as being the
containers or implementers of their instances' behavior. The techniques used to implement the behavior of objects is left to
the implementers. Finally, because classes are not specified as the implementers of behavior, metaclasses are not needed
to provide the behavior of class objects.

3.2 The Syntax of Smalltalk Programs

The Smalltalk programming language provides the notation for defining Smalltalk programs. The
previous section defined the computational elements of such a program. This section defines the
notation.

Traditionally, Smalltalk has not had an explicit notation for describing an entire program. An explicit
syntax definition has been used for certain program elements, such as methods, but the manner in
which such elements were structured into a complete program was defined by the various
implementations. This standard recognizes the need for a standard definition of the structure of
Smalltalk programs but follows the Smalltalk tradition of not mandating a single universal linear
textual representation for programs. It accomplishes this by specifying an abstract syntax for
Smalltalk programs. The abstract syntax specifies all elements that make up a Smalltalk program
and the manner in which such elements are logically composed of constituent elements. However,
a single concrete representation of the abstract program syntax is not mandated. Implementations
are free to define and support various concrete syntaxes that conform to the standard abstract
syntax for Smalltalk programs. One such concrete syntax that all implementations are required to
support is the "Smalltalk Interchange Format" that is defined in section 4 of this standard.

The notation for Smalltalk programs are defined by three inter-related specifications. The lexical
grammar specifies the valid sequences of individual characters that make of the tokens of the
Smalltalk language. These token serve as the "atoms" out of which Smalltalk program definitions
are constructed. The method grammar specifies the concrete syntax for creating methods and

NCITS J20 DRAFT December, 1997 11
of ANSI Smalltalk Standard revision 1.9

initializers from tokens. The abstract program grammar specifies the abstract syntax of a complete
Smalltalk program.

The lexical grammar defines a concrete syntax for tokens and the method grammar and for
methods and initializers. They define a single, specific language for defining such entities. The
abstract program grammar does not define a concrete syntax. Instead, it specifies the logical
structure of a Smalltalk program and identifies optional and required program elements.

A variant of Extended Backus-Naur Form (EBNF) is used to define each of the three grammars.
The symbols that make up the productions of the grammar are either identifiers that name syntactic
categories or literal tokens enclosed in single quotes. The names of syntactic categories of the
program grammar are enclosed by double angle brackets (for example:<<progamElement>>). The
names of syntactic categories of the method grammar are enclosed by single angle brackets (for
example: <assignment>). Identifiers that are neither quoted or enclosed by angle brackets are
names of syntactic categories of the lexical grammar (for example: identifier). Productions of the
abstract program grammar may reference symbols of either the method grammar or lexical
grammar. Productions of the method grammar may reference symbols of the token grammar.

Within productions, alternatives are separated by a vertical bar ('|'), and typically listed on separate
lines. Optional symbols are enclosed in square brackets ('[' and ']'). Symbols may also be grouped
using parenthesis. The plus sign ('+') following a symbol or group of symbols indicates one or more
repetitions; an asterisk ('*') indicates zero or more repetitions. For example: the following rule:

['('] <statement>+ [')']

defines a sequence of one or more statements that are optionally enclosed in parentheses.

Within the concrete lexical and method grammar, the ordering elements of the elements of a
product define a required syntactic ordering. Within the abstract program grammar, the ordering of
the elements of a production do not define or imply any such syntactic ordering The productions of
the abstract program syntax are only used to define the constituent elements of a program.
Ordering and other structural attributes are a characteristic of concrete program syntax and except
for the "Smalltalk Interchange Format" are outside of the scope of this standard. An optional
symbol in an abstract program grammar production identifies a program element that is optionally
present. Repeat symbols indicate that multiple instances of the program element may be present.
The occurrence of a lexical grammar or method grammar symbol in a production of the abstract
program grammar means that any concrete form of the abstract production must include the
concrete language element produced by the symbol's production.

Abstract grammar identifiers that are in italics (for example, <<flag>>) are "atoms" that do not have
further structure or contain any lexical or method grammar elements. Typically such identifiers
correspond to optional attributes of program element definitions. Any concrete program syntax
must provide a mechanism for specifying these attributes.

3.3 Smalltalk Abstract Program Grammar

3.3.1 Program DefinitionThe definition of Smalltalk programs consists of a sequence of program
element definitions. The program element definitions define all discrete variables, statically created
objects and the behaviors of all objects that will take part in the computation. In addition, the
program definition specifies the order of dynamic initialization for all program elements.

<<Smalltalk program>> ::= <<program element>>+ <<initialization ordering>>
<<program element>> ::= <<class definition>> |
<<global definition>> |
<<pool definition>> |
<<program initializer definition>>

The concrete syntax, representation, and character encoding of a <<Smalltalk program>> is

NCITS J20 DRAFT December, 1997 12
of ANSI Smalltalk Standard revision 1.9

implementation defined. A concrete program representation may define syntax for grouping or
structuring subsequences of <<program elements>> into individual storage units. Such units must
be logically composable into a valid <<Smalltalk program>>.

The <<program element>> clause of a <<Smalltalk program>> logically includes the definitions of
any standard or implementation program elements used by the program. An implementation may
define a mechanism for the automatic inclusions of such definitions.

Some program elements define an identifier as a global name that uniquely identifies the program
element. These global names exist in a single global name scope that is in the scope of every
<<program element>> within the program. Each global name must be uniquely defined by a single
<<program element>>. It is erroneous if two or more <<program element>>definitions use the
same identifier as a global name. The ordering of the <<program element>>definitions should have
no affect upon the visibility of global names. A <<program element>> may reference any global
name regardless of whether the definition of the global name proceeds or follows the <<program
element>>.

The <<initialization ordering>> defines the order in which the initialization of each individual
<<program element>>. will occur. Program execution begins with the execution of the initializer of
the first <<program element>> and proceeds by executing, in turn, the initializer of each
subsequent <<program element>>. Execution of the program terminates after completion of the
initializer of the last <<program element>>.

3.3.1.1 Name Scopes

Within a program definition identifiers, called names, are used to refer to various entities. Such a
name is said to be bound to an entity. An occurrence of the name within the program definition is
interpreted as a reference to the entity to which the name is bound. The association between a
name and an entity is referred to as the binding of the name. A name may have different bindings
at different points within a program definition. A name scope is a set of name bindings that are
available to some portion of the Smalltalk program definition. A reference to a name at some point
in a program definition is resolved to the specific binding of the name that exists in the scope that is
available at that point. The binding of a name within a scope may be specified as an error binding.
Any reference to a name which resolves to an error binding is erroneous.

A name scope may be defined as a composition of other, already defined, name scopes. Two
name scopes are composed by specifying one of them as the outer scope and the other as the
inner scope. The set of names in such a composite scope is the union of all the names in the outer
scope and all of the names in the inner scope. The binding of each name is the binding of the
name from the inner scope, if the name occurs in the inner scope. Otherwise, the binding of the
name, is the binding of the name from the outer scope. If a binding for the same name appears in
both the inner scope and the outer scope, the inner scope binding is said to shadow the outer
scope binding. It is the inner scope binding that is available as part of the composite scope.

In this document, an algebraic notation is sometimes used to define composite scopes. The "+"
operator is used to define a composite scope where the scope on the left of the "+" is the outer
scope and the scope on the right of the "+" is the inner scope. Parenthesis are used to specify
complex composite scopes. For example, the expression:
 (outer + middle) + inner
describe a composite scope whose outer scope is itself a composite.

A <<Smalltalk program>> introduces a name scope, called the global scope, that is available to all
parts of the program. The global scope is a composite scope whose outer scope is called the
extension scope and whose inner scope is called the global definition scope. The global definition
scope contains name that are explicitly defined by <<program element>> definitions. The extension
scope exists so that Smalltalk implementations may provide predefined global name bindings. The
mechanism, if any, for adding name bindings to the extension scope of a <<Smalltalk program>>
is unspecified.

NCITS J20 DRAFT December, 1997 13
of ANSI Smalltalk Standard revision 1.9

Global names introduced as part of the implementation of the standard class library or as part of an
implementation's extended class library have the potential of interfering with the portability of user
programs. A standard conforming program might not be portable to an implementation if that
implementation defines a global that is the same name as one of the program's global.

Rationale
The extension scope exists so that any implementation specified predefined names may be defined a scope that is
shadowed by all other scopes. This enhances program portability between implementations by ensuring that any
coincidental explicit definition of a name will take precedence over any implementation specific binding of the same name.
Three ways to deal with the global name clashes were discussed:
1. Recognize and ignore it.
2. Require that any such global names used by the application use underscore prefixes. This is unlikely to be an

acceptable solution as it would essential require all implementation provided globals that are not required by this
standard to use such names even though they are likely to be referenced by user code.

3. Require that all implementation globals be defined in the extension scope. Any conflicting user program globals would
shadow the implementation globals. This would generally solve the portability problem but its implementation would
require significant changes to existing implementations.

A standard conforming implementation may use any of these approaches.

3.3.2 Class Definition

A class definition defines the behavior and encapsulated state of objects. In addition, a class
definition introduces a named object binding within the global definition scope. This name is called
a class name and the associated object is a class object. A class definition specifies the behavior
and instance variable structure for both the statically created class object and any dynamically
created instances of the class.

A class definition specifies two behaviors, the instance behavior and the class behavior. The
instance behavior is the behavior of any dynamically created instances of the class. The class
behavior is the behavior for the class object. Through the use of inheritance, the instance variable
structure and behavior for both the class object and instance objects may be specified as a
refinement of that specified by another class definition known as its superclass. Conversely, a class
definition that inherits such structure or behavior is known as a subclass of its superclass.

A class definition may also define discrete variables called class variables whose scope is all
methods (either class or instance methods) defined as part of the class definition or as part of the
class definitions of any subclasses of the class definition. In addition a class definition may specify
the importation of pools. Any pool variables defined in such pools are included in the scope of all
methods defined as part of the class definition.

<<class definition>>::=
 <<class name>> [<<superclass name>>]
 [<<instance state>>]
 [<<class instance variable names>>]
 [<<class variable names>>]
 [<<imported pool names>>]
 [<<instance methods>>]
 [<<class methods>>]
 [<<class initializer>>]
<<class name>> ::= identifier
<<superclass name>> ::= identifier
<<instance state>> :=
 <<byte indexable>> |
 [<<object indexable>>] <<instance variables names>>
<<instance variables names>> ::= identifier*
<<class instance variable names>> ::= identifier*
<<class variable names>> ::= identifier*
<<imported pool names>> ::= identifier*
<<instance methods>> ::= <method definition>*

NCITS J20 DRAFT December, 1997 14
of ANSI Smalltalk Standard revision 1.9

<<class methods>> ::= <method definition>*
<<class initializer>> ::= <initializer definition>

The <<class name>> is the global name of the class object. This binding is contained in the global
definition scope. It is erroneous if there is any other global definitions of this name within the
program. The binding of the <<class name>> to the class object is a constant binding. It is
erroneous for an identifier that resolves to such a binding to appear as the target of an assignment
statement. It is erroneous if the <<class name>> is one of the reserved identifiers, "true", "false",
"nil", "self" or "super". Class names whose initial character is an underscore are reserved for
implementation use.

The <<superclass name>> identifies the class definition from which this definition inherits. It is
erroneous if <<superclass name>> is not the <<class name>> of another <<class definition>>
whose binding exists in the global scope of this program. If the <<superclass name>> is absent
then this class has no inherited behavior. It is erroneous if the <<superclass name>> is the same
as the <<class name>> or if <<superclass name>> is the name of a class that directly or indirectly
specifies <<class name>> as its <<superclass name>>.

3.3.2.1 Instance State Specification

The <<instance state>> production defines the representation of the state that is encapsulated by
objects that are instances of the class. The state consists either of variables that reference other
objects or variables that store binary data. The number of state variables may either be the same
for all instances or may vary between different instances.

The <<byte indexable>>and <<object indexable>> productions specify that the instances of this
class encapsulate a variable number of unnamed instance variables. The individual unnamed
instance variables are identified using numeric integer indices that range from 1 to the total number
of unnamed instance variables. The actual number of unnamed instance variables associated with
a particular instance of the class is determined at the time the instance is created. The meaning of
the class definition is undefined if a class definition includes a <<byte indexable>> clause and any
superclass definition includes an <<instance variable names>> or an <<object indexable>> clause.
The meaning is undefined if a class definition includes an <<instance variable names>> or an
<<object indexable>> clause and any superclass definition includes a <<byte indexable>> clause.
If a class definition does not include an <<instance state>> clause then the representation of
instances of the class is the same as the representation of the instances of its superclass. If a class
definition does not include an <<instance state>> clause and the class definition does not specify a
superclass then instances of the class have no instance state.

If the <<object indexable>> clause is present in the definition of a class or any of its superclasses
the values of the unnamed instance variables are object references. When such an object is
created the initial value of each unnamed variable is nil. An object whose state includes such
variables is called an indexable object. An indexable object may also have named instance
variables.

If the <<byte indexable>>clause is present in the definition of a class or any of its superclasses the
values of the unnamed instance variables are restricted to be integers in the range 0 to 255. When
such an object is created the initial value of each unnamed variable is 0. An object whose state
includes such variables is called a byte indexable object.

The <<instance variable names>> production defines the names of instance variables of the
objects that are instances of the class. The identifiers specified by <<instance variables names>>
are called instance variable names. It is erroneous for the same identifier to occur more than once
in the sequence of instance variable names. The meaning of the class definition is undefined if any
of the instance variable names is the same identifier as an instance variable name or class variable
name defined by any superclass. It is erroneous for an instance variable name to also appear as a
class variable name. It is erroneous if an instance variable name is one of the reserved identifiers,
"true", "false", "nil", "self" or "super". The complete instance variable set is the set consisting of the

NCITS J20 DRAFT December, 1997 15
of ANSI Smalltalk Standard revision 1.9

union of the set of instance variable names of the <<class definition>> and the complete instance
variable set of the class definition's superclass. If a <<superclass name>> is not specified in a
class definition its complete instance variable set is simply the set of instance variable names of the
<<class definition>>.

Rationale
The meaning of a class variable name, instance variable name, or class instance variable name that is the same as an
inherited variable name is intentionally left undefined in order to permit implementations to extend this standard such that
such a definition would shadow the inherited definition. While Smalltalk implementations have traditionally treated such
shadowing as an error, shadowing is necessary in order to avoid the "fragile subclass" problem" It is anticipated that
implementations that wish to address this problem will allow such shadowing.

The encapsulated state of an instance object for a class definition that includes an <<instance
variable names>> clause consists of a fixed-size set of variables capable of referencing any object.
The identifiers specified by <<instance variable names>> are called instance variable names and
the associated variables are called named instance variables. The number of named instances
variables encapsulated by an instance object is equal to the size of the complete instance variable
set of the object's class definition. There is a one-to-one correspondence between the members of
the complete instance variable set and the named instance variables of an instance object. When
an instance of a class is created all of the named instance variables initially have the value of the
reserved identifier nil. An object with named instance variables may also have unnamed indexable
instance variables.

3.3.2.2 Class State Specification

The <<class instance variable names>> production defines the names of instance variables of the
class object. The identifiers specified by <<class instance variables names>> are called class
instance variable names. It is erroneous for the same identifier to occur more than once in the
<<class instance variable names>> clause. The meaning of the class definition is undefined if any
of the class instance variable names is the same identifier as a class instance variable name or a
class variable name defined by any superclass. It is erroneous for a class instance variable name
to also be a class variable name. It is erroneous if a class instance variable name is one of the
reserved identifiers, "true", "false", "nil", "self" or "super". The complete class instance variable set
is a set consisting of the union of the set of class instance variable names of the <<class
definition>> and the complete class instance variable set of the class definition's superclass (or if a
<<superclass name>> is not specified, a possibly empty set of implementation defined underscore-
prefixed class instance variable names). The number of class instances variables encapsulated by
a class object is equal to the size of the complete class instance variable set of the object's class
definition. There is a one-to-one correspondence between the members of the complete class
instance variable set and the class instance variables of a class object. When a class object is
created all of the class instance variables initially have the value of the reserved identifier "nil".

Rationale
Implementations may need to have built-in class instance variables (e.g., methodDictionary, className, etc.). Traditionally
these are inherited from implementation specific classes such as Behavior or Class.

The <<class variable names>> production defines the names of discrete variables which are
accessible by both class and instance methods of the class and its subclasses. The identifiers
specified by <<class variable names>> are called class variable names. It is erroneous for the
same identifier to occur more than once in the list of class variable names. The meaning of the
class definition is undefined if any of the class variable names is the same identifier as an instance
variable name, class instance variable name, or class variable name defined by any superclass. It
is erroneous for an class variable name to also be an instance variable name or a class instance
variable name.

One discrete variable, called a class variable, exists corresponding to each class variable name.
Each class variable name is bound to the corresponding class variable. For each <<class
definition>> these bindings exist in a scope called the class variable scope. The initial value of a
class variable is the value of the reserved identifier nil. Each <<class definition>> also defines a

NCITS J20 DRAFT December, 1997 16
of ANSI Smalltalk Standard revision 1.9

scope called its inheritable class variable scope. The inheritable class variable scope for a <<class
definition>> is a composite scope whose outer scope is the inheritable class variable scope of its
superclass (or the empty scope if no superclass was specified) and whose inner scope is its class
variable scope.

The <<imported pool names>> production, specifies variable pools whose elements may be
referenced from within <method definition> or <initializer definition>clauses that are part of the
<<class definition>>. The imported pools identifiers are called pool names. It is erroneous if each
pool name is not the <<pool name>> of a <<pool definition>> whose binding exists in the global
scope of this program. It is erroneous for the same identifier to occur more than once in the list of
pool names. Each class defines a scope, called its pool variable scope, containing the union of the
names of all pool variables defined by all of the pool definitions named by the <<imported pool
names>>clause. The binding of each name in the pool variable scope is the binding of the name in
its corresponding <<pool definition>> unless a name is defined in more than one <<pool
definition>>. In that case the binding of the name in the pool variable scope is the error binding.

3.3.2.3 Behavior Specification

A <<class definition>> defines a scope, called the class scope, that is used by all <method
definition> and <initializer definition> clauses that are part of the <<class definition>>. The class
scope for a class, X, is defined as follows:
 ((global scope + X's pool variable scope) + X's class variable scope.
Its instance function scope is defined as:
 X's class scope + X's instance variable scope
and its class function scope is defined as:
 X's class scope + X's class instance variable scope.
Where the instance variable scope is a scope that binds the elements of the complete instance
variable set and the class instance variable scope is a scope that binds the elements of the
complete class instance variable set.

The productions <<instance methods>> and <<class methods>> are used to specify, respectively,
the instance behavior and the class behavior defined by a class definition. Each <method
definition> specifies a method selector. It is erroneous if more than one <method definition> for a
specific method selector appears in the <<instance methods>> of a <<class definition>>. Similarly,
it erroneous if more than one <method definition> for a specific method selector appears in the
<<class methods>> of a <<class definition>>.

The instance behavior defined by the class definition consists of the instance behavior (including
inherited behavior) of the superclass augmented by the <<instance methods>> of the class
definition. A <method definition> in the <<instance methods>> whose method selector is the same
as the method selector of a <method definition> in the superclass' instance behavior replaces the
inherited <method definition> in the instance behavior. The <method definition> that is replaced is
called an over-ridden method. Similarly, the class behavior defined by the class definition consists
of the class behavior of the superclass augmented in an analogous manner by the <<class
methods>> of the class definition.

If the <<superclass name>> is absent then this class has no inherited instance behavior and the
instance behavior consists solely of the <<instance methods>> that are part of the class definition.
The class behavior of such a class is defined to inherit from the instance behavior of the <<class
definition>> whose <<class name>> is the identifier "Object" bound in the global scope.

The effect of defining a method whose method selector is one of the following restricted selectors is
undefined except for their use in the definition of behaviors that are required by this standard.
Implementations may disallow the definition of methods with these selectors.

NCITS J20 DRAFT December, 1997 17
of ANSI Smalltalk Standard revision 1.9

Restricted Selectors:

 ifTrue: ifTrue:ifFalse:

 ifFalse: ifFalse:ifTrue:

 to:do: to:by:do:

 and: or:

 == timesRepeat:

 basicAt: basicAt:put:

 basicSize basicNew:

Rationale
Smalltalk implementations have traditionally open-coded certain messages including those with the above selectors. Open
coding is typically based upon assumptions about the typical class of the receiver of these messages. If the receiver is a
literal or block constructor, these assumptions can be verified at compilation time in order to make the decision as to
whether open-coding is appropriate. If the receiver is a variable or expression it is difficult or impossible to verify this at
compilation time. In this situation most implementations make the assumption that the receiver will be an instance of a class
for which the open-coding is valid. A run-time check verifies that the receiver is an instance of the expected class and
generates a run-time error if it is not. This error check precludes the polymorphic use of messages that are open coded in
this manner. While this standard neither requires nor encourages this implementation technique it does allow it. This is the
reason for the restrictions on the above selectors. These are the selectors that have been traditionally open-coded and
whose receivers are often expressions or variables. Other messages such as #whileTrue: have also been traditionally open-
coded but typically their receivers are block constructors. Thus, it is feasible to only open-code messages with compile-time
verifable receivers and there is no conflict with the polymorphic use of the messages.

The <<class initializer>> is the initializer for the class. The <<class initializer>> production consists
of an <initializer definition> that defines the function that is used to generate the initial values of
class variables and the class object defined by the class definition. The outer scope of the class
initializer is the same as the outer scope of the class methods of the same <<class definition>>. A
class initializer is not inherited by subclasses. The value returned by a class initializer is discarded.

3.3.3 Global Variable Definition

A global variable definition is used to specify a discrete variable or named object that is bound to a
variable name within the global definition scope. The definition may include an initializer that
provides the initial value of the variable.

<<global definition>> ::=
 [<<constant designator>>] <<global name>> [<<variable initializer>>]
<<global name>> ::= identifier
<<variable initializer>> ::= <initializer definition>

If the <<constant designator>> is present the <<global definition>> defines a named object,
otherwise it defines a global variable. The <<global name>> is the global name of the discrete
variable or named object. It is erroneous if there is any other global definitions of this name within
the program. It is erroneous if the <<global name>> is one of the reserved identifiers, "true", "false",
"nil", "self" or "super".

The <<variable initializer>> when evaluated provides the value of the named object or the iinitial
value of the global variable. If no <<variable initializer>> is present its value is nil. If the <<constant
designator>> is present the binding of the <<global name>> to the object that is the value of the
<<variable initializer>> is a constant binding and it is erroneous for an identifier that resolves to that
binding to appear as the target of an assignment statement. If the <<constant designator>> is
present the value of the named object is undefined prior to the evaluation of its <<variable
initializer>>.

NCITS J20 DRAFT December, 1997 18
of ANSI Smalltalk Standard revision 1.9

3.3.4 Pool Definition

A pool definition introduces a global name binding for a variable pool and defines the names of the
discrete variables within the pool.

<<pool definition>> ::= <<pool name>> <<pool variable definition>>*
<<pool name>> ::= identifier
<<pool variable definition>> ::=
 [<<constant designator>> <<pool variable name>> [<<variable initializer>>]
<<pool variable name>> ::= identifier

The <<pool name>> is the global name of the variable pool. It is erroneous if any other global
definition of this name exists within the program. It is erroneous if the <<pool name>> is one of the
reserved identifiers, "true", "false", "nil", "self" or "super". An identifier that is bound to a variable
pool with a <<pool definition>> is called a pool name. Pool names are listed in the <<imported
pools>> production of a <<class definition>>. The use of a pool name in any other context is
undefined.

Rationale
An implementation is permitted but not required to treat a pool name as a binding on an implementation artifact such as a
pool dictionary.

A <<pool variable definition>> introduces a name binding within a variable pool for a named or
object discrete variable with an optional initial value. If the <<constant designator>> is present the
<<pool variable definition>> defines a named object, otherwise it defines a variable, called a pool
variable. The <<pool variable name>> is the name of the pool variable or named object. It is
erroneous to have more than one <<pool variable definition>> with the same <<pool variable
name>> within the same variable pool. It is erroneous if the <<pool variable name>> is one of the
reserved identifiers, "true", "false", "nil", "self" or "super". The <<variable initializer>>, when
evaluated, provides the initial value of the pool variable or named object. If no <<variable
initializer>> is present the initial value is nil. The value of a named object, before evaluation of its
<<variable initializer>> is undefined. If the <<constant designator>> is present the binding of the
<<pool variable name>> to the value computed by the <<variable initializer>> is a constant binding
and it is erroneous for an identifier that resolves to that binding to appear as the target of an
assignment statement.

3.3.5 Program Initializer Definition

A program initializer definition is used to specify a initializer that is executed solely for its side-
effects. The value of such an initializer is not captured as the value of a variable or as a named
object.

<<program initializer definition >> ::= <initializer definition>

The value of the initializer is discarded.

3.4 Method Grammar

The method grammar defines Smalltalk's language for describing units of executable code. There
are three fundamental constructs that define executable code: methods, initializers, and blocks.
These are generically called functions because they perform computations and return a result
value. The statements in a function are executed when the function is activated during execution of
the Smalltalk program. Each type of function is activated in a different manner. Most commonly,
functions are activated as the result of some action in an already active function. In this case, the
function which performs the action is known as the calling function and it is said to call the newly
activated function. The definition of each type of function specifies the circumstances under which

NCITS J20 DRAFT December, 1997 19
of ANSI Smalltalk Standard revision 1.9

a function of that type is activated. The next section defines the traits that are common to all types
of functions.

3.4.1 Functions

The definition of any function may include a set of temporary variable names. In addition, the
definitions of methods and blocks may also include a set of argument names. A function defines a
scope, called its local scope, whose names consist of its argument names and its temporary
variable names. Temporary variable names are bound to discrete variables. The bindings of
argument names are constant bindings. It is erroneous for an identifier that resolves to an
argument to be the target of an assignment statement.

The identifiers referenced from the statements of a function are resolved in the context of a
composite scope called the statement scope. The inner scope of a statement scope is its function's
local scope. The nature of the outer scope varies for each type of function.

When a function is activated, an individual discrete variable, called a temporary variable, is created
corresponding to each of the function's temporary variable names. Each temporary variable is
bound to the corresponding temporary variable name in the function's local scope. The value of
each temporary variable is initialized to nil.

If the function requires arguments the constant binding of each argument name in the local scope
is set to reference the object that is the corresponding actual argument passed by the expression
that called the function.

The state of an executing function includes the active identifier bindings used by the function and
the current locus of execution within the function. The noun activation is used to describe the state
of an executing function. Each time the execution of a function is initiated a new activation is comes
into being. The activation exists at least until execution of the function is irrevocably terminated.
During an execution of a function, the evaluation of an expression may result in the calling of
another function. When this occurs, the activation of the calling function is suspended at the current
point of execution and a new activation is created for the called function. Should the called function
return (complete execution), the suspended activation of the calling function is reactivated and
execution resumes from the point of suspension. A called function will itself be suspended if it calls
another function (or itself, recursively). Thus a logical chain of suspended activations exists that
begins with some initial calling activation and proceeds through all suspended activations that lead
to the activation of the currently active function. Such a chain of activations is called a call chain.

There are unique bindings of a function's temporary variables and arguments for each activation of
the function. If a function has multiple simultaneous activations, each activation has an
independent set of temporary variables and local bindings. Each temporary variable or argument
binding created by a function's activation must continue to exist, retaining its value, for at least as
long as it is possible for execution to reach any statement that contains an identifier whose binding
resolves to a reference to the variable or argument. In most cases temporary variables can be
destroyed when the activation of the function that created them is terminated. However, if a
function evaluates a block constructor that results in a block that references any of the function's
local variables, then those variables must continue to exist, maintaining their values, (even after the
function is terminated) as long as the block or any activation of the block exists.

3.4.2 Method Definition

A method is a function that is activated as the result of sending a message to an object. A <method
definition> is a component of a <<class definition>> that introduces a method along with an
associated method selector into a behavior. A method consists of a sequence of statements that
are evaluated when the method is activated by a message send. Evaluation of a method concludes
by returning an object reference as the value of the message send that activated the method.

NCITS J20 DRAFT December, 1997 20
of ANSI Smalltalk Standard revision 1.9

<method definition> ::=
 <message pattern>
 [<temporaries>]
 [<statements>]
<message pattern> ::= <unary pattern> | <binary pattern> | <keyword pattern>
<unary pattern> ::= unarySelector
<binary pattern> ::= binarySelector <method argument>
<keyword pattern> ::= (keyword <method argument>)+
<temporaries> ::= '|' <temporary variable list> '|'
<temporary variable list> ::= identifier*

It is erroneous if the same identifier is used for more than one <method argument> in an individual
<method definition>. It is erroneous if any of the reserved identifiers ('nil', 'true', 'false', 'self', and
'super') is used as a <method argument>. It is erroneous if the same identifier is used as a
<method argument> of a <method definition> and also appears in the method's <temporary
variable list>. An identifier that is used as a <method argument> is called a method argument
name.

It is erroneous if the same identifier appears more than once in a single method definition's
<temporary variable list>. It is erroneous for any one of the reserved identifiers ('nil', 'true', 'false',
'self' and 'super') to appear in a <temporary variable list>. An identifier that appears in a
<temporary variable list> of a method is called a method temporary variable name.

A <temporary variable list> list may be empty, containing no identifiers. In this case the enclosing
vertical bars may be immediately adjacent with no intervening white space.

Each <method definition> has an identifying method selector. If the <method definition> has a
<unary pattern> or a <binary pattern> then its method selector is the specified unarySelector or
binarySelector. If the <method definition> has a <keyword pattern> then its method selector is the
keywordSelector formed by concatenating, in left to right order, each keyword specified in the
<keyword pattern>.

If a method is an instance method then the outer scope of its statement scope is its class
definition's instance function scope and each instance variable name is bound to its corresponding
instance variable of the object that is the receiver of the message that activated the method.

If a method is a class method then the outer scope of its statement scope is its class definition's
class function scope and each class instance variable name is bound to its corresponding class
instance variable of the class object that is the receiver of the message that activated the method.
Note that because of inheritance this is not necessarily the class object defined by the <<class
definition>> that defined the method.

During activation of a method the reserved identifier 'self' has a constant binding to the object that
was the receiver of the message that activated the method.

The evaluation of a method is terminated either when it executes the last statement in its
<statements> or by executing a return statement. If the method is terminated by a return statement
then the value of the method is the value of the return statement. Otherwise the value of the
method is the current binding of the reserved identifier 'self'.

3.4.3 Initializer Definition

An initializer is a function that is executed to provide an initial value for a program element. An
initializer consists of a sequence of statements that are executed in sequence. The value of the
initializer is used to initialize any associated variables.

<initializer definition> ::=

NCITS J20 DRAFT December, 1997 21
of ANSI Smalltalk Standard revision 1.9

 [<temporaries>]
 [<statements>]

The outer scope of an initializer's statement scope varies according to the usage of the <initializer
definition>. If an initializer is part of a <<global definition>> or a <<program initializer definition>> its
outer scope is the global scope. If an initializer is a <<class initializer>> its outer scope is the class
function scope of the <<class definition>> that includes the initializer. If an initializer is a <<variable
initializer>> of a <pool variable definition> then its outer scope is a composite scope defined as:
 global scope + pool scope
where pool scope is a scope that binds each <pool variable name> of the pool to its associated
discrete variable or named object.

During activation of an initializer the reserved identifier 'self' has the error binding unless the
initializer is a <<class initializer>>. During activation of a <<class initializer>> the binding of 'self' is
the class object of the <<class definition>> that defines the <<class initializer>>.

The evaluation of an initializer is terminated either when it executes the last statement in its
<statements> or by the execution a <return statement> during the evaluation of any block that is
created from a <block constructor> contained within the initializer's <statements> during the
activation of the initializer. If the initializer is terminated by a <return statement> then the value of
the initializer is the value of the <return statement>. Otherwise the value of the initializer is the
value of its last statement. The value of an initializer with no <statements> is the binding of the
reserved identifier 'nil'.

3.4.4 Blocks

A block is a function that can be manipulated as an object that implements the <valuable> protocol.
A block is always defined, using a <block constructor>, as a <primary> expression element within
another function, called its enclosing function. Thus a block is always nested within a method, an
initializer, or another block. Blocks may be nested to an arbitrary level. The outermost function
enclosing a block is called the home function of the block. A block object is created when the
<block constructor> for the block is evaluated in the course of executing the block's enclosing
function. If the enclosing function of a block is a method or an initializer the home activation of the
block is the activation of its enclosing function that created the block. If the enclosing function of a
block is a block then the home activation of the block is the same as the home activation of the
block that created the block.

The <statements> of a block are normally evaluated when the block is activated by sending a
variant of the #value message to the block object. However, other methods defined in this standard
also specify that they cause the evaluation of blocks. In these cases, evaluation of the block
proceeds as if a #value message variant had been sent to the block. Evaluation of a block normally
concludes by executing the last statement of the block. In this case the object reference that is the
value of the last statement is returned as the value of the message send that activated the block. If
the last statement of a block is a <return statement> evaluation of the block's home activation is
also terminated and the value of the <return statement> is used as the return value of the home
activation.

Expressions within a block may reference temporary variables and arguments of the functions that
enclose the block. Each block object is an independent closure that captures the current bindings
for any enclosing functions' arguments or temporaries that are referenced from within the block's
<block constructor>. Any such captured bindings and their associated discrete variables or objects
must be preserved as long as the block object continues to exist and is available for evaluation.
Note that the values of any such captured discrete variables and the state of any object captured
by an argument binding remain subject to possible modification.

<block constructor> ::= '[' <block body> ']'
<block body> ::= [<block argument>* '|'] [<temporaries>] [<statements>]

NCITS J20 DRAFT December, 1997 22
of ANSI Smalltalk Standard revision 1.9

<block argument> ::= ':' identifier

If the <block body> does not have any <block argument> clauses then the objects that are the
value of the <block constructor> conform to the protocol <niladic-block>. If the <block body> has
exactly one <block argument> then objects that are the value of the <block constructor> conform to
the protocol <monadic-block>. If the <block body> has exactly two <block argument> clauses then
objects that are the value of the <block constructor> conform to the protocol <dyadic-valuable>. If
the <block body> has more than two <block argument> clauses then objects that are the value of
the <block constructor> conform to the protocol <valuable>.

If any block arguments are present, the final block argument is followed by a vertical bar ("|"). If a
<temporaries> clause is present then the first temporary variable is preceded by a vertical bar. A
vertical bar that terminates a sequence of block arguments may be immediately adjacent (with no
intervening white space) to the vertical bar that initiates a <temporaries> clause.

It is erroneous if the same identifier is used for more than one <block argument> of a individual
<block constructor>. It is erroneous for any one of the reserved identifiers ('nil', 'true', 'false', 'self'
and 'super') to be used as a <block argument>. It is erroneous if the same identifier is used both
as a <block argument> and also appears in the <temporaries> of a single <block constructor>. An
identifier that is used as a <block argument> is called a block argument name. An identifier that
appears in the <temporaries> of a <block constructor> is called a block temporary variable name.

The outer scope of a block's statement scope is the statement scope of the block's enclosing
function. Within a <block constructor> the binding of the reserved identifier 'self' is the same
binding as the binding of 'self' for the block's home activation.

If a block has no <block body> or no <statements> in its <block body> then the value of the block is
undefined.

3.4.5 Statements

When a function is activated the expressions defined in the <statements> portion of the function's
definition are evaluated. Each such expression is called a statement.

<statements> ::=
 (<return statement> ['.']) |
(<expression> ['.' [<statements>]])

<statements> consists of a sequence of statements. Each statement except the final statement of
the sequence is an <expression>. The last statement in a <statements> sequence may be either
an <expression> or a <return statement>. Each <expression> within a <statements> is separated
from its following statement by a period ('.'). A period is optional following the last statement.

The individual statements are evaluated in left to right sequence. All identifiers within the
statements are resolved using the statement scope of the immediately enclosing function.
Identifiers within block constructors are resolved using the block constructor's statement scope.
The value returned by each statement except, in some circumstances, the last statement is
discarded.

3.4.5.1 Return statement

If the last <expression> in a <statements> clause is proceeded by a circumflex ('^') the
<expression> forms a return statement and the value computed by the expression is the value of
the return statement.

NCITS J20 DRAFT December, 1997 23
of ANSI Smalltalk Standard revision 1.9

<return statement> ::= returnOperator <expression>

A return statement returns the value of it's <expression> as the value of the method or initializer in
which it appears.

If a return statement is the last statement of a block, execution returns from the home activation of
that block and the value of the return statement becomes the value returned from its home
activation. It is undefined to execute a return statement from a block activation if the home
activation of that block has already returned a value or has otherwise terminated. It is undefined to
execute a return statement from a block activation if the block's home activation does not exist on
the call chain that leads to the block activation.

If the home activation is an initializer activation the value of the return statement becomes the value
of the initializer and execution proceeds with the evaluation of the next initializer in the global
initialization sequence.

If the home activation is not an initializer execution proceeds by resuming execution of the function
activation that was suspended when the home activation was created. The value of the return
statement becomes the value of the message that resulted in the creation of the home activation.

Execution of a return statement within a block results in the abnormal-termination of any
suspended function activations that exist on the call chain leading from the block's home activation
to the block action executing the return statement. If a function activation that is abnormally
terminated by a return statement is a block activation that was created in the course of evaluating
the receiver block of an #ensure: or #ifCurtailed: message then the termination block argument of
the #ensure: or #ifCurtailed: message is evaluated prior to completion of the return statement.

The evaluation of any such termination blocks occurs as if the message #value had been sent to
the termination block. The evaluation of termination blocks occurs subsequent to the evaluation of
the return statement's expression but prior to the return of any value from the home activation. If
there are multiple termination blocks on the call chain, they are evaluated starting with the
termination blocks that most closely precedes, on the call chain, the activation executing the return
statement and continuing in reverse order of their occurrence on the call chain. If the evaluation of
a termination block concludes with the execution of a return statement the result is undefined. The
result is also undefined if evaluation of the termination block results in evaluation of any block that
concludes with a return statement and whose home activation is not on the call chain that starts
with the activation of the termination block.

3.4.5.2 Expressions

Statements are composed of expressions. An expression is a sequence of tokens that describes a
reference to an object or a computation that produces a reference to an object. The resultant object
is called the value of the expression. An expression may optionally specify that its value is to be
assigned to one or more variables. The primary constituent of an expression is a variable, named
object, literal, block constructor, or a parenthesized subexpression. The primary either directly
provides the value of the expression or serves as the receiver of a set of messages that compute
the value of the expression.

<expression> ::=
<assignment> |
<basic expression>
<assignment> ::= <assignment target> assignmentOperator <expression>
<basic expression> ::=
 <primary> [<messages> <cascaded messages>]
<assignment target> := identifier
<primary> ::=
 identifier |

NCITS J20 DRAFT December, 1997 24
of ANSI Smalltalk Standard revision 1.9

 <literal> |
 <block constructor> |
 ('(' <expression> ')')

An <assignment target> is a variable name that is called the target of the assignment. The value of
the <expression> to the right of the assignmentOperator replaces the current value of the
<assignment target> variable. The target must have a binding to a variable in the statement scope
that contains the <expression>. It is erroneous if a binding for the <assignment target> identifier
does not exist in the statement scope. It is erroneous if the binding of the target is a constant
binding. It is erroneous if target is one of the reserved identifiers: 'true', 'false', 'nil', 'self', 'super'.

An <assignment> may assign its value to multiple target variables by including multiple
assignmentOperator clauses. The value of an <assignment> expression is the value that is
assigned to its target variable. All target variables in an assignment with multiple targets are
assigned the same value.

A <primary> is the basic unit from which expressions are constructed. A <primary> that consists of
an identifier is a reference to the value of a variable, named object, or reserved identifier. The
identifier must be a name that is bound in the statement scope that contains the expression. The
value of such a <primary> is the value of the entity that is bound to the identifier. It is erroneous if
the identifier does not have a binding in the statement scope. If the binding of the identifier is to a
<<pool name>> its value is undefined. It is erroneous if a <basic expression> consists solely of the
reserved identifier 'super'. 'super' may only appear if it is followed by a <messages> clause.

A <primary> that is a <literal> is a reference to a statically created object. The value of the primary
is the object. The type of object is determined by the syntactic form of the literal.

The value of a <primary> that is a <block constructor> is a reference to a block object whose outer
scope is the statement scope of the function that contains the <block constructor> and whose
home activation is the home activation of the enclosing function. It is unspecified whether separate
evaluations of a <block constructor> produce distinct objects.

Rationale
Traditionally, a block constructor always creates a new object. This is necessary if the block captures any bindings from its
enclosing routines or contains a return statement. By leaving the identify of successive block constructor values undefined,
we permit implementation to optimize other cases by statically creating block objects.

The value of a <primary> that is a parenthesized <expression> is the value of the <expression>.

3.4.5.3 Messages

Messages cause the activation of a method. There are three syntactic forms of message sends.
They correspond to the three types of message selectors: unary, binary and keyword. Every
message send has a value that is the result returned from the evaluation of its method.

<messages> ::=
 (<unary message>+ <binary message>* [<keyword message>]) |
 (<binary message>+ [<keyword message>]) |
 <keyword message>
<unary message> ::= unarySelector
<binary message> ::= binarySelector <binary argument>
<binary argument> ::= <primary> <unary message>*
<keyword message> ::= (keyword <keyword argument>)+
<keyword argument> ::= <primary> <unary message>* <binary message>*
<cascaded messages> ::= (';' <messages>)*

Syntactically, the three forms of <messages> are similar in that the receiver is always written first,

NCITS J20 DRAFT December, 1997 25
of ANSI Smalltalk Standard revision 1.9

followed by the selector and arguments. The receiver of a message is the value of the <primary> or
the message send to the immediate left of a message's selector. The receiver is a reference to an
object. It can be represented either as a literal, an identifier, a block constructor, or another
expression . All message arguments are also references to objects, represented in the same way
as the receiver. The receiver and the arguments are evaluated before the message is sent. They
are evaluated in a left-to-right order.

Unary messages have no arguments.

Binary messages require one argument.

A keyword message takes one or more arguments and is composed of a sequence of keywords
followed by expressions. The number of keywords is equal to the number of arguments. Each
keyword is used to associate the argument immediately following it with a corresponding argument
of the method that is activated.

A <messages> clause can be made up of multiple message sends. The order of evaluation of the
message sends are defined by the following precedence rules:. Sequences of <unary message>
clauses are evaluated left to right. The result of each message becomes the receiver to the <unary
message> to its immediate right. Sequences of <binary message> clauses are also evaluated
strictly left to right. The <binary argument> of a <binary message> is evaluated before performing
the binary message send. The result of each binary message becomes the receiver for the <binary
message> to its immediate right. The <keyword argument> clauses of a <keyword message> are
evaluated left to right. The final message send of a <messages> clause is its <keyword message>.

The method selector of a <unary message> is its unarySelector. The method selector of a <binary
message> is its binarySelector. The method selector of a <keyword message> is formed by
concatenating, in left to right order each keyword. The ordering of keywords is an essential
property of keyword messages. Different orderings of a common set of keywords produce different
selectors.

A message send is evaluated by locating and activating a method. The method is located by
matching the message's method selector with the selectors of the methods that compose the
behavior of the receiver. The method to be activated is the method whose selector is identical to
the message's selector.

If a method is located, the current function activation is suspended and the selected method is
activated. The bindings of 'self' and 'super' in the local scope of the newly activated method are
constant bindings to the object that was the receiver of the message. Within the local scope, the
identifier associated with each <method argument> in the <message pattern> of the method's
definition is bound with a constant binding to the corresponding argument object. When the method
completes execution, execution of the suspended activation is resumed with the value of the
method serving as the value of the message that activated it.

3.4.5.3.1 Sends To 'super'

If the <primary> that defines the receiver of a message is the reserved identifier 'super' the method
is located using the behaviors of the class definition that is the superclass of the class definition
that includes the definition of the method containing the <primary>. If the method is an instance
method, the superclass' instance behavior is used. If the current method is a class method the
superclass' class behavior is used. If the method is a class method, and the class definition that
defines the method does not have a superclass then the behavior to use is unspecified. A method
is selected by matching the message's method selector with the methods that compose the
specified behavior. The method to be activated is the method whose selector is identical to the
message's selector. The meaning is undefined if the receiver is 'super' and the specified behavior
does not include the definition of a method with a matching selector. It is erroneous if the receiver
is 'super', the current method is an instance method, and the class that defines the method does
not have a superclass.

NCITS J20 DRAFT December, 1997 26
of ANSI Smalltalk Standard revision 1.9

3.4.5.3.2 Message Not Understood

If a method matching the message's selector does not exist in the behavior of the receiver the
message send is a failed send and the following actions occur. A new object that conforms to the
protocol <failedMessage> is created. It is initialized such that if sent the message #selector it
returns an object that is equal to message's selector of the failed send and if sent the message
#arguments it returns a sequence of objects whose elements are the arguments of the failed send.
Execution then proceeds to locate a method whose selector matches the literal selector
#doesNotUnderstand: in the behavior of the receiver of the failed send. It is erroneous if the
receiver's behavior does not include a method with a matching selector. If a method with a
matching selector is located, the method is activated with the receiver of the failed send bound to
'self' and the <failedMessage> object bound to the argument of the method.

3.4.5.3.3 Cascades

A cascade is a sequence of message sends that are all directed to the same object. Only the first
in such a sequence has an explicit receiver specified via a <primary>. The receiver of the
subsequent messages is the same object as the receiver of the initial message in the sequence.
Otherwise, each message send occurs as if it was a normal message send that was not part of a
cascade. The result object of each message in the cascade except the right most message is
discarded. The value of a <messages> clause that includes a <cascaded messages> clause is the
value of its right most message. If the <primary> that provides the receiver of the first message in a
cascade consists solely of the reserved identifier 'super' then each message in the cascade
performs is if it was a message with 'super' specified as its receiver.

3.4.5.3.4 Reserved Messages for Indexable Objects

If the method selector of a message is equal to the literal selector #basicAt:, the <primary> that
provides the receiver consists solely of the reserved identifier 'self', and the receiver is an indexable
object or a byte indexable object the following actions are performed. The argument of the
message is used as a numeric index that identifies one of the receiver's unnamed instance
variables. The value of the identified instance variable is returned as the value of the message
send. If the receiver is a byte indexable object the returned value is an object that conforms to the
protocol <integer>. It is erroneous if the value of the argument does not conform to the protocol
<integer>. It is erroneous if the integer value of the argument is less than or equal to zero or if it is
greater than the number of unnamed instance variables of the receiver.

If the method selector of a message is equal to the literal selector #basicAt:put, the <primary> that
provides the receiver consists solely of the reserved identifier 'self', and the receiver is an indexable
object or a byte indexable object the following actions are performed. The first argument of the
message is used as a numeric index that identifies one of the receiver's unnamed instance
variables. The value of the message's second argument is assigned to the identified instance
variable and is also returned as the value of the message send. It is erroneous if the value of the
first argument does not conform to the protocol <integer>. It is erroneous if the numeric value of the
first argument is less than or equal to zero or if it is greater than the number of unnamed instance
variables of the receiver. If the receiver is a byte indexable object it is erroneous if the value of the
second argument is not an object that conforms to the protocol <integer> and whose value is in the
range 0 to 255.

If the method selector of a message is equal to the literal selector #basicSize, the <primary> that
provides the receiver consists solely of the reserved identifier 'self', and the receiver is an indexable
object or a byte indexable object the following actions are performed. An object that conforms to
the protocol <integer> is returned as the value of the message send. The numeric value of the
object is equal to the number of unnamed instance variables of the receiver. If the receiver has no
unnamed instance variables the numeric value of the returned object is zero.

If the method selector of a message is equal to the literal selector #basicNew:, the <primary> that

NCITS J20 DRAFT December, 1997 27
of ANSI Smalltalk Standard revision 1.9

provides the receiver consists solely of the reserved identifier 'self', and the receiver is the class
object of a class whose instance objects are indexable or byte indexable the following actions are
performed. A new instance of the receiver is created that has the number of unnamed instance
variables that is specified by the value of the argument to the message. The new object is returned
as the value of the message send. It is erroneous if the value of the argument does not conform to
the protocol <integer>. It is erroneous if the integer value of the argument is less than zero. The
result is undefined if it is impossible to create an object of the size specified by the argument.

3.4.6 Literals

A literal is a syntactic construct that that directly describes a statically created object. Instances of
several classes of objects can be represented literally. These include numbers, characters, strings,
symbols, message selectors, and arrays. Each type of literal is discussed in individual sections
below. For each type of literal, a protocol is specified to which objects of that literal form must
conform.

<literal> ::=
 <number literal> |
 <string literal> |
 <character literal> |
 <symbol literal> |
 <selector literal> |
 <array literal>

The protocols specified for literals do not include any messages that modify the state of the literal
objects. The effect of sending a message to an object that is the value of a literal that modifies the
state of the literal is undefined.

Multiple identical literals may occurs within a Smalltalk program. It is unspecified whether the
values of identical literals are the same or distinct objects. It is also unspecified whether the values
of separate evaluations of a particular literal are the same or distinct objects.

3.4.6.1 Numeric Literals

Numbers are objects that represent numerical values. Numeric literals are used to create numeric
objects which have specific values and numeric representations.

<number literal> ::= ['-'] <number>
<number> ::= integer | float | scaledDecimal

If the preceding '-' is not present the value of the numeric object is a positive number. If the '-' is
present the value of the numeric object is the negative number that is the negation of the positive
number defined by the <number> clause. White space is allowed between the '-' and the
<number>.

If the <number> clause is an integer the value of the literal is an object that responds to the
<integer> protocol and whose value represents the numeric value of the integer. Integer objects
correspond to ISO/IEC 10967 integers with unbounded range. There is no maximum magnitude for
an integer.

If the <number> is a float the value of the literal is an object that responds to the <Float> protocol.
The maximum precision of a float is implementation-defined. If the number of digits in the
mantissa of the float exceeds the maximum precision then the mantissa will be rounded to the
maximum.

NCITS J20 DRAFT December, 1997 28
of ANSI Smalltalk Standard revision 1.9

An implementation may support up to three different floating point numeric representations with
varying precision and ranges. The floating point numeric representations are characterized by the
objects that are the values of the standard globals named FloatE, FloatD, and FloatQ. These
objects all conform to the protocol <floatCharacterization>and can report the values of parameters
that describe the characteristics of a floating point numeric representation. If an implementation
supports three floating point representations then the characterization parameters of FloatE,
FloatD, and FloatQ will each be different. If an implementation supports two floating point
representations then either the characterization parameter of FloatE and FloatD are equal, or the
characterization parameter of FloatD and FloatQ are equal. If an implementation supports only one
floating point representations then the characterization values of FloatE, FloatD, and FloatQ are all
equal. One of the characteristic parameters of a floating point numeric representation is its
precision. It is required that:
 (FloatE precision) ≤ (FloatD precision) ≤ (FloatQ precision).

The numeric representation used for a floating point literal is determined by the exponentLetter if
it is present in the float. If the exponentLetter is 'e' the floating point representation characterized
by FloatE is its selected representation. If the exponentLetter is 'd' the floating point
representation characterized by FloatD is its selected representation. If the exponentLetter is 'q'
the floating point representation characterized by FloatQ is its selected representation.

If a floating point literal does not include an explicit exponentLetter its selected representation is
the floating point representation with the smallest precision that can represent the numeric value of
the float with no loss of precision or, if no such representation exists, the representation with the
greatest precision.

The value of the floating point object is the value using the selected floating point representation
that most closely approximates the numeric value of the float. If the number of digits in the
mantissa of the float exceeds the maximum precision of the selected representation the mantissa
will be rounded to the representation's maximum precision. It is erroneous if the numeric value
defined by float is outside the range of values expressible using the selected representation.

If the <number> is a scaledDecimal the value of the literal is a numeric object that responds to the
<scaledDecimal> protocol. Scaled decimal objects provide a precise representation of decimal
fractions with an explicitly specified number of fractional digits. The specified number of fractional
digits in the scaled decimal object is the greater of the numeric value of fractionalDigits and the
actual number of digits to the right of the decimal point in the scaledMantissa. It is erroneous if
the numeric value of fractionalDigits is smaller than the actual number of digits, if any, to the right
of the decimal point in the scaledMantissa.

The maximum allowed precision for a scaled decimal numeric object is implementation defined and
may be unbounded. It is erroneous if the total number of digits including the specified number of
fractional digits exceeds the implementation defined maximum precision.

3.4.6.2 Character Literals

Character literals define objects that represent individual symbols of an alphabet. Characters are
most commonly used as the elements of strings.

<character literal> ::= quotedCharacter

The value of a character literal is an object that conforms to the <character> protocol. It is
erroneous if the character part of the quotedCharacter does not exist in the implementation
defined execution character set used in the representation of character objects.

NCITS J20 DRAFT December, 1997 29
of ANSI Smalltalk Standard revision 1.9

3.4.6.3 String Literals

String literals define objects that represent sequences of characters.

<string literal> ::= quotedString

The value of a string literal is an object that conforms to the <readableString> protocol. The
elements of the object consist of objects representing the individual characters that make up the
stringBody. For the purpose of defining the string each individual character is treated as if it was
the character of a <character literal>. Any paired stringDelimiter characters within the
stringBody are treated as one character object that encodes the string delimiter character.

It is erroneous if stringBody contains any characters that does not exist in the implementation
defined execution character set used in the representation of character objects.

If the stringBody is not present the value of the string literal is a <readableString> object
containing no characters. Its size is zero.

3.4.6.4 Symbol Literals

Symbols are strings that are identity objects.

<symbol literal> ::= hashedString

The value of a symbol literal is an object that implements the <symbol> protocol. The elements of
the object consist of objects representing the individual characters that make of the stringBodyof
the hashedString. For the purpose of defining the symbol each individual character is treated as if
it was the character of a <character literal>. Any paired stringDelimiter characters within the
stringBody are treated as one character object that encodes the string delimiter.

It is erroneous if stringBody contains any characters that do not exist in the implementation
defined execution character set used in the representation of character objects.

If the stringBody is not present the value of the symbol literal is the unique <symbol> object
containing no characters. Its size is zero.

Symbol objects are identity objects. If two symbols are equal they are the same object. Two symbol
literals with identical stringBody parts evaluate to the same symbol object. Every evaluation of a
particular <symbol literal> always returns the same object.

3.4.6.5 Selector Literals

Selectors are objects which may be used as method selectors in perform messages.

<selector literal> ::= quotedSelector

The value of a selector literal is an object that implements the <selector> protocol. Selector objects
represent method selectors and can be used in conjunction with perform messages to dynamically
send messages.

Selector objects are identity objects. If two selectors are equal they are the same object. Two
selector literals with identical quotedSelectors will evaluate to the same symbol object. Every
evaluation of a particular <selector literal> always returns the same object.

Some implementations may wish to implement selector objects such that they conform to both

NCITS J20 DRAFT December, 1997 30
of ANSI Smalltalk Standard revision 1.9

<selector> protocol and <symbol> protocol. It is implementation defined whether a symbol literal
whose stringBody is identical to the selectorBody of a selector literal evaluates to the same
object as the selector literal.

Rationale
Because symbols and selectors are defined as supporting different protocols and because the standard does not define any
messages that generate selectors from text strings it is possible to build an implementation that can analyze the program
text to determine which methods have selectors that are not used by the program. Alternatively, a traditional implementation
where selectors and symbols are equivalent constructs is also permitted.

3.4.6.6 Array Literals

An array literal is a sequenced collection with numeric keys which may contain any number of other
literals.

<array literal> ::= '#(' <array element>* ')'
<array element> ::= <literal> | identifier

The value of an array literal is an object that implements the <sequencedReadableCollection>
protocol. The elements of an array literal can consist of any combination of literal forms. If an
identifier appears as an <array element> and it is one of the reserved identifiers nil, true or false
the value of the corresponding element of the collection is the value of that reserved identifier. The
meaning is undefined if any other identifier is used as an <array element>. If an <array literal> has
no <array element>clauses the collection has no elements.

3.4.7 Reserved Identifiers

The following identifiers are reserved words in Smalltalk. They may only be used as a <primary>
and are defined as follows:

nil A constant binding to a unique object that supports the <nil>

protocol. The scope of the binding is the entire program. Variables
that have not been explicitly initialized initially have this value.

true A constant binding to a unique object that supports the <boolean>
protocol. The scope of the binding is the entire program.

false A constant binding to a unique object that supports the <boolean>
protocol. The scope of the binding is the entire program.

self Within a method, a constant binding to the receiver of the
message that activated the method. The scope of the binding is a
single method activation. Within a <<class initializer>> it is a
constant binding to the associated class object. Within any other
type of initializer self has the error binding.

super Within a method, a constant binding to the receiver of the
message that activated the method. The binding of 'super' is to the
same object as the binding of 'self', but causes message lookup to
start in the superclass of the class containing the method in which
super appears, rather than starting in the class of the receiver. The
major purpose of a message to super is to invoke a method in a
superclass which is over-ridden in a subclass. Super must be
followed by a message send. It cannot be used in place of self as
a value. Within any type of initializer super has the error binding.

The objects that are the values of "nil', "true", and "false" must be distinct from one another.

The use of these reserved identifiers in any other context is erroneous .

NCITS J20 DRAFT December, 1997 31
of ANSI Smalltalk Standard revision 1.9

Implementations may define other identifiers with bindings that have implementation specified
semantics. Any such identifier must be bound in the extension scope of the program.. An explicit
definition of such an identifier in any scope supersedes the implementation provided binding.

3.5 Lexical Grammar

The lexical grammar defines the syntax of the atomic symbols, called tokens, used in the method
grammar and program grammar. Tokens are ordered sequences of characters. A character is the
smallest possible syntactic unit of the token grammar. Each token is to be recognized as the
longest string of characters that is syntactically valid, except where otherwise specified. Unless
otherwise specified, white space or another separator must appear between any two tokens if the
initial characters of the second token would be a valid extension of the first token. White space is
not allowed within a token unless explicitly specified as being allowed.

3.5.1 Character Categories

The tokens of the concrete syntax are composed from an alphabet of characters. This standard
does not specify the use of a particular character set or encoding. An implementation must specify
its specific character set and its encoding. All implementations must support the following
categories of characters:

The lowercase letters of the English alphabet.
The uppercase letters of the English alphabet.
The Arabic numerals.
A specific set of binary operators and other special characters.
A set of characters that represent "white space".

An implementation may define characters in addition to those listed below in each character
category. While the meaning of a program that uses any such characters is well defined it may not
be portable between conforming implementations.

character ::=
 "Any character in the implementation-defined character set"

whitespace ::= "Any non-printing character interpreted as white space including spaces, tabs, and
line breaks"

digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

uppercaseAlphabetic ::=
'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H' | 'I' | 'J' | 'K' | 'L' | 'M' |
'N' | 'O' | 'P' | 'Q' | 'R' | 'S'| 'T' | 'U' | 'V' | 'W' | 'X' | 'Y' | 'Z'
lowercaseAlphabetic ::=
'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'I' | 'j' | 'k' | 'l' | 'm' |
'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't' | 'u' | 'v' | 'w' | 'x' | 'y' | 'z'

nonCaseLetter ::= '_'
 letter ::=
 uppercaseAlphabetic |
 lowercaseAlphabetic |
 nonCaseLetter |
 "implementation defined letters"

3.5.2 Comments

Comments exist to allow the programmer to add documentation to a program

NCITS J20 DRAFT December, 1997 32
of ANSI Smalltalk Standard revision 1.9

commentDelimiter ::= '"'
nonCommentDelimiter::=
 "any character that is not a commentDelimiter "
 comment :=
 commentDelimiter nonCommentDelimiter * commentDelimiter

The quote character " begins and ends a comment. Comments do not nest. A comment is
considered white space and acts as a separator. There is no need to allow embedded quote
characters in comments as this double-quote construct can simply be parsed as two sequential
comments. White space characters are allowed within comments

3.5.3 Identifiers

Identifiers are used to name entities defined by the program or implementation such as variables,
classes, message selectors.

identifier ::= letter (letter | digit)*

An identifier is an sequence of letters and digits. The sequence may be of any length. The first
character must be a letter. Upper-case and lower-case letters are logically different. Identifiers
starting with an underscore ("_") are reserved for use by the implementation. Implementations may
define additional nonCaseLetter and letter characters but their usage is non-portable.

3.5.4 Keywords

Keywords are identifiers used to create message selectors.

keyword ::= identifier ':'

Keywords are identifiers followed immediately by the colon character. An unadorned identifier is an
identifier which is not immediately preceded by a '#'. If a ':' followed by an '=' immediately follows
an unadorned identifier, with no intervening white space, then the token is to be parsed as an
identifier followed by an assignmentOperator not as an keyword followed by an '='.

3.5.5 Operators

Three types of operator tokens are defined in Smalltalk: binary selectors, the return operator, and
the assignment operator.

.
binaryCharacter ::=
 '!' | '%' | '&'' | '*' | '+' | ','' | '/' | '<' | '=' | '>' | '?' | '@' | '\' | '~' | '|' | '-'
binarySelector ::= binaryCharacter+

returnOperator ::= '^'

assignmentOperator ::= ':='

Binary selectors are method selectors that appear similar to mathematical operators. A binary
selector may be any length greater than or equal to one. If a negative <number literal> follows a
binary selector there must intervening white space.

An implementation may define additional binaryCharacters but their use may result in a non-
portable program.

NCITS J20 DRAFT December, 1997 33
of ANSI Smalltalk Standard revision 1.9

3.5.6 Numbers

Numbers are tokens that represent numeric quantities. There are three forms of numbers: integer,
float, and scaledDecimal. No white space is allowed within a numeric token.

integer ::= decimalInteger | radixInteger
decimalInteger ::= digits
digits ::= digit+
radixInteger ::= radixSpecifier 'r' radixDigits
radixSpecifier := digits
radixDigits ::= (digit | uppercaseAlphabetic)+

Integer tokens describe whole numbers using any radix between 2 and 36. If no radix is specified
then the radix is 10. The radixSpecifier is interpreted as a decimal integer whose numeric value
must be in the range 2≤radixSpecifier≤36. The digits used to form a radix number are the
numerical digit characters and the upper case alphabetic characters. The uppercase alphabetic
characters represent the digits with values 1010 through 3510 where 'A' represents the digit value
1010, 'B' represents 1110, and so on up to 'Z' representing the digit value 3510. It is erroneous if a
character representing a digit value greater than or equal to or the numeric value of the
radixSpecifier is used to form the radixDigits. It is erroneous if the numeric value of the
radixSpecifier is less than 2 or greater than 36.

float ::= mantissa [exponentLetter exponent]
mantissa ::= digits '.' digits
exponent ::= ['-']decimalInteger
exponentLetter ::= 'e' | 'd' | 'q'

Floating-point tokens represent numbers in scientific notation. The mantissa contains the
significant digits of the number and the exponent defines a power of ten that the mantissa is to be
multiplied by to obtain the numerical value of the float. Both the mantissa and exponent are
written in decimal notation. The mantissa must contain a decimal point ('.'). The decimal point
must be preceded and followed by at least one digit. If the exponent contains a '-' the numeric
value of the exponent is a negative number. The numeric value of a float is the numeric value of
the mantissa multiplied by ten raised to the power specified by the numeric value of the
exponent. If the optional exponent is not present the value of the float is simply the numerical
value of the mantissa. An exponentLetter must be followed by an explicit exponent

Rationale
Constants such as 1.0q are not valid. This is to avoid ambiguity relating to a minus ('-') operator immediately following such
a token.
The exponent Letter is only used in floating-point numbers. Historically some implementations have allowed its use in the
specification of integer constants. For example 10e10 is not a valid number token. It has not been universally implemented
and its utility was deemed insufficient to justify the effort to define and implement itl.

scaledDecimal ::= scaledMantissa 's' [fractionalDigits]
scaledMantissa ::= decimalInteger | mantissa
fractionalDigits ::= decimalInteger

ScaledDecimal tokens describe decimal fractions that are to be represented using a specified
number of fractional decimal digits of precision. The scaledMantissa specifies the decimal
numeric value of the number. If fractionalDigits is present it specifies that the representation used
for the number must allow for a number of digits to the right of the decimal point that is equal to the
numeric value of fractionalDigits.

NCITS J20 DRAFT December, 1997 34
of ANSI Smalltalk Standard revision 1.9

Rationale
 123s = 123s0
 123.0s = 123s1=123.0s1
 123.000s=123s3 = 123.0s3=123.00s3=123.000s3
Allowing the digits following the 's' to be missing seems inconsistent with the rule that the exponentLetter of a float must be
followed by digit

3.5.7 Quoted Character

A quoted character is a distinct token consisting of a dollar sign followed by any single character in
the implementation defined character set, including a white space character

quotedCharacter ::= '$' character

3.5.8 Quoted Strings

A quoted string token is a delimited sequence of any characters in the implementation defined
character set.

quotedString ::= stringDelimiter stringBody stringDelimiter
stringBody ::= (nonStringDelimiter | (stringDelimiter stringDelimiter)*)
stringDelimiter ::= ''' "a single quote"
nonStringDelimiter ::= "any character except stringDelimiter"

A nonStringDelimiter is any character in the implementation defined character set except a
stringDelimiter. A single stringDelimiter may be represented in the string by two successive
stringDelimiter. There is no limit on the length of a quoted string token. White space characters
may be included in the stringBody.

3.5.9 Hashed String

A hashed string is a quoted string that is immediately preceded by a pound sign.

hashedString ::= '#' quotedString

The stringBody of a hashedString may include white space characters.

3.5.10 Quoted Selector

A quoted selector is an identifier, binary selector or sequence of keywords that is immediately
preceded by a pound sign.

quotedSelector ::= '#' (unarySelector | binarySelector | keywordSelector)
keywordSelector ::= keyword+

3.5.11 Separators

separator ::= (whitespace | comment)*

Smalltalk programs are free-format. Unless otherwise specified, a separator must appear between
two tokens if all or any initial part of the second may appear as a valid extension of the first. A
separator may appear between any two tokens. They may not appear within a token except where

NCITS J20 DRAFT December, 1997 35
of ANSI Smalltalk Standard revision 1.9

explicitly allowed to so appear. Anywhere one separator may appear an arbitrary number may
appear.

3.6 Implementation Limits

The portability of a conforming program may be dependent upon the limits of numerous parameters
of a conforming Smalltalk language implementation. For certain parameters, the standard defines a
lower limit for all conforming implementations. Other lower limits are left unspecified by the
standard. All such specified limits are minimally acceptable lower bounds. Implementation are
discouraged from imposing any unnecessary restrictions on any implementation parameters.

The values of the following implementation parameters are implementation defined and must be
documented by conforming implementations:

Parameter Minimum upper bound

Length of identifiers 200

Length of binary selectors 2

Total length of keyword selectors
(including colons)

500

Number of named instance variables per object
(including inherited)

127

Number of class variables per class 127

Number of variables per pool 1000

Number of methods per behavior 1000

Number of arguments per method or block 15

Number of temporary variables per method or
block

15

Float precision unspecified

ScaledDecimal precision 30

Total number instance variables 65535

4. Smalltalk Interchange Format

This section gives a concrete syntax for the interchange of Smalltalk programs. This defines one of
many possible concrete implementations of the program definition syntax given in section 3.3. This

NCITS J20 DRAFT December, 1997 36
of ANSI Smalltalk Standard revision 1.9

interchange format is not a user specification language for the concrete syntax of these elements. It
is only intended for program interchange.

Each interchange file consists of a set of definitions which form part or all of a Smalltalk program.
Each definition represents all or part of a <<program element>> in the program definition syntax.

Interchange files are composed of units, called "chunks" , which are delimited by exclamation
points. Each program element, as defined in section 3.3 is a represented by one or more chunks.
Exclamation points which appear within a chunk are doubled but represent a single exclamation
point. When processing an interchange file, each chunk should be sequentially read and
preprocessed converting doubled exclamation points into single exclamation points. The body of
the chunk can then be processed as specified by the Interchange BNF Syntax.

Rationale
A interchange format is a derivative of the code file format defined by Krasner in "The Smalltalk-80 Code File Format" in
"Smalltalk-80, Bits of History, Words of Advice". The syntax was designed so that it could be implemented by reading
chunks and evaluating them (although this may restrict those implementations to treat certain globals, such as Class, Global
,Pool, and Annotation and certain messages, such as #methods, #initializer, and #initializerFor:, in some restricted way
which may cause a small set of Standard-compliant programs to be non-portable to those implementations).

4.1 Interchange Format BNF Syntax

The interchange BNF references the following symbols from the method grammar and lexical
grammar as defined in sections 3.5, 3.4.2 and 3.3.5: comment, identifier, string,
stringDelimiter, whitespace, <initializer definition>, and <method definition>. References to
these symbols from the interchange BNF are to be interpreted using their section 3 definitions. The
BNF is written with the construct <elementSeparator> as the break character for the chunks. Any
processing to convert doubled exclamation points is assumed to be done as part of the initial
scanning, and is not reflected in the BNF.

<interchangeFile> ::=
 <interchangeVersionIdentifier>
 (<interchangeUnit>) +

<elementSeparator> ::= '!'

<interchangeUnit> ::= <interchangeElement> <annotation>*

<interchangeElement> ::=
 <classDefinition> |
 <classInitialization> |
 <globalDefinition> |
 <globalValueInitialization> |
 <poolDefinition> |
 <poolVariableDefinition> |
 <poolValueInitialization> |
 <methodDefinition> |
 <classMethodDefinition> |
 <programInitialization> |
 comment <elementSeparator>

An interchange file consists of a version specification followed by an ordered list of interchange
elements. Each of the elements is terminated by an exclamation point. The interchange file
corresponds to all or part of a <<Smalltalk program>> from the section Smalltalk Abstract Program
Grammar . A complete program is treated as a concatenation of the interchange files from which it

NCITS J20 DRAFT December, 1997 37
of ANSI Smalltalk Standard revision 1.9

is composed. Any names or objects that are predefined by an implementation are treated as if
their definitions preceded the first file in this concatenation.

Each <interchangeUnit> is composed of lexical tokens as defined by the Smalltalk lexical grammar
in section 3.5. Generally each token may be separated from the next by any amount of
whitespace.

Each <interchangeElement> corresponds to all or part of a <<program element>> as defined by
the Smalltalk Abstract Program Syntax. The annotations allow extra-lingual information to be
associated with individual program elements. Collectively, the interchange elements
correspond to the <<program element>>+ list of a <<Smalltalk program>>. The <<initialization
ordering>> of the <<Smalltalk program>> is defined to be the ordering of the initializations
elements in the interchange files. The elements and annotations may be separated by any amount
of whitespace.

<interchangeVersionIdentifier> ::=
 'Smalltalk' 'interchangeVersion:' <versionId> <elementSeparator>
<versionId> ::= quotedString

In order to accommodate future changes in the format, each interchange file starts with a string that
identifies the version of the interchange format used for that file. The version identifier is a constant
string. If the <versionId> is the quotedString '1.0' the interchange file must strictly conform to the
format specified in this standard. Any future revisions of this standard that extends or modifies the
interchange file format will specify a different value for the quotedString. Any non-standard
extensions to the interchange file format should be identified with a unique version identifier. The
result is undefined if an implementation does not support an interchange file of the version that is
defined in the version string.

<classDefinition> ::=
 'Class' 'named:' <classNameString>
 'superclass:' <superclassNameString>
 'indexedInstanceVariables:' <indexableInstVarType>
 'instanceVariableNames:' <instanceVariableNames>
 'classVariableNames:' <classVariableList>
 'sharedPools:' <poolList>
 'classInstanceVariableNames:'<classInstVariableList>
 <elementSeparator>

<classNameString> ::= stringDelimiter <className> stringDelimiter
<superclassNameString> ::= stringDelimiter <className> stringDelimiter
<className> ::= identifier
<indexableInstVarType> ::= hashedString
<instanceVariableNames> ::= <identifierList>
<classVariableList> ::= <identifierList>
<classInstVariableList> ::= <identifierList>
<poolList> ::= <identifierList>
<identifierList> ::= stringDelimiter identifier* stringDelimiter

<methodDefinition> ::=
 <className> 'method' <elementSeparator>
 <method definition> <elementSeparator>

<classMethodDefinition> ::=
 <className> 'classMethod' <elementSeparator>

NCITS J20 DRAFT December, 1997 38
of ANSI Smalltalk Standard revision 1.9

 <method definition> <elementSeparator>

<classInitializationr> ::=
 <className> 'initializer' <elementSeparator>
 <initializer definition> <elementSeparator>

These productions correspond to the components of a <<class definition>> as defined in section
3.3.2. The <<instance state>> is defined in the interchange format by the
<instanceVariableNames> and the <indexableInstVarType> clauses. If the hashedString of the
<indexableInstVarType> clause is #'byte' then the <<instance state>> clause includes the
<<byte indexable>> symbol. If the hashedString of the <indexableInstVarType> clause is
#'object' then the <<instance state>> clause includes the <<object indexable>> symbol. If the
hashedString of the <indexableInstVarType> clause is #'none' then the <<instance state>>
clause includes neither the <<byte indexable>> symbol or the <<object indexable>> symbol. The
<instanceVariablesNames> corresponds to <<instance variable names>>. The identifiers in this list
correspond to the identifiers in <<class variable names>>. The identifiers are separated by
whiteSpace.

The <classVariableList> corresponds to <<class variable names>>. The identifiers in this list
correspond to the identifiers in <<class variable names>>. The identifiers are separated by
whiteSpace.

<classInstVariableList> corresponds to <<class instance variable names>>. The identifiers in this
string correspond to the identifiers in the <<class variable names>>. The identifiers are separated
by whiteSpace.

<poolList> corresponds to <<imported pool names>>. The identifiers in this string correspond to
the identifiers in the <<imported pool names>>. The identifiers are separated by whiteSpace.

The collection of all <methodDefinition> elements with a common class name throughout the file
correspond to the <<instance methods>> portion of the <<class definition>> for that class name.
The collection of all <classMethodDefinition> elements with a common class name through out the
file correspond to the <<class methods>> portion of the <<class definition>>. Any
<methodDefinition> elements or <classMethodDefinition> elements for a particular class name
must follow the <classDefinition> for that class name.; however, they do not need to immediately
follow the <classDefinition>. Nor do they need to be adjacent within the interchange file.

<classInitializationr> corresponds to the <<class initializer>> of a <<class definition>>. The
<classInitialization> may appear anywhere following the <classDefinition> of the class to which it
applies.

<globalDefinition> ::=
 <globalVariableDefinition> | <globalConstantDefinition>

<globalVariableDefinition> ::=
 'Global' 'variable:' <globalNameString> <elementSeparator>
<globalConstantDefinition> ::=
 'Global' 'constant:' <globalNameString> <elementSeparator>
<globalValueInitialization> ::=
 <globalName> 'initializer' <elementSeparator>
 <variableInitializer> <elementSeparator>

<globalNameString> ::=
 stringDelimiter <globalName> stringDelimiter
<globalName> ::= identifier
<variableInitializer> ::= <initializer definition>

NCITS J20 DRAFT December, 1997 39
of ANSI Smalltalk Standard revision 1.9

These productions provide the syntax of the interchange format for a <<global definition>>. The
<globalConstantDefinition> corresponds to a <<global definition>> with a <<constant designator>>
and the <globalVariableDefinition> corresponds to a <<global definition>> without a <<constant
designator>>. The <globalName> corresponds to the <<global name>> of that <<global
definition>>. The <variableInitializer> of a <globalValueInitialization> with an identical
<globalName> corresponds to the <variableInitializer> of the corresponding <<global definition>>.
The <globalValueInitialization> may appear anywhere following the <globalDefinition>.

<poolDefinition> ::=
 'Pool' 'named:' <poolNameString> <elementSeparator>
<poolVariableDefinition> ::=
 <poolValueDefinition> | <poolConstantDefinition>

<poolValueDefinition> ::= <poolName> 'variable:'
 <poolVariableNameString> <elementSeparator>
<poolConstantDefinition> ::= <poolName> 'constant:'
 <poolVariableNameString> <elementSeparator>
<poolValueInitialization> ::=
 <poolName> 'initializerFor:' <poolVariableNameString>
 <elementSeparator> <variableInitializer> <elementSeparator>
<poolNameString> ::=
 stringDelimiter <poolName> stringDelimiter
<poolVariableNameString> ::=
 stringDelimiter <poolVariableName> stringDelimiter
<poolName> ::= identifier
<poolVariableName> ::= identifier

These productions provide the syntax of the interchange format corresponding to a <<pool
definition>>. A <poolName> corresponds to a <<pool name>> of the abstract program syntax. A
<poolValueDefinition> defines a <<pool definition>> without a <<constant designator>> and a
<poolConstantDefinition> defines a <<pool definition>> with a <<constant designator>>.

<poolVariableName> corresponds to a <<pool variable name>>. The individual
<poolVariableDefinition> elements for a pool may appear anywhere following the <poolDefinition>
for that pool. The <poolValueInitialization> elements may appear anywhere following the
corresponding <poolValueDefinition>.

<programInitialization> ::=
 'Global' 'initializer' <elementSeparator>
 <programInitializer> <elementSeparator>

<programInitializer> ::= <initializer definition>

This is the interchange syntax for the <<program initializer definition>>. The <initializer definition>
in the <programInitializer> corresponds to the <initializer definition> of a <<program initializer
definition>.

<annotation> ::=
 'Annotation' 'key:' quotedString
 'value:' quotedString <elementSeparator>

An <annotation> defines an implementation defined attribute for program element to which it is
attached. These attributes have no semantics defined by this standard. They are provided as a
mechanism for implementations to exchange extra-lingual information concerning the program. An

NCITS J20 DRAFT December, 1997 40
of ANSI Smalltalk Standard revision 1.9

implementation is under no obligation to do anything with and can totally ignore any or all
annotations.

Multiple annotations may follow a single definition or initialization. The first string of an
<annotation> names the attribute defined by the annotation. The second string provides the value
of that attribute.

For interchange purposes the following standard attributes are defined :

key value

'category' The name of a classification category of the language
element

'comment' A textual comment documenting the language element

'copyright' The text of a copyright notice

'author' Identifying information of the creator of the definition

Additional attributes may be defined by implementations. Implementors are encourage to choose
attribute names that will not conflict with those chosen by other implementors. Implementors are
also encouraged to cooperate in the naming of attributes that may be of general utility.

5. Standard Class Library

5.1 Definitions and Concepts

The class library specification defines the externally visible behavior of a set of concrete classes in
a conforming Smalltalk system without supplying a corresponding implementation. The
specification does not define how the classes must be arranged in an inheritance hierarchy, nor
does it specify the existence or behavior of any abstract classes. Similarly, the specification does
not specify the instance variables of classes in a conforming implementation.

In order to specify the standard class library without making reference to any particular inheritance
hierarchy, the class library specification uses a behavioral description based on protocols. A
protocol is a named semantic interface, defined by a glossary of terms, and a set of message
specifications. Protocols are independent of implementation inheritance relationships, and are
intended to clearly specify essential aspects of behavior while leaving incidental aspects
unspecified. The fact that something is explicitly unspecified may be important information to both
implementors and application developers.

Protocols are denoted by <P>, where P is the name of a protocol. Protocols are used in the
specification both to define the behavior of concrete classes, and also to factor common behavior
from other protocols through a relationship called conformance. Protocols that define the behavior
of objects bound to global names (concrete protocols) start with an uppercase letter, and
implementations must provide a global name that is the same as the name of the protocol which
implements the specified behavior. Protocols that are used only as a factoring mechanism in the
specification start with a lowercase letter and are referred to as abstract protocols.

For any particular set of concrete classes there are typically many possible factorings of behavior
into abstract protocols. In general we will prefer the minimal set of abstract protocols which capture
the concrete behavior being modeled, unless there are compelling reasons to the contrary, e.g.

NCITS J20 DRAFT December, 1997 41
of ANSI Smalltalk Standard revision 1.9

certain operations have been traditionally grouped together. For greater clarity, our goal in defining
the abstract protocols is to describe the behavior of the global names being specified in this
standard. While the abstract protocols may also prove to be useful as a tool for specifying Smalltalk
class libraries, it is not a goal to provide a set of generic, reusable abstract protocols for this
purpose.

Rationale
Experience has shown that there is occasionally a conflict between adhering strictly to the protocol
specification rules as laid out in this section, and providing a clear and unambiguous specification
for a particular message. This arises most frequently in cases where the simplest and most obvious
definition breaks the protocol conformance rules (covariance and contravariance). In all such cases
we have opted for simplicity and clarity, even if the resulting specification does not strictly follow
protocol conformance rules.

5.1.1 Glossary of Terms

The glossary of terms defines terminology that is used in the message specifications to describe
message semantics. The glossary typically defines terms related to an abstract model of behavior
for a particular object, and it is usually specific to the domain in which the object is applied. For
example, one may consider that all collections behave as if they contain elements, regardless of
whether elements actually exist in a particular implementation. The concept of elements is
therefore useful in defining collection operations, and so it is defined in the glossary for the
<collection> protocol. Note however, that the existence in the specification of a glossary term of a
conceptual variable called elements does not require the implementation to actually have such an
instance variable.

5.1.2 Message Specification

A message specification describes an individual message in the context of a particular protocol. It
is defined by a message selector, a behavioral description, a set of parameter specifications, and a
set of return value specifications. A specification for a particular message may appear in arbitrarily
many protocols, and no two message specifications in the same protocol may have the same
message selector. A message specification has no meaning outside of the context of a protocol.

A selector names a message, and is denoted as such with a preceding # symbol. For example,
#at:put: is a 2-parameter message selector. We distinguish a message from a method as
follows:

A selector, together with its parameters, is a message.

A selector, together with a receiver object, identifies a method, the unique implementation of
the message.

Just as a method is uniquely identified by a receiver and selector, a message specification is
uniquely identified by a protocol and selector pair (<P>, s) where P is a protocol name and s is a
selector.

5.1.2.1 Behavioral Description

The behavior of a message is described with English text, using a definitional style wherever
possible. Basic operations are described in terms of their effects on the abstract state of the object
(using terms described in the glossary). These form the building blocks for specifying the behavior
of more complex messages, which may be described in terms of the basic messages.

Words which are glossary entries are always in italics, and words which are formal parameter
names are always in a fixed-pitch font. This eliminates confusion between a specific use of
a word as defined in the glossary and normal English usage.

NCITS J20 DRAFT December, 1997 42
of ANSI Smalltalk Standard revision 1.9

5.1.2.2 Parameter Specification

A parameter specification is defined by a parameter name, a parameter interface definition, and a
parameter aliasing attribute.

A parameter specification places constraints on the parameter in terms of protocol conformance,
and provides information concerning how the parameter is used by implementations of the
message. The parameter name is the name of a formal parameter and is used to identify the
parameter with a parameter specification, and to refer to the parameter in textual descriptions.

A parameter interface definition is defined as either:

• = A single protocol name <P>.

• = A logical OR of two or more protocols, written as <P1> | <P2> | ... | <Pn>

The parameter interface definition identifies the behavioral assumptions the message makes
concerning the parameter. A client must supply an appropriate actual parameter. An OR of
protocols means that the parameter must conform to at least one of the protocols in the disjunction.
This is required to describe cases where a message accepts objects with diverse behavior and
tests their behavior by sending messages in order to determine the action to be taken. Note that
this is different from the case where a message accepts objects with diverse behavior, but only
makes use of common shared behavior. In the latter case, the message is not really dealing with
diverse cases of behavior.

When a message specifies that a given formal parameter must conform to a protocol <P>, it is
making a commitment to use only behavior which is defined in <P> in the message
implementation. In this sense, the conformance statement is a maximal behavioral requirement—at
most all of the behavior described by <P> will be used, and no more.

Aliasing information (for example, whether a parameter is stored, or whether a returned value is
new or returned state) is specified to avoid having implementors use defensive programming
techniques which result in unnecessary object creation and copying, incurring a performance
penalty. We differentiate between incidental aliasing and essential aliasing, both for parameters
and for return values. Essential aliasing forms a critical part of the behavior of the interface, and as
such it must be specified by the interface designer. Incidental aliasing should not be specified since
it is a side effect of implementation choices, and is not fundamental to the specified functionality of
the interface.

Essential aliasing of parameters is described using a parameter aliasing attribute:
captured The receiver always retains a reference to the parameter, directly or

indirectly, as a result of this message.
uncaptured The receiver never retains a reference to the parameter, directly or

indirectly, as a result of this message.
unspecified It is unspecified as to whether or not a reference is retained as a result of

this message i.e. either case may occur.

5.1.2.3 Return value specification

A return value specification is defined by a return value protocol and a return value aliasing
attribute. Whereas the parameter description is prescriptive in that it states requirements to which
the parameters must conform, the return value information is descriptive in that it provides
information about the result being returned. Whereas a protocol makes a conformance requirement
statement about parameters, it makes a conformance commitment concerning the return value.
The specification guarantees that the return value will conform to the specified protocol.

A message specification may have multiple distinct return value specifications. Conversely, a single
return value specification may describe multiple return values if the return value specification

NCITS J20 DRAFT December, 1997 43
of ANSI Smalltalk Standard revision 1.9

applies to all such values. Multiple return value specifications are required for cases where a
message is defined to return objects conforming to different protocols, on a case-specific basis.
These are conveniently described with separate conformance statements and aliasing annotations.
In order to establish correspondence between sets of return value specifications, we do not permit
two distinct return value specifications which promise conformance to the same protocol.

If a message specification has no return value specification (that is, the return value is not
specified), then it is not prepared to guarantee anything about the behavior of the returned object.
In this case we denote the return value as UNSPECIFIED. This can be used to separate
procedural messages from functional messages; to allow for inconsequential differences in
implementations; or to allow conforming implementations which return different results but are
otherwise operationally equivalent.

In order to relate return values through conformance, we define the return value interface definition
for a message specification to be the single return value protocol, or the logical OR of the protocols
in each distinct return value specification.

Information concerning retained references to return values (by the message receiver) is described
using a return value aliasing attribute, which is one of the following identifiers:
state The receiver retains a reference (direct or indirect) to the returned object

after the method returns i.e. the object is returned state.
new The object is newly created in the method invocation and no reference

(direct or indirect) is retained by the receiver after the method returns.
unspecified No information is provided as to the origin or retained references to the

object (Note this is different from saying that the return value itself is
UNSPECIFIED. Here we are committing that the return value conforms
to some protocol, but making no commitment about the aliasing
behavior).

Note that we do not attempt to describe the aliasing of the state variables of the return value
itself—the attribute applies only to the first level returned object. The implication is that second and
subsequent level aliasing of the return value is always unspecified. An exception occurs in the case
where the returned state is an object which the client originally gave the service provider for
safekeeping. This occurs with element retrieval in collections, for example. In such cases only the
client knows the implications of modifying second level state of the return value.

5.1.3 Conformance and Refinement

Protocols are related to each other through two substitutability relationships, conformance and
refinement, which arrange the protocols in a lattice. Conformance models requirements
satisfaction, and provides the flexibility to partially constrain the behavior of parameters and return
values without necessarily naming specific classes. Refinement allows a protocol to make more
precise statements about behavior inherited from another protocol.

5.1.3.1 Conformance

Conformance can be defined on both objects and protocols.

5.1.3.1.1 Object Conformance

An object x conforms to a protocol <P> if it implements the set of behaviors specified by <P>. Of
course, such an object may have additional behavior, or it may be possible to specify the object's
behavior in more detail. Thus a protocol may describe only a subset of an object's behavior, or it
may leave certain aspects of the behavior unspecified.

We require that all objects of the same class necessarily conform to the same protocols, since they
have the same implementation. This is the same relationship between classes and behavior

NCITS J20 DRAFT December, 1997 44
of ANSI Smalltalk Standard revision 1.9

established by most object-oriented type systems and allows us to establish a straightforward
relationship between classes and protocols.

5.1.3.1.2 Protocol Conformance

Protocols are also related to each other through conformance. If all objects that conform to a
protocol <P> also conform to a protocol <Q>, then <P> is defined to conform to <Q>. If both <P>
conforms to <Q> and <Q> conforms to <P> then necessarily <P> and <Q> define the same
behavior i.e. <Q> = <P>.

A protocol <P> conforms to a protocol <Q> if and only if both of the following are true:

• = Every message specification in <Q> has a corresponding message specification in <P> with
the same message selector.

• = Every message specification in <P> conforms to its corresponding message specification in
<Q>.

This means that in order for <P> to conform to <Q>, <P> must define message specifications for at
least all of the message selectors in <Q>, and these specifications must specify compatible
behavior.

Note that conformance is a transitive relationship. If an object or a protocol conforms to a protocol
through transitivity we say that it implicitly conforms.

5.1.3.1.3 Message Specification Conformance

In the context of protocols, message specifications are related through conformance. A message
specification s in a protocol <P> is identified by a protocol and selector pair (<P>, s). A message
specification (<P>, s) conforms to a message specification (<Q>,s) if and only if all of the following
are true:

1. (<P>, s) and (<Q>, s) have the same formal parameters (the same names in the same
positions).

2. the parameter interface definitions of (<Q>, s) conform to the corresponding parameter
interface definitions of (<P>, s) (contravariance).

3. the parameter aliasing attributes of (<P>, s) conform to the corresponding parameter aliasing
attributes of (<Q>, s) (covariance).

4. the return value interface definition of (<P>, s) conforms to the return value interface definition
of (<Q>, s) (covariance).

5. the return value aliasing attributes of (<P>, s) conforms to the corresponding return value
aliasing attributes of (<Q>, s) (covariance).

6. the behavioral description of (<P>, s) conforms to the behavioral description of (<Q>, s)
(covariance).

5.1.3.1.4 Interface Definition Conformance

Recall that a parameter or return value interface definition is either a single protocol, or a logical
OR of two or more protocols. The protocol set for an interface definition is the set of protocols in the
disjunction (or the set consisting of a single protocol). An interface definition I conforms to an
interface definition J if and only if the protocol set for I is a subset of the protocol set for J. (Note
that we do not require a proper subset; the sets may be equal.)

NCITS J20 DRAFT December, 1997 45
of ANSI Smalltalk Standard revision 1.9

Note that interface definition conformance is defined by a subset relationship, since an interface
definition is defined to require an object conforming to one or more protocols in the corresponding
disjunction. The subset relationship follows directly from this definition.

5.1.3.1.5 Parameter Aliasing Conformance

Parameter aliasing attributes that are the same conform to each other. The following additional
conformance relationships are also defined among the parameter aliasing attributes:

captured conforms to unspecified.
uncaptured conforms to unspecified.

5.1.3.1.6 Return Value Aliasing Attribute Conformance

Return value aliasing attributes that are the same conform to each other. The following additional
conformance relationships are also defined among the return value aliasing attributes:

state conforms to unspecified.
new conforms to unspecified.

5.1.3.1.7 Behavioral Description Conformance

A behavioral description D2 conforms to a behavioral description D1, if the behavior described by
D1 is implied by D2. If D2 actually includes the text of D1, it is more difficult for a designer to
accidentally violate conformance in a message specification when conformance between protocols
has been asserted. In most cases, contradictions are readily apparent. Consequently this is the
recommended practice.

The conformance rules for behavioral descriptions reflect the fact that substitutability requires that
behavior be strictly additive. Conforming protocols may only define new messages, or provide more
precise statements concerning the behavior of existing messages.

5.1.3.2 Refinement

The refinement relation can be applied wherever we have defined the conformance relation, and is
defined as follows. Given any A and B such that there is a conformance relation defined on A and
B, then A is a refinement of B if A conforms to B but B does not conform to A. Refinement applies
to protocols, message specifications, interface definitions, and aliasing attributes. It is also
convenient to say that if A is a refinement of B, then A refines B.

Refinement makes a stronger statement than conformance. Refinement describes the property
which relates protocols in a way that allows them to make progressively more and more precise
statements concerning object behavior, while still satisfying conformance. As a consequence, given
two protocols <A> and such that <A> refines , objects which conform to <A> are
substitutable for objects which conform to .

We call a message specification in a protocol <P> a definition if it is not included in any protocol to
which <P> conforms. Otherwise it is a refinement. The protocol conformance relationship defines a
lattice with protocols at the nodes. For any given message specification (<P>, s) in a protocol <P>
there exists a path through refinements (if any) to the definition (<P'>, s') of the message
specification. The set of all paths from <P> establishes message specification visibility. A message
specification (<Q>, t) is visible from a protocol <P> if either <P> = <Q> or there exists a path from
<P> to <Q>. The implicit specification of a message in a protocol <P> is the closest message
specification visible from <P> through the conformance graph (i.e., involving the fewest number of
arcs in the graph).

Thus the implicit specification may be either in <P> or in some protocol to which <P> conforms.
Note that we use the closest visible message specification in order to ensure we obtain all

NCITS J20 DRAFT December, 1997 46
of ANSI Smalltalk Standard revision 1.9

refinements in the refinement path. Since protocol conformance forms a directed acyclic graph,
there can in principle be multiple conformance paths to the same message specification. In such a
case we explicitly disallow conflicts. If there are multiple implicit message specifications for the
same message selector found by traversing different paths, they must result in the same
specification.

The full text of the behavioral description of a message specification is obtained by concatenating
the behavioral description from the definition together with the text added by behavioral
refinements in the visibility path, in reverse order.

In summary, a message specification may form a part of the behavior described by a protocol <P>
in the following ways:
Definition <P> contains the definition.
Refinement <P> contains a refinement of an implicit specification of the message.
Conformance an implicit message specification is visible and there is no refinement in

<P>.

5.1.3.3 Special Protocols

Two special protocols are defined:
<ANY> A protocol to which all other protocols conform.
<RECEIVER> A notational convenience which represents the protocol to which the

receiver of the message conforms.

All objects are defined to conform to the special protocol <ANY>. The protocol <ANY> places no
restrictions on a parameter definition since it allows all possible parameters; <ANY> may be
thought of as a protocol which specifies no behavior.

The <RECEIVER> protocol is a notational convenience that allows a message specification to
indicate a return value which conforms to the protocol in which it is used, or any protocol that
conforms to that protocol. Due to the contravariance requirement for parameter interface definition
conformance, <RECEIVER> cannot be used in a parameter specification since it is necessarily
covariant. However, for the same reason, it is valid in a return value specification.

5.1.4 Protocol Specification Conventions

5.1.4.1 Naming

A protocol's name has its initial letter capitalized if there is a global name defined in the standard
that is conformant to the protocol. For instance, <OrderedCollection> has its first letter capitalized
but <puttableStream> does not.

Protocols that are required to be implemented as class objects in Smalltalk implementations end
with the word "class". Protocols that are typically implemented as class objects, but are not
required to be so, end with either the word "factory", if they are used to create new objects, or the
word "discriminator".

5.1.4.2 Message Lists

Each protocol includes a list of the message selectors defined or refined by the protocol. If a
message is refined by the protocol it is shown in italics in this list.

5.1.4.3 Message Definitions

Message definitions have these elements:

NCITS J20 DRAFT December, 1997 47
of ANSI Smalltalk Standard revision 1.9

• = A header that shows the message pattern. The message pattern is preceded by the word
"Message:" or for refinements of messages defined in other protocols, "Message
Refinement:".

• = A synopsis, which is a short and informal description of what the message does, under the
heading "Synopsis".

• = A more rigorous definition of the message. The heading for this section, "Definition:", is
followed by the name of the defining protocol. For refinements, the text of the inherited
definition is merely copied.

• = For each inherited refinement and the current protocol's refinement, a refinement section
showing how the method is refined. The heading for this section, "Refinement:", is followed by
the name of the refining protocol.

• = A list of the parameters of the message under the heading "Parameters", what their required
protocol conformance is, and whether they are captured by the receiver of the message. Each
parameter is listed on a separate line using the format:

parameterName <parametersProtocol> captured/uncaptured/unspecified

If there are no parameters, this element is omitted.

• = A description of the return value, under the heading "Return Value", in the form:

<returnValueProtocol> state/new/unspecified

or

UNSPECIFIED

• = A list of errors that define erroneous conditions for the message under the heading "Errors".

For example,
Message: canAcceptSalaryIncrease: amount
Synopsis

Determine whether the receiver can accept the given salary increase.
Definition: <Employee>

This message determines whether the receiver is allowed to receive the given salary
increase.
It answers true if the elevated salary is acceptable and false if not.

Parameters
amount <scaledDecimal> uncaptured

Return Value
<boolean> unspecified

Errors
none

or,
Message Refinement: canAcceptSalaryIncrease: amount
Synopsis

Determine whether the receiver can accept the given salary increase.
Definition: <Person>

This message determines whether the receiver is allowed to receive the given salary
increase.

NCITS J20 DRAFT December, 1997 48
of ANSI Smalltalk Standard revision 1.9

It answers true if the elevated salary is acceptable and false if not.
Refinement: <Employee>

This refines the inherited message by checking the amount against known consistency
rules for an employee object.

Parameters
amount <scaledDecimal> uncaptured

Return Value
<boolean> unspecified

Errors
none

In the second example, the message is a refinement of the definition from protocol <Person> and is
refined in <Employee>.

5.1.4.4 Protocol Groupings

Within a grouping, protocols are ordered according to their conformance lattice. Secondary sorting
is alphabetical by protocol name.

NCITS J20 DRAFT December, 1997 49
of ANSI Smalltalk Standard revision 1.9

5.2 Standard Globals

The following global values exist with the named protocols in Standard-conforming
implementations. The values of the globals are objects that conform to the specified protocols. The
language element type identifies the type of Smalltalk language element identified by the global.
Valid language elements are Class, Global Variable, Named Object (a constant global), or Pool.
An implementation may implement a global with an "unspecified" language element type as any of
these element types except as a Pool.

Name of global

Protocol Language
Element

Grouping

Array <Array factory>

unspecified Collection Protocols

Bag <Bag factory>

unspecified Collection Protocols

ByteArray <ByteArray factory>

unspecified Collection Protocols

DateAndTime <DateAndTime factory> unspecified DateTime Protocols

Dictionary <Dictionary factory>

unspecified Collection Protocols

Duration <Duration factory> unspecified DateTime Protocols

Error <Error class>

Class Exception Protocols

Exception <Exception class>

Class Exception Protocols

FileStream <FileStream factory>

unspecified File I/O Protocols

Float <floatCharacterization>

unspecified Numeric Protocols

FloatD <floatCharacterization>

unspecified Numeric Protocols

FloatE <floatCharacterization>

unspecified Numeric Protocols

FloatQ <floatCharacterization>

unspecified Numeric Protocols

Fraction <Fraction factory>

unspecified Numeric Protocols

IdentityDictionary <Identitydictionary factory>

unspecified Collection Protocols

Interval <Interval factory>

unspecified Collection Protocols

MessageNotUnderstood

<messageNotUnderstoodSelector> unspecified Exception Protocols

Notification <Notification class>

Class Exception Protocols

Object <Object class>

Class Fundamental Protocols

OrderedCollection <OrderedCollection factory>

unspecified Collection Protocols

ReadStream <ReadStream factory>

unspecified Stream Protocols

ReadWriteStream <ReadWriteStream factory>

unspecified Stream Protocols

Set <Set factory>

unspecified Collection Protocols

SortedCollection <SortedCollection factory> unspecified Collection Protocols

NCITS J20 DRAFT December, 1997 50
of ANSI Smalltalk Standard revision 1.9

String <String factory>

unspecified Collection Protocols

TimeLocal <TimeLocal factory> unspecified DateTime Protocols

Transcript <Transcript>

unspecified Stream Protocols

Warning <Warning class>

Class Exception Protocols

WriteStream <WriteStream factory>

unspecified Stream Protocols

ZeroDivide <ZeroDivide factory> Class Exception Protocols

NCITS J20 DRAFT December, 1997 51
of ANSI Smalltalk Standard revision 1.9

5.3 Fundamental Protocols

This section includes protocols that are fundamental to the Smalltalk language.

The graph below shows the conformance relationships between the protocols defined in this
section.

<boolean>

<Object>

<nil>

<Character>

<failedMessage>

<selector>

<Character factory>

<classDescription> <instantiator>

<Object class>

NCITS J20 DRAFT December, 1997 52
of ANSI Smalltalk Standard revision 1.9

5.3.1 Protocol: <Object>

Conforms To
<ANY>

Description
This protocol describe the behavior that is common to all objects.

Standard Globals
Integer Conforms to the protocol <Object>. Its language element type is

unspecified. This global identifies integer objects.
Number Conforms to the protocol <Object>. Its language element type is

unspecified. This global identifies number objects.
ScaledDecimal Conforms to the protocol <Object>. Its language element type is

unspecified. This global identifies scaled decimal objects.
Symbol Conforms to the protocol <Object>. Its language element type is

unspecified. This global identifies objects that conform to the protocol
<symbol>.

Messages
=
==
~=
~~
class
copy
doesNotUnderstand:
error:
hash
identityHash
isKindOf:
isMemberOf:
isNil
notNil
perform:
perform:with:
perform:with:with:
perform:with:with:with:
perform:withArguments:
printOn:
printString
respondsTo:
yourself

Rationale
Several groups of messages that might be expected to be found here have not been included in the specification. The
reasons for each are discussed below.
Dependents protocols were not included because there is nothing defined by the standard that requires any kind of
dependency mechanism.
The messages #storeOn: and #storeString were excluded for the following reason: Creating a Smalltalk expression
that can reconstruct an object is only useful in a application if there is a mechanism for an application to take such a string
and compile and execute it. Because the ability to perform runtime compilation is something we do not want to mandate
#storeOn: will not be useful in a compliant program. An alternative would be to provide messages to externalize and
internalize object structures without specify a particular externalization representation. This would enable portable programs
that externally store objects. However it would not enable interchange of objects between different implementations.

NCITS J20 DRAFT December, 1997 53
of ANSI Smalltalk Standard revision 1.9

Design description messages such as #subclassResponsibility, #shouldNotImplement, #implementedBySubclass have not
been included in this protocol. The rationale is that they are design documentation aids, not true execution behavior of
objects. As such they should be supported either by explicit language extensions or the development environment .

5.3.1.1 Message: = comparand

Synopsis
Object equivalence test.

Definition: <Object>
This message tests whether the receiver and the comparand are equivalent objects at the time the
message is processed. Return true if the receiver is equivalent to comparand. Otherwise return
false.
The meaning of "equivalent" cannot be precisely defined but the intent is that two objects are
considered equivalent if they can be used interchangeably. Conforming protocols may choose to
more precisely define the meaning of "equivalent".
The value of

receiver = comparand

is true if and only if the value of
comparand = receiver

would also be true. If the value of
receiver = comparand

is true then the receiver and comparand must have equivalent hash values. Or more formally:

receiver = comparand
receiver hash = comparand hash

The equivalence of objects need not be temporally invariant. Two independent invocations of #=
with the same receiver and operand objects may not always yield the same results. Note that a
collection that uses #= to discriminate objects may only reliably store objects whose hash values
do not change while the objects are contained in the collection.

Parameters
comparand <Object> uncaptured

Return Value
<boolean> unspecified=

Errors
none

Rationale
Note that object equality is not explicitly defined as being the same as object identity. That is probably the only reasonable
implementation in Object but not specifying it allows this protocol to be used without refinement by other classes with more
precise definitions of equivalence

5.3.1.2 Message: == comparand

Synopsis
Object identity test.

Definition: <Object>
This message tests whether the receiver and the comparand are the same object. Return true if
the receiver is the same object as comparand. Otherwise return false.
The value of

NCITS J20 DRAFT December, 1997 54
of ANSI Smalltalk Standard revision 1.9

receiver == comparand

is true if and only if the value of
comparand == receiver

would also be true. If the value of
receiver == comparand

is true then the receiver and comparand must have equivalent identity hash values. Or more
formally:

receiver == comparand
receiver identityHash = comparand identityHash

Parameters
comparand <Object> uncaptured

Return Value
<boolean> unspecified=

Errors
none

5.3.1.3 Message: ~= comparand

Synopsis
Object inequality test.

Definition: <Object>
This message tests whether the receiver and the comparand are not equivalent objects at the time
the message is processed. Return true if the receiver is not equivalent to comparand. Otherwise
return false.
The meaning of "equivalent" cannot be precisely defined but the intent is that two objects are
considered equivalent if they can be used interchangeably. Conforming protocols may choose to
more precisely define the meaning of "equivalent".
The result must be equivalent to the Boolean negation of the result of sending the message #= to
the receiver with comparand as the argument.
The value of

receiver ~= comparand

is true if and only if the value of
comparand ~= receiver

would also be true.
Parameters

comparand <Object> uncaptured
Return Value

<boolean> unspecified=
Errors

none
Rationale

NCITS J20 DRAFT December, 1997 55
of ANSI Smalltalk Standard revision 1.9

This definition does not require that the implementation be:
 ^(self = comparand) not
 but it does require that within a class, the same definition of equivalence is used in the implementation of both #= and #~=.

5.3.1.4 Message: ~~ comparand

Synopsis
Negated object identity test.

Definition: <Object>
This message tests whether the receiver and the comparand are different objects. Return true if
the receiver is not the same object as comparand. Otherwise return false.
The result must be equivalent to the Boolean negation of the result of sending the message #== to
the receiver with comparand as the argument.
The value of

receiver ~~ comparand

is true if and only if the value of
comparand ~~ receiver

would also be true.
Parameters

comparand <Object> uncaptured
Return Value

<boolean> unspecified=
Errors

none
Rationale

This definition does not require that the implementation be:
 ^(self == comparand) not
but it does require that the same definition of object identity is used in the implementation of both #== and #~~.

5.3.1.5 Message: class

Synopsis
Determine the class of the receiver.

Definition: <Object>
If the receiver is an instance object, return the class object defined by the class definition that
defines the behavior of the receiver. If the receiver is itself a class object, the result is unspecified
except that it must conform to the protocol <classDescription>.

Return Value
<classDescription> unspecified=

Errors
none

5.3.1.6 Message: copy

Synopsis
Return a copy of the receiver.

Definition: <Object>

NCITS J20 DRAFT December, 1997 56
of ANSI Smalltalk Standard revision 1.9

Return a new object that must be as similar as possible to the receiver in its initial state and
behavior. Any operation that changes the state of the new object should not as a side-effect
change the state or behavior of the receiver. Similarly, any change to the receiver should not as a
side-effect change the new object.
If the receiver is an identity object, return the receiver.

Return Value
<RECEIVER> unspecified=

Errors
none

Rationale
An argument can be made that the receiver and the result should respond true to an #= test. However, the traditional
definition of Object #= in terms of #== is incompatible with this requirement.

5.3.1.7 Message: doesNotUnderstand: message

Synopsis
A message was sent to the receiver for which the receiver has no behavior.

Definition: <Object>
A message was sent to the receiver for which the receiver has no behavior. Signal a
MessageNotUnderstood exception corresponding to the failed message. If the exception resumes,
the resumption value is returned as the value of this message.
Conforming protocols may refine this message to perform some action other than signaling the
exception.

Parameters
message <failedMessage> unspecified

Return Value
<Object> unspecified=

Errors
none

5.3.1.8 Message: error: signalerText

Synopsis
Announce an error

Definition: <Object>
This message is used the announce the occurrence of some type of error condition. The argument
should describe the nature of the error. The default behavior is to raise an Error exception as if the
message #signal: had been sent to the global Error with signalerText as the argument.
Conforming protocols may refine this message to perform some action other than signaling the
exception.

Parameters
signalerText <readableString> unspecified

Return Value
UNSPECIFIED =

Errors
none

NCITS J20 DRAFT December, 1997 57
of ANSI Smalltalk Standard revision 1.9

5.3.1.9 Message: hash

Synopsis
Return an integer hash code that can be used in conjunction with an #= comparison.

Definition: <Object>
An integer value that can be used as a hash code for the receiver is returned. The hash code is
intended for use in conjunction with an #= comparison.
The range, minimum, and maximum values of the result is implementation defined.
Any two objects that are considered equivalent using the #= message must have the same hash
value. More formally:

receiver = comparand
receiver hash = comparand hash

The hash value of an object need not be temporally invariant. Two independent invocations of
#hash with the same receiver may not always yield the same results. Note that collections that use
#= to discriminate objects may only reliably store objects whose hash values do not change while
the objects are contained in the collection.

Return Value
<integer> unspecified=

Errors
none

5.3.1.10 Message: identityHash

Synopsis
Return an integer hash code that can be used in conjunction with an #== (identity) comparison.

Definition: <Object>
An integer value that can be used as a hash code for the receiver is returned. The hash code is
intended for use in conjunction with an #== comparison.
The range, minimum, or maximum values of the result is implementation defined.
The identity hash of an object must be temporally invariant.

Return Value
<integer> unspecified=

Errors
none

Rationale
Some existing implementations use the selector #basicHash for this message. #basicHash is inappropriate because of
the convention that selectors starting with the sequence "basic" are private to the implementation of an object.

5.3.1.11 Message: isKindOf: candidateClass

Synopsis
Classify an object.

Definition: <Object>
Return true if the receiver is an instance of candidateClass or is an instance of a general
subclass of candidateClass. Otherwise return false.
The return value is unspecified if the receiver is a class object or candidateClass is not a class
object.

Parameters

NCITS J20 DRAFT December, 1997 58
of ANSI Smalltalk Standard revision 1.9

candidateClass <Object> uncaptured
Return Value

<boolean> unspecified=
Errors

none

5.3.1.12 Message: isMemberOf: candidateClass

Synopsis
Determine whether the receiver is an instance of the argument.

Definition: <Object>
Return true if the receiver is an instance of candidateClass. Otherwise return false.
The return value is unspecified if the receiver is a class object or candidateClass is not a class
object.

Parameters
candidateClass <Object> uncaptured

Return Value
<boolean> unspecified=

Errors
none

5.3.1.13 Message: isNil

Synopsis
Determine if the receiver is the value of the reserved identifier nil.

Definition: <Object>
Determine if the receiver is the same object as the value of the reserved identifier nil. Return true if
it is, false if it is not.
The messages #isNil and #notNil must be implemented to produce consistent results. For a
given receiver if the result of #isNil is true then the result of #notNil must be false.

Return Value
<boolean> unspecified=

Errors
none

5.3.1.14 Message: notNil

Synopsis
Determine if the receiver is not the value of the reserved identifier nil.

Definition: <Object>
Determine if the receiver is the same object as the value of the reserved identifier nil. Return false if
it is, true if it is not.
The messages #isNil and #notNil must be implemented to produce consistent results. For a
given receiver if the result of #isNil is true then the result of #notNil must be false.

Return Value
<boolean> unspecified=

Errors

NCITS J20 DRAFT December, 1997 59
of ANSI Smalltalk Standard revision 1.9

none

5.3.1.15 Message: perform: selector
 Message: perform: selector with: argument1
 Message: perform: selector with: argument1 with: argument2
 Message: perform: selector with: argument1 with: argument2 with: argument3

Synopsis
Send a message using a computed message selector.

Definition: <Object>
Send to the receiver a message whose selector is selector and whose arguments are
argument1, argument2, etc. Return the value of that message.
If the receiver does not have a method for selector normal "message not understood"
processing is performed as if the computed message hand been sent using a message send
expression. If this occurs, selector and the arguments may be captured.
The perform messages and #respondsTo: must be implemented to produce consistent results. A
message to perform a selector, selector, for a given receiver will result in a "message not
understood" condition if and only if the value of

receiver respondsTo: selector

is false.
Behavior is undefined if the number of arguments does not match that implicitly required by the
syntactic form of the selector.

Parameters
selector <selector> unspecified
argument1 <ANY> unspecified
argument2 <ANY> unspecified
argument3 <ANY> unspecified

Return Value
<ANY> unspecified=
The protocol specification of the returned value of this method is not really useful for any sort of
static analysis. In practice the returned value will be treated as conforming to the return type of the
message that is dynamically constructed.

Errors
none

5.3.1.16 Message: perform: selector withArguments: arguments

Synopsis
Send a message using a computed message selector and a collection of arguments.

Definition: <Object>
Send to the receiver a message whose selector is selector and whose arguments are the
elements of arguments. Return the value of that message. The first element of arguments is the
first argument, the second element is the second argument, and so on.
If the receiver does not have a method for the selector normal "message not understood"
processing is performed as if the computed message hand been sent using a message send
expression. If this occurs, selector and arguments could be captured.

NCITS J20 DRAFT December, 1997 60
of ANSI Smalltalk Standard revision 1.9

The perform messages and #respondsTo: must be implemented to produce consistent results. A
message to perform a selector, selector, for a given receiver will result in a "message not
understood" condition if and only if the value of

receiver respondsTo: selector

is false.
Behavior is undefined if the number of elements in arguments does not match that implicitly
required by the syntactic form of the selector.

Parameters
selector <selector> unspecified
arguments <Array> unspecified

Return Value
<ANY> unspecified=
The protocol specification of the returned value of this method is not really useful for any sort of
static analysis. In practice the returned value will be treated as conforming to the return type of the
message that is dynamically constructed.

Errors
none

5.3.1.17 Message: printOn: target

Synopsis
Write a textual description of the receiver to a stream.

Definition: <Object>
The string of characters that would be the result of sending the message #printString to the
receiver is written to target. The characters appear on the stream as if each character was, in
sequence, written to the stream using the message #nextPut:.

Parameters
target <puttableStream> uncaptured

Return Value
UNSPECIFIED

Errors
none

5.3.1.18 Message: printString

Synopsis
Return a string that describes the receiver.

Definition: <Object>
A string consisting of a sequence of characters that describe the receiver are returned as the
result.
The exact sequence of characters that describe an object are implementation defined.

Return Value
<readableString> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 61
of ANSI Smalltalk Standard revision 1.9

5.3.1.19 Message: respondsTo: selector

Synopsis
Determine if the receiver can respond to a specific message selector.

Definition: <Object>
Return true if the receiver has a method in its behavior that has the message selector selector.
Otherwise return false.

Parameters
selector <selector> uncaptured

Return Value
<boolean> unspecified=

Errors
none

Rationale
Requiring this message should not significantly encumber implementations because that data structures and algorithms
necessary to implement it at run time are essentially the same that are required to implement normal message lookup
processing.

5.3.1.20 Message: yourself

Synopsis
No operation. Return the receiver as the result.

Definition: <Object>
Return the receiver of the message.

Return Value
<RECEIVER> unspecified=

Errors
none

5.3.2 Protocol: <nil>

Conforms To
<Object>

Description
This protocol describes the behavior that is unique to the distinguished immutable, identity object
that is the value of the reserved identifier "nil".

Messages
printString

NCITS J20 DRAFT December, 1997 62
of ANSI Smalltalk Standard revision 1.9

5.3.2.1 Message Refinement: printString

Synopsis
Return a string that describes the receiver.

Definition: <Object>
A string consisting of a sequence of characters that describe the receiver are returned as the
result.
The exact sequence of characters that describe an object are implementation defined.

Refinement: <nil>
Return a string with the same characters as the string 'nil'.

Return Value
<readableString> unspecified

Errors
none

5.3.3 Protocol: <boolean>

Conforms To
<Object>

Description
This protocol describes the behavior of the objects that are the values of the reserved identifiers
"true" and "false". These objects are identity objects.
Several message specifications include a truth table describing the result of the binary operation
implemented by that message. In each table, the value of the receiver is used to locate a row and
the value of the argument is used to locate a column, the result being located at the intersection of
the row and column.

Messages
&
|
and:
eqv:
ifFalse:
ifFalse:ifTrue:
ifTrue:
ifTrue:ifFalse:
not
or:
printString
xor:

5.3.3.1 Message: & operand

Synopsis
Logical and — Boolean conjunction.

Definition: <boolean>
Return the Boolean conjunction of the receiver and operand. The value returned is determined by
the following truth table:

& true false

NCITS J20 DRAFT December, 1997 63
of ANSI Smalltalk Standard revision 1.9

true true false
false false false

Parameters
operand <boolean> uncaptured

Return Value
<boolean> unspecified

Errors
none

5.3.3.2 Message: | operand

Synopsis
Logical or — Boolean disjunction.

Definition: <boolean>
Return the Boolean disjunction of the receiver and operand. The value returned is determined by
the following truth table:

| true false
true true true
false true false

Parameters
operand <boolean> uncaptured

Return Value
<boolean> unspecified

Errors
none

5.3.3.3 Message: and: operand

Synopsis
"Short circuit" logical and.

Definition: <boolean>
If the receiver is false, return false. Otherwise, return the <boolean> result of sending the message
#value to operand.
The result is undefined if the result of sending #value to operand is not a <boolean>.

Rationale
Some existing implementations do not require that the operand must evaluate to a <boolean>. The message #ifTrue:
should be used to conditionally evaluate a block that does not return a <boolean>.

Parameters
operand <niladicBlock> uncaptured

Return Value
<boolean> unspecified

Errors
none

5.3.3.4 Message: eqv: operand

Synopsis
Boolean equivalence.

NCITS J20 DRAFT December, 1997 64
of ANSI Smalltalk Standard revision 1.9

Definition: <boolean>
Return the Boolean disjunction of the receiver and operand. The value returned is determined by
the following truth table:

eqv: true false
true true false
false false true

Parameters
operand <boolean> uncaptured

Return Value
<boolean> unspecified

Errors
none

5.3.3.5 Message: ifFalse: operand

Synopsis
Evaluate the argument if receiver is false.

Definition: <boolean>
If the receiver is false return the result of sending the message #value to operand.
The return value is unspecified if the receiver is true.

Rationale
Most existing implementations define the return value to be nil if the receiver is true. This definition is less precise and
potentially allows for implementation specific optimization.

Parameters
operand <niladicBlock> uncaptured

Return Value
<ANY> unspecified

Errors
none

5.3.3.6 Message: ifFalse: falseOperand ifTrue: trueOperand

Synopsis
Selectively evaluate one of the arguments.

Definition: <boolean>
If the receiver is false return the result return the result as if the message #value was sent to
falseOperand, otherwise return the result as if the message #value was sent to trueOperand.

Parameters
falseOperand <niladicBlock> uncaptured
trueOperand <niladicBlock> uncaptured

Return Value
<ANY> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 65
of ANSI Smalltalk Standard revision 1.9

5.3.3.7 Message: ifTrue: operand

Synopsis
Evaluate the argument if the receiver is true.

Definition: <boolean>
If the receiver is true, return the result of sending the message #value to operand.
The return value is unspecified if the receiver is false.

Rationale
Most existing implementations define the return value to be nil if the receiver is false. This definition is less precise and
potentially allows for implementation specific optimization.

Parameters
operand <niladicBlock> uncaptured

Return Value
<ANY> unspecified

Errors
none

5.3.3.8 Message: ifTrue: trueOperand ifFalse: falseOperand

Synopsis
Selectively evaluate one of the arguments.

Definition: <boolean>
If the receiver is true return the result of sending the message #value to trueOperand,
otherwise return the result of sending #value to the falseOperand.

Parameters
trueOperand <niladicBlock> uncaptured
falseOperand <niladicBlock> uncaptured

Return Value
<ANY> unspecified

Errors
none

5.3.3.9 Message: not

Synopsis
Logical not — Boolean negation.

Definition: <boolean>
Return the Boolean negation of the receiver.
If the receiver is true the return value is false, if the receiver is false the return value is true.

Return Value
<boolean> unspecified

Errors
none

5.3.3.10 Message: or: operand

Synopsis
"Short circuit" logical or.

NCITS J20 DRAFT December, 1997 66
of ANSI Smalltalk Standard revision 1.9

Definition: <boolean>
If the receiver is true, return true. Otherwise, return the Boolean result of sending the message
#value to operand.
The result is undefined if the result of sending #value to operand is not a <boolean>.

Rationale
Some existing implementations do not require that the operand must evaluate to a <boolean>. The message #ifFalse:
should be used to conditionally evaluate a block that does not return a Boolean.

Parameters
operand <niladicValuable> uncaptured

Return Value
<boolean> unspecified
UNSPECIFIED

Errors
none

5.3.3.11 Message Refinement: printString

Synopsis
Return a string that describes the receiver.

Definition: <Object>
A string consisting of a sequence of characters that describe the receiver are returned as the
result.
The exact sequence of characters that describe an object are implementation defined.

Refinement: <boolean>
If the receiver is true, return a string with the same characters as the string 'true', otherwise
return a string with the same characters as the string 'false'.

Return Value
<readableString> unspecified

Errors
none

5.3.3.12 Message: xor: operand

Synopsis
Boolean exclusive or.

Definition: <boolean>
Return the Boolean exclusive or of the receiver and operand. The value returned is determined by
the following truth table:

xor: true false
true false true
false true false

Parameters
operand <boolean> uncaptured

Return Value
<boolean> unspecified

Errors

NCITS J20 DRAFT December, 1997 67
of ANSI Smalltalk Standard revision 1.9

none

5.3.4 Protocol: <Character>

Conforms To
<Object>

Description
This protocol describes the behavior that is common to character objects. Character objects serve
as the element value for Smalltalk strings. The Smalltalk language provides a literal syntax for
character objects. Character objects represent individual elements of an implementation defined
execution character set whose individual elements are identified by integer values. These integers
are called code points. Each character object has an associated code point.
It is unspecified whether or not each code point is uniquely associated with a unique character
object.
The execution character set is the character set used by an implementation during execution of a
Smalltalk program. It need not be the same as the character set used by that implementation to
encode the definition of Smalltalk programs.

Messages
=
asLowercase
asString
asUppercase
codePoint
isAlphaNumeric
isDigit
isLetter
isLowercase
isUppercase

5.3.4.1 Message Refinement: = comparand

Synopsis
Object equivalence test.

Definition: <Object>
This message tests whether the receiver and the comparand are equivalent objects at the time the
message is processed. Return true if the receiver is equivalent to comparand. Otherwise return
false.
The meaning of "equivalent" cannot be precisely defined but the intent is that two objects are
considered equivalent if they can be used interchangeably. Conforming protocols may choose to
more precisely define the meaning of "equivalent".
The value of

receiver = comparand

is true if and only if the value of
comparand = receiver

would also be true. If the value of

NCITS J20 DRAFT December, 1997 68
of ANSI Smalltalk Standard revision 1.9

receiver = comparand

is true then the receiver and comparand must have equivalent hash values. Or more formally:

receiver = comparand
receiver hash = comparand hash

The equivalence of objects need not be temporally invariant. Two independent invocations of #=
with the same receiver and operand objects may not always yield the same results. Note that a
collection that uses #= to discriminate objects may only reliably store objects whose hash values
do not change while the objects are contained in the collection.

Refinement: <Character>
Two characters are considered equivalent if they have the same code point. In other words

character1 = character2

is true if and only if
character1 codePoint = character2 codePoint

is also true.
Parameters

comparand <Character> uncaptured
Return Value

<boolean> unspecified=
Errors

none
Rationale

Note that object equality is not explicitly defined as being the same as object identity. That is probably the only reasonable
implementation in Object but not specifying it allows this protocol to be used without refinement by other classes with more
precise definitions of equivalence

5.3.4.2 Message: asLowercase

Synopsis
Return a character which is equivalent to the lowercase representation of the receiver.

Definition: <Character>
If the receiver is equal to the value of a character literal in the "receiver" row of the following table,
the result object must be equal to the value of the corresponding character literal in the "result" row.

receiver $A $B $C $D $E $F $G $H $I $J $K $L $M $N $O $P $Q $R $S $T $U $V $W $X $Y $Z

result $a $b $c $d $e $f $g $h $i $j $k $l $m $n $o $p $q $r $s $t $u $v $w $x $y $z

An implemention may define other #asLowercase mappings. If the receiver does not correspond to
a character in the "receiver" row of the table and does not have an implementation defined
mapping the receiver is returned as the result.

Return Value
<Character> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 69
of ANSI Smalltalk Standard revision 1.9

5.3.4.3 Message: asString

Synopsis
Return a new string whose sole element is equivalent to the receiver.

Definition: <Character>
Return a new string of size one (1) whose sole element is equivalent to the receiver. The new
string is created using the same constraints as defined by the #new: message defined in <String
factory>. It is unspecified whether the resulting string captures a reference to the receiver.

Return Value
<String> new

Errors
none

5.3.4.4 Message: asUppercase

Synopsis
Return a character equivalent to the uppercase representation of the receiver.

Definition: <Character>
If the receiver is equal to the value of a character literal in the "receiver" row of the following table,
the result object must be equal to the value of the corresponding character literal in the "result" row.

receiver $a $b $c $d $e $f $g $h $i $j $k $l $m $n $o $p $q $r $s $t $u $v $w $x $y $z

result $A $B $C $D $E $F $G $H $I $J $K $L $M $N $O $P $Q $R $S $T $U $V $W $X $Y $Z

An implemention may define other #asUppercase mappings. If the receiver does not correspond to
a character in the "receiver" row of the table and does not have an implementation defined
mapping the receiver is returned as the result.

Return Value
<Character> unspecified

Errors
none

5.3.4.5 Message: codePoint

Synopsis
Return the encoding value of the receiver.

Definition: <Character>
Return the encoding value of the receiver in the implementation defined execution character set.
The following invariant must hold:

(charFactory codePoint: x) codePoint = x

where charFactory is an object that implements <Character factory> and x is an <integer>.
Return Value

<integer> unspecified
Errors

none

5.3.4.6 Message: isAlphaNumeric

Synopsis

NCITS J20 DRAFT December, 1997 70
of ANSI Smalltalk Standard revision 1.9

Test whether the receiver is a letter or digit.
Definition: <Character>

Return true if the receiver is either a letter or digit. Otherwise return false. In other words
character isAlphaNumeric

is true if and only if either
character isLetter

is true or
character isDigit

is true.
Return Value

<boolean> unspecified
Errors

none

5.3.4.7 Message: isDigit

Synopsis
Test whether the receiver is a digit.

Definition: <Character>
Return true if the receiver represents a digit. Otherwise return false. The receiver is a digit if it is
equal to the value of one of the following character literals:

$0 $1 $2 $3 $4 $5 $6 $7 $8 $9

Return Value
<boolean> unspecified

Errors
none

5.3.4.8 Message: isLetter

Synopsis
Test whether the receiver is a letter.

Definition: <Character>
Return true if the receiver corresponds to an alphabetic character, ignoring case. Otherwise return
false. The receiver is an alphabetic character if it is equal to the value of one of the following
character literals:

$A $B $C $D $E $F $G $H $I $J $K $L $M
$N $O $P $Q $R $S $T $U $V $W $X $Y $Z
$a $b $c $d $e $f $g $h $i $j $k $l $m
$n $o $p $q $r $s $t $u $v $w $x $y $z

Implementations may define other characters to be alphabetic characters. Any such characters will
return true when set this message.

Return Value
<boolean> unspecified

Errors

NCITS J20 DRAFT December, 1997 71
of ANSI Smalltalk Standard revision 1.9

none

5.3.4.9 Message: isLowercase

Synopsis
Test whether the receiver is a lowercase letter.

Definition: <Character>
Return true if the receiver corresponds to a lowercase letter. Otherwise return false. The receiver is
an lowercase letter if it is equal to the value of one of the following character literals:

$a $b $c $d $e $f $g $h $i $j $k $l $m
$n $o $p $q $r $s $t $u $v $w $x $y $z

Implementations may define other characters to be lowercase characters. Any such characters will
return true when set this message.

Return Value
<boolean> unspecified

Errors
none

5.3.4.10 Message: isUppercase

Synopsis
Test whether the receiver is an uppercase letter.

Definition: <Character>
Return true if the receiver corresponds to a uppercase letter. Otherwise return false. The receiver is
an uppercase letter if it is equal to the value of one of the following character literals:

$A $B $C $D $E $F $G $H $I $J $K $L $M
$N $O $P $Q $R $S $T $U $V $W $X $Y $Z

Implementations may define other characters to be lowercase characters. Any such characters will
return true when set this message.

Return Value
<boolean> unspecified

Errors
none

5.3.5 Protocol: <Character factory>

Conforms To
<Object>

Description
This protocol describes the behavior for accessing character objects.

Standard Globals

NCITS J20 DRAFT December, 1997 72
of ANSI Smalltalk Standard revision 1.9

Character Conforms to the protocol <Object>. Its language element type is
unspecified. This global is a factory for for creating or accessing objects
that conform to <Character>.

Messages
codePoint:
cr
lf
space
tab

5.3.5.1 Message: codePoint: integer

Synopsis
Return a character whose encoding value is integer.

Definition: <Character factory>
Return a character whose encoding value in the implementation defined execution character set is
integer.
The result is undefined if the encoding value is not a valid encoding value in the implementation
defined character set.

Parameters
integer <integer> unspecified

Return Value
<Character> unspecified

Errors
none

5.3.5.2 Message: cr

Synopsis
Return a character representing a carriage-return.

Definition: <Character factory>
Return a character representing a carriage-return. The code point of the resulting character is
implementation defined.

Return Value
<Character> unspecified

Errors
none

5.3.5.3 Message: lf

Synopsis
Return a character representing a line feed.

Definition: <Character factory>
Return a character representing a line feed. The code point of the resulting character is
implementation defined.

Return Value
<Character> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 73
of ANSI Smalltalk Standard revision 1.9

5.3.5.4 Message: space

Synopsis
Return a character representing a space.

Definition: <Character factory>
Return a character representing a space. The code point of the resulting character is
implementation defined.

Return Value
<Character> unspecified

Errors
none

5.3.5.5 Message: tab

Synopsis
Return a character representing a tab.

Definition: <Character factory>
Return a character representing a tab. The code point of the resulting character is implementation
defined.

Return Value
<Character> unspecified

Errors
none

5.3.6 Protocol: <failedMessage>

Conforms To
<Object>

Description
This protocol describes the behavior of objects that represent a message that was sent to an
object, but was not understood by that object.

Messages
arguments
selector

5.3.6.1 Message: arguments

Synopsis
Answer the arguments of the message that could not be sent.

NCITS J20 DRAFT December, 1997 74
of ANSI Smalltalk Standard revision 1.9

Definition: <failedMessage>
Return a collection containing the arguments of the message that could not be sent. The elements
of the collection are ordered, from the first element to the last element, in the same order as the
arguments of the message, from left to right. If the message had no arguments, the collection will
be empty.

Return Value
<sequenceReadabledCollection> unspecified

Errors
none

5.3.6.2 Message: selector

Synopsis
Answer the selector of the message that could not be sent.

Definition: <failedMessage>
Answer the selector of the message that could not be sent.

Return Value
<selector> unspecified

Errors
none

5.3.7 Protocol: <selector>

Conforms To
<Object>

Description
Defines the protocol supported by literal message selectors. No behavior is defined by this
protocols but objects that conform to is can be used to perform dynamically generated message
sends using <Object> #perform: and related messages.

Messages
none

NCITS J20 DRAFT December, 1997 75
of ANSI Smalltalk Standard revision 1.9

5.3.8 Protocol: <classDescription>

Conforms To
<Object>

Description
This protocol describes the behavior of class objects. It provides messages for identifying and
locating class objects within the class hierarchy.

Messages
allSubclasses
allSuperclasses
name
subclasses
superclass

Rationale
There are a wide variety of messages that various implementations provide for class objects. Most of them have been
excluded from this definition because they are primarily oriented towards supporting a self-hosted development
environment, and are not generally useful in non-reflective applications.

5.3.8.1 Message: allSubclasses

Synopsis
Return all subclasses of a class.

Definition: <classDescription>
If the receiver is a class object, return a collection containing all of the class objects whose class
definitions inherit either directly or indirectly from the class definition of the receiver.
If the receiver is not a class object, the result is unspecified.
Each element of the result collection supports the protocol <classDescription>. The order of class
objects within the collection is unspecified.
<collection> unspecified

Errors
none

5.3.8.2 Message: allSuperclasses

Synopsis
Return all superclasses of a class.

Definition: <classDescription>
If the receiver is a class object, return a collection containing all of the class objects defined by the
class definitions from which the class definition of the receiver inherits, either directly or indirectly. If
the class definition of the receiver has no superclasses, return an empty collection.
If the receiver is not a class object, the result is unspecified.
Each element of the result collection supports the protocol <classDescription>. The order of class
objects within the collection is unspecified.

Return Value
<collection> unspecified

Errors
none

5.3.8.3 Message: name

Synopsis

NCITS J20 DRAFT December, 1997 76
of ANSI Smalltalk Standard revision 1.9

Return the name of a class.
Definition: <classDescription>

Return a string containing the global name of the receiver. The global name of a class object is the
global identifier that is bound to the class object.

Rationale
Some existing implementations may return a symbol as the result of this message. The specification of the return value
should be whatever protocol is general enough to be either a string or a symbol.

Return Value
<readableString> unspecified

Errors
none

5.3.8.4 Message: subclasses

Synopsis
Return direct subclasses of a class.

Definition: <classDescription>
If the receiver is a class object, return a collection containing all of the class objects whose class
definitions inherit directly from the class definition of the receiver. If there are no class definitions
that inherit from the class definition of the receiver, return an empty collection.
If the receiver is not a class object, the result is unspecified.
Each element of the result collection supports the protocol <classDescription>. The order of class
objects within the collection is unspecified.

Return Value
<collection> unspecified

Errors
none

5.3.8.5 Message: superclass

Synopsis
Return the immediate superclass of a class.

Definition: <classDescription>
If the receiver is a class object, return the class objects defined by the class definitions from which
the class definition of the receiver directly inherits. If the class definition of the receiver has no
superclasses, return nil.
If the receiver is not a class object, the result is unspecified.

Return Value
<classDescription> unspecified
<nil> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 77
of ANSI Smalltalk Standard revision 1.9

5.3.9 Protocol: <instantiator>

Conforms To
<Object>

Description
This protocol defines the behavior of objects that can be used to create other objects without
requiring any additional information.

Messages
new

5.3.9.1 Message: new

Synopsis
Create a new object.

Definition: <instantiator>
Return a newly created object initialized to a standard initial state.

Return Value
<Object> new

Errors
none

5.3.10 Protocol: <Object class>

Conforms To
<classDescription>, <instantiator>

Description
This protocol describes the behavior the class object whose global identifier is 'Object', which is the
traditional root of the class hierarchy.
This class must be implemented in such a way that it is not fragile. A class is said to be fragile if it
is implemented in such a way that subclasses of that class can change the behavior of any
standard-specified method without overriding the implementation of those methods. This can
happen when a method is implemented to use an auxiliary method that is not specified in the
standard, which the subclass then (possibly unintentionally) overrides. The inherited method will
then invoke the subclass' implementation of the auxiliary method rather than the expected
implementation in the superclass.
One way to ensure that the implementation of a class is not fragile is to ensure that any message
sent to self is either part of the specified behavior for that class or has a selector that begins with
an underscore. Alternatively, an implementation may use implementation-specific means to
implement these methods in a way that makes them non-fragile.

Standard Globals

NCITS J20 DRAFT December, 1997 78
of ANSI Smalltalk Standard revision 1.9

Object Conforms to the protocol <Object class>. It is a class object and the name of a class
definition.

Messages
new

5.3.10.1 Message Refinement: new

Synopsis
Create a new object.

Definition: <instantiator>
Return a newly created object initialized to a standard initial state.

Refinement: <Object class>
Return a newly created instance of the receiver.

Return Value
<Object> new

Errors
none

NCITS J20 DRAFT December, 1997 79
of ANSI Smalltalk Standard revision 1.9

5.4 Valuable Protocols

This section includes protocols that describe objects that can be evaluated using variants of the
#value message. The only concrete case of such objects specified by the standard are blocks.
However, protocols that specify valuable protocols as parameters are defined to accept any class
of object conforming to the specified protocol.

The graph below shows the conformance relationships between the protocols in this section.

<niladicValuable>

<niladicBlock>

<monadicValuable>

<monadicBlock>

<dyadicValuable>

<valuable>

NCITS J20 DRAFT December, 1997 80
of ANSI Smalltalk Standard revision 1.9

5.4.1 Protocol: <valuable>

Conforms To
<Object>

Description
This protocol describes the behavior for objects that can be evaluated using variants of the #value
message.

Rationale
chose to use selector #ifCurtailed: because of objections to #ifTruncated: and #ifTerminated:.as to suggest of
process management operations.

Messages
argumentCount
valueWithArguments:

5.4.1.1 Message: argumentCount

Synopsis
Answers the number of arguments needed to evaluate the receiver.

Definition: <valuable>
The number of arguments needed to evaluate the receiver is returned.

Return Value
<integer> unspecified

Errors
none

5.4.1.2 Message: valueWithArguments: argumentArray

Synopsis
Answers the value of the receiver when applied to the arguments in argumentArray.

Definition: <valuable>
The receiver is evaluated as defined by the receiver.
Note that in the case that the receiver is a block, that the evaluation is defined by the language with
the elements of argumentArray bound in sequence to the receiver's arguments.
The result is as defined by the receiver.
The results are undefined if the size of argumentArray does not equal the receiver's argument
count.

Parameters
argumentArray <sequencedReadableCollection> uncaptured

Return Value
<ANY> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 81
of ANSI Smalltalk Standard revision 1.9

5.4.2 Protocol: <niladicValuable>

Conforms To
<valuable>

Description
This protocol describes the behavior for objects supporting the #value selector.

Messages
argumentCount
value
whileFalse
whileFalse:
whileTrue
whileTrue:

5.4.2.1 Message Refinement: argumentCount

Synopsis
Answers the number of arguments needed to evaluate the receiver.

Definition: <valuable>
The number of arguments needed to evaluate the receiver is returned.

Refinement: <niladicValuable>
Returns 0.

Return Value
<integer> unspecified

Errors
none

5.4.2.2 Message: value

Synopsis
Answers the value of the receiver.

Definition: <niladicValuable>
The receiver is evaluated as defined by the receiver.
The result is as defined by the receiver.

Return Value
<ANY> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 82
of ANSI Smalltalk Standard revision 1.9

5.4.2.3 Message: whileFalse

Synopsis
Evaluates the receiver until it evaluates to true.

Definition: <niladicValuable>
The receiver is evaluated as defined by the receiver.
Note that in the case that the receiver is a block, the evaluation is defined by the language.
If this evaluation results in false the process repeats.
If and when the evaluation of the receiver results in true, the method terminates.
The results are undefined if the receiver is not a block which evaluates to a Boolean value.

Return Value
UNSPECIFIED

Errors
none

5.4.2.4 Message: whileFalse: iterationBlock

Synopsis
Evaluates iterationBlock zero or more times until the receiver evaluates to true.

Definition: <niladicValuable>
The receiver is evaluated as defined by the receiver.
Note that in the case that the receiver is a block, that the evaluation is defined by the language.
If this evaluation results in false, the argument is evaluated and the process repeats.
If and when the evaluation of the receiver results in true, the method terminates.
The results are undefined if the receiver is not a block which evaluates to a Boolean value.

Parameters
iterationBlock <niladicValuable> uncaptured

Return Value
UNSPECIFIED

Errors
none

5.4.2.5 Message: whileTrue

Synopsis
Evaluates the receiver until it evaluates to false.

Definition: <niladicValuable>
The receiver is evaluated as defined by the receiver.
Note that in the case that the receiver is a block, that the evaluation is defined by the language.
If this evaluation results in true the process repeats.
If and when the evaluation of the receiver results in false, the method terminates.
The results are undefined if the receiver is not a block which evaluates to a Boolean value.

Return Value
UNSPECIFIED

Errors
none

NCITS J20 DRAFT December, 1997 83
of ANSI Smalltalk Standard revision 1.9

5.4.2.6 Message: whileTrue: iterationBlock

Synopsis
Evaluates iterationBlock zero or more times until the receiver evaluates to false.

Definition: <niladicValuable>
The receiver is evaluated as defined by the receiver.
Note that in the case that the receiver is a block, that the evaluation is defined by the language.
If this evaluation results in true, the argument is evaluated and the process repeats.
If and when the evaluation of the receiver results in false, the method terminates.
The results are undefined if the receiver is not a block which evaluates to a Boolean value.

Parameters
iterationBlock <niladicValuable> uncaptured

Return Value
UNSPECIFIED

Errors
none

5.4.3 Protocol: <niladicBlock>

Conforms To
<niladicValuable>

Description
This protocol describes the behavior for blocks with no arguments.
Objects conforming to this protocol can be created only by the block constructor construct of the
Smalltalk language.

Messages
ensure:
ifCurtailed:
on:do:

5.4.3.1 Message: ensure: terminationBlock

Synopsis
Evaluate a termination block after evaluating the receiver.

Definition: <niladicBlock>
Evaluate the receiver and return its result. Immediately after successful evaluation of the receiver
but before returning its result, evaluate terminationBlock. If abnormal termination of the

NCITS J20 DRAFT December, 1997 84
of ANSI Smalltalk Standard revision 1.9

receiver occurs, terminationBlock is evaluated. In either case, the value returned from the
evaluation of terminationBlock is discarded.
Activation of an exception handler from within the receiver is not in and of itself an abnormal
termination. However, if the exception handler for an exception that is not resumable results in
termination of the receiver or if its handler block contains a return statement that results in
abnormal termination of the receiver, then terminationBlock will be evaluated after evaluation
of the exception handler.
If an abnormal termination results in the termination of multiple blocks which were evaluated using
either #ensure: or #ifCurtailed: the respective terminationBlocks will be executed in
the reverse of the order in which the corresponding receiver blocks were evaluated.

Parameters
terminationBlock <niladicBlock> uncaptured

Return Value
<ANY> unspecified

Errors
none

5.4.3.2 Message: ifCurtailed: terminationBlock

Synopsis
Evaluating the receiver with an abnormal termination action.

Definition: <niladicBlock>
Evaluate the receiver and return its result. If abnormal termination of the receiver occurs,
terminationBlock is evaluated. The value returned from the evaluation of
terminationBlock is discarded.
Activation of an exception handler from within the receiver is not in and of itself an abnormal
termination. However, if the exception handler for an exception that is not resumable results in
termination of the receiver or if its handler block contains a return statement that results in
abnormal termination of the receiver, then terminationBlock will be evaluated after evaluation
of the exception handler.
If an abnormal termination result in the termination of multiple blocks which were evaluated using
either #ensure: or #ifCurtailed: the respective terminationBlocks will be executed in
the reverse of the order in which the corresponding receiver blocks were evaluated.

Parameters
terminationBlock <niladicBlock> uncaptured

Return Value
<ANY> unspecified

Errors
none

5.4.3.3 Message: on: selector do: action

Synopsis
Evaluate the receiver in the scope of an exception handler.

Definition: <niladicBlock>
The receiver is evaluated such that if during its evaluation an exception corresponding to
selector is signaled then action will be evaluated. The result of evaluating the receiver is
returned.

NCITS J20 DRAFT December, 1997 85
of ANSI Smalltalk Standard revision 1.9

Before evaluating the receiver the current state of the exception environment is captured as the
handler environment. Then a new exception handler is created with selector as its exception
selector and action as its handler block. The new handler is pushed onto the exception
environment.
If evaluation of the receiver terminates normally then the exception environment is reset to the
handler environment before returning to the sender of the #on:do: message.
If signaling of an exception results in evaluation of action the evaluation will occur in the context
of the handler environment. The argument to the action will be an object that conforms to the
protocol <signaledException>.

Parameters
selector <exceptionSelector> uncaptured
action <monadicBlock> uncaptured

Return Value
<ANY> unspecified

Errors
none

5.4.4 Protocol: <monadicValuable>

Conforms To
<valuable>

Description
This protocol describes the behavior for objects supporting the value: selector.

Messages
argumentCount
value:

5.4.4.1 Message Refinement: argumentCount

Synopsis
Answers the number of arguments needed to evaluate the receiver.

Definition: <valuable>
The number of arguments needed to evaluate the receiver is returned.

Refinement: <monadicValuable>
Returns 1.

Return Value
<integer> unspecified

Errors
none

5.4.4.2 Message: value: argument

Synopsis

NCITS J20 DRAFT December, 1997 86
of ANSI Smalltalk Standard revision 1.9

Answers the value of the receiver when applied to the argument.
Definition: <monadicValuable>

The receiver is evaluated as defined by the receiver.
Note that in the case that the receiver is a block, that the evaluation is defined by the language with
argument bound to the block's only argument.
The result is as defined by the receiver.

Parameters
argument <ANY> unspecified

Return Value
<ANY> unspecified

Errors
none

5.4.5 Protocol: <monadicBlock>

Conforms To
<monadicValuable>

Description
This protocol describes the behavior for blocks with one argument.
Objects conforming to this protocol can be created only by the block constructor construct of the
Smalltalk language.

Messages
none

5.4.6 Protocol: <dyadicValuable>

Conforms To
<valuable>

Description
This protocol describes the behavior for objects supporting the #value:value: selector.

Messages:
argumentCount

NCITS J20 DRAFT December, 1997 87
of ANSI Smalltalk Standard revision 1.9

value:value:

5.4.6.1 Message Refinement: argumentCount

Synopsis
Answers the number of arguments needed to evaluate the receiver.

Definition: <valuable>
The number of arguments needed to evaluate the receiver is returned.

Refinement: <dyadicValuable>
Returns 2.

Return Value
<integer> unspecified

Errors
none

5.4.6.2 Message: value: argument1 value: argument2

Synopsis
Answers the value of the receiver when applied to the arguments.

Definition: <dyadic-valuable>
The receiver is evaluated as defined by the receiver.
Note that in the case that the receiver is a block, that the evaluation is defined by the language with
argument1 bound to the block's first argument, and argument2 bound to the block's second
argument.
The result is as defined by the receiver.

Parameters
argument1 <ANY> unspecified
argument2 <ANY> unspecified

Return Value
<ANY> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 88
of ANSI Smalltalk Standard revision 1.9

5.5 Exception Protocols

This section includes the protocols that define the behavior of the exception handling system.

The graph below shows the conformance relationships between the protocols in this section
(except for the protocol <instantiator>, which is in the section containing fundamental protocols).

<ExceptionSet><exceptionInstantiator>

<Exception class>

<exceptionBuilder><signaledException>

<exceptionDescription>

<instantiator>

<exceptionSignaler> <exceptionSelector>

<Warning>

<Notification>

<Exception>

<Error>

<ZeroDivide> <Warning class>

<Notification class> <Error class>

<MessageNotUnderstood>

<MessageNotUnderstoodSelector>

<ZeroDivide factory>

NCITS J20 DRAFT December, 1997 89
of ANSI Smalltalk Standard revision 1.9

5.5.1 Protocol: <exceptionDescription>

Conforms To:
<Object>

Description
This protocol describe the messages that may be used to obtain information about an occurrence
of an exception.

Messages
defaultAction
description
isResumable
messageText
tag

5.5.1.1 Message: defaultAction

Synopsis
The default action taken if the exception is signaled.

Definition: <exceptionDescription>
If the exception described by the receiver is signaled and the current exception environment does
not contain a handler for the exception this method will be executed.
The exact behavior and result of this method is implementation defined.

Return Value
<Object> unspecified

Errors
none

5.5.1.2 Message: description

Synopsis
Return a textual description of the exception.

Definition: <exceptionDescription>
Return text that describes in a human readable form an occurrence of an exception. If an explicit
message text was provided by the signaler of the exception, that text should be incorporated into
the description.

Return Value
<readable> unspecified

Errors
none

5.5.1.3 Message: isResumable

Synopsis
Determine whether an exception is resumable.

Definition: <exceptionDescription>
This message is used to determine whether the receiver is a resumable exception. Answer true if
the receiver is resumable. Answer false if the receiver is not resumable.

Return Value

NCITS J20 DRAFT December, 1997 90
of ANSI Smalltalk Standard revision 1.9

<boolean> unspecified
Errors

none

5.5.1.4 Message: messageText

Synopsis
Return an exception's message text.

Definition: <exceptionDescription>
Return the signaler message text of the receiver. If the signaler has not provided any message text,
return nil.

Return Value
<readableString> unspecified
<nil> unspecified

Errors
none

5.5.1.5 Message: tag

Synopsis
Return an exception's tag value.

Definition: <exceptionDescription>
Return the tag value provided by the signaler of the receiver. If the signaler has not provided a tag
value, return the same value was would be returned as if #message Text was sent to the receiver
of this message. If the signaler has provided neither a tag value nor a message text, return nil.
Exception tags are intended for use in situations where a particular occurrence of an exception
needs to be identified and a textual description is not appropriate. For example, the message text
might vary according to the locale and thus could not be used to identify the exception.

Return Value
<Object> unspecified
<nil> unspecified

Errors
none

5.5.2 Protocol: <exceptionSignaler>

Conforms To:
<Object>

Description
This protocol describes the behavior of signaling an exceptional condition, locating an exception
handler, and executing an exception action.

Messages
signal

NCITS J20 DRAFT December, 1997 91
of ANSI Smalltalk Standard revision 1.9

signal:

5.5.2.1 Message: signal

Synopsis
Signal the occurrence of an exceptional condition.

Definition: <exceptionSignaler>
Associated with the receiver is an <exceptionDescription> called the signaled exception. The
current exception environment is searched for an exception handler whose exception selector
matches the signaled exception. The search proceeds from the most recently created exception
handler to the oldest exception handler.
A matching handler is defined to be one which would return true if the message #handles: was
sent to its exception selector with the signaled exception as the argument.
If a matching handler is found, the exception action of the handler is evaluated in the exception
environment that was current when the handler was created and the state of the current exception
environment is preserved as the signaling environment.
The exception action is evaluated as if the message #value: were sent to it with a
<signaledException> passed as its argument. The <signaledException> is derived from the
signaled exception in an implementation dependent manner.
If the evaluation of the exception action returns normally (as if it had returned from the #value:
message), the handler environment is restored and the value returned from the exception action is
returned as the value of the #on:do: message that created the handler. Before returning, any
active #ensure: or #ifCurtailed: termination blocks created during evaluation of the receiver
of the #on:do: message are evaluated.
If a matching handler is not found when the exception environment is searched, the default action
for the signaled exception is performed. This is accomplished as if the message #defaultAction
were sent to the <signaledException> object derived from the signaled exception. The
#defaultAction method is executed in the context of the signaling environment. If the signaled
exception is resumable the value returned from the #defaultAction method is returned as the
value of the #signal message. If the signaled exception is not resumable the action taken upon
completion of the #defaultAction method is implementation defined.

Return Value
<Object> unspecified

Errors
none

5.5.2.2 Message: signal: signalerText

Synopsis
Signal the occurrence of an exceptional condition with a specified textual description.

Definition: <exceptionSignaler>
Associated with the receiver is an <exceptionDescription> called the signaled exception. The
message text of the signaled exception is set to the value of signalerText, and then the
exception is signaled in the same manner as if the message #signal had been sent to the
receiver.
Note that this message does not return in some circumstances. The situations in which it does
return and the returned value, if any, are the same as specified for the #signal message.

Parameters
signalerText <readableString> unspecified

Return Value

NCITS J20 DRAFT December, 1997 92
of ANSI Smalltalk Standard revision 1.9

<Object> unspecified
Errors

none

5.5.3 Protocol: <exceptionBuilder>

Conforms To:
<exceptionDescription>, <exceptionSignaler>

Description
This protocol describes the messages that may be used to set the information about an occurrence
of an exception. This information may be retrieved using <exceptionDescription> protocol. If an
object conforming to this protocol is signaled as an exception, any information set in that object
using this protocol's messages will also be available for retrival from the signaled exception that is
passed to a handler block.

Messages
messageText:

5.5.3.1 Message: messageText: signalerText

Synopsis
Set an exception's message text.

Definition: <exceptionBuilder>
Set the signaler message text of the receiver. Subsequent sends of the message #messgeText to
the receiver will return this value. Subseqent sends of of the message #messgeText to a signaled
exception generated by sending the message #signal to the receiver of this message will also
return this value.
Return the receiver as the result of the message.

Parameters
signalerText <readableString> captured

Return Value
<RECEIVER> unspecified

Errors
none

5.5.4 Protocol: <signaledException>

Conforms To:
<exceptionDescription>

NCITS J20 DRAFT December, 1997 93
of ANSI Smalltalk Standard revision 1.9

Description
This protocol describes the messages that may be sent to the argument of a handler block. These
message are used to explicitly control how execution will continue when it leaves the handler block.

Messages
isNested
outer
pass
resignalAs:
resume
resume:
retry
retryUsing:
return
return:

5.5.4.1 Message: isNested

Synopsis
Determine whether the current exception handler is within the scope of another handler for the
same exception.

Definition: <signaledException>
Answer true if the handler environment for the current exception handler contains an exception
handler that will handle the receiver. Answer false if it does not.
The default action for an exception is not considered to be an enclosing handler. Only the
existence of a handler explicitly established using #on:do: will result in this method returning true.

Return Value
<boolean> unspecified

Errors
none

5.5.4.2 Message: outer

Synopsis
Evaluate the enclosing exception action for the receiver and return.

Definition: <signaledException>
If the handler environment for the current exception handler contains an exception handler that will
handle the receiver, evaluate that handler's exception action with the receiver as the argument to
its handler block. If there is no enclosing handler, send the message #defaultAction to the
receiver. The #defaultAction method is evaluated using the current exception environment.
If the receiver is resumable and the evaluated exception action resumes then the result returned
from #outer will be the resumption value of the evaluated exception action. If the receiver is not
resumable or if the exception action does not resume then this message will not return.
For exceptions that are not resumable, #outer is equivalent to #pass.

Return Value
<Object> unspecified

Errors
It is erroneous to directly or indirectly send this message from within a
<exceptionDescription>#defaultAction method to the receiver of the #defaultAction
message.

NCITS J20 DRAFT December, 1997 94
of ANSI Smalltalk Standard revision 1.9

5.5.4.3 Message: pass

Synopsis
Yield control to the enclosing exception action for the receiver.

Definition: <signaledException>
If the handler environment for the current exception handler contains an enclosing exception
handler for the receiver, activate that handler's exception action in place of the current exception
action. If there is no enclosing handler, execute the default action for the receiver as if no handler
had been found when the exception was originally signaled. The default action is evaluated in the
context of the signaling environment.
Control does not return to the currently active exception handler.

Return Value
none

Errors
It is erroneous to directly or indirectly send this message from within a #defaultAction method
to the receiver of the #defaultAction method.

5.5.4.4 Message: resignalAs: replacementException

Synopsis
Signal an alternative exception in place of the receiver.

Definition: <signaledException>
The active exception action is aborted and the exception environment and the evaluation context
are restored to the same states that were in effect when the receiver was originally signaled.
Restoring the evaluation context may result in the execution of #ensure: or #ifCurtailed:
termination blocks.
After the restoration, signal the replacementException and execute the exception action as
determined by the restored exception environment.
This message causes the replacementException to be treated as if it had been originally
signaled instead of the receiver.
If the replacementException is resumable and its exception action resumes, control will
ultimately return from the message that signaled the original exception.
Control does not return from this message to the currently active exception action.

Parameters
replacementException <exceptionDescription> unspecified

Return Value
none

Errors
none

5.5.4.5 Message: resume

Synopsis
Return from the message that signaled the receiver.

Definition: <signaledException>
If the current exception action was activated as the result of sending the message #outer to the
receiver, return a resumption value as the value of the #outer message.
If the receiver is a resumable exception a resumption value is returned as the value of the message
that signaled the receiver. Before returning, the exception environment and the evaluation context

NCITS J20 DRAFT December, 1997 95
of ANSI Smalltalk Standard revision 1.9

are restored to the same states that were in effect when the receiver was originally signaled.
Restoring the evaluation context may result in the execution of #ensure: or #ifCurtailed:
termination blocks.
This message does not return to its point of invocation.
The resumption value is unspecified.

Return Value
none

Errors
It is erroneous to directly or indirectly send this message from within a #defaultAction method
to the receiver of the #defaultAction method.
It is erroneous to send the message if the receiver is not resumable.

5.5.4.6 Message: resume: resumptionValue

Synopsis
Return the argument as the value of the message that signaled the receiver.

Definition: <signaledException>
If the current exception action was activated as the result of sending the message #outer to the
receiver, return resumptionValue as the value of the #outer message.
If the receiver is a resumable exception, the resumptionValue is returned as the value of the
message that signaled the receiver. Before returning, the exception environment and the
evaluation context are restored to the same states that were in effect when the receiver was
originally signaled. Restoring the evaluation context may result in the execution of #ensure: or
#ifCurtailed: termination blocks.
This message does not return to its point of invocation.

Parameters
resumptionValue <Object> uncaptured

Return Value
none

Errors
It is erroneous to directly or indirectly send this message from within a #defaultAction method
to the receiver of the #defaultAction method.
It is erroneous to send the message if the receiver is not resumable.

5.5.4.7 Message: retry

Synopsis
Abort an exception handler and re-evaluate its protected block.

Definition: <signaledException>
The active exception action is aborted and the exception environment and the evaluation context
are restored to the same states that were in effect when the #on:do: message that established
the active handler was sent. Restoring the evaluation context may result in the execution of
#ensure: or #ifCurtailed: termination blocks.
After the restoration, the #on:do: method is re-evaluated with its original receiver and arguments.
Control does not return from this message to the currently active exception action.

Return Value
none

Errors

NCITS J20 DRAFT December, 1997 96
of ANSI Smalltalk Standard revision 1.9

It is erroneous to directly or indirectly send this message from within a #defaultAction method
to the receiver of the #defaultAction method.

5.5.4.8 Message: retryUsing: alternativeBlock

Synopsis
Abort an exception handler and evaluate a new block in place of the handler's protected block.

Definition: <signaledException>
The active exception action is aborted and the exception environment and the evaluation context
are restored to the same states that were in effect when the #on:do: message that established
the active handler was sent. Restoring the evaluation context may result in the execution of
#ensure: or #ifCurtailed: blocks.
After the restoration, the #on:do: method is re-evaluated with alternativeBlock substituted
for its original receiver. The original arguments are used for the re-evaluation.
Control does not return from this message to the currently active exception action.

Parameters
alternativeBlock <niladicBlock> captured

Return Value
none

Errors
It is erroneous to directly or indirectly send this message from within a #defaultAction method
to the receiver of the #defaultAction method.

5.5.4.9 Message: return

Synopsis
Return nil as the value of the block protected by the active exception handler.

Definition: <signaledException>
Nil is return as the value of the protected block of the active exception handler. Before returning,
the exception environment and the evaluation context are restored to the same states that were in
effect when the active handler was created using #on:do:. Restoring the evaluation context may
result in the execution of #ensure: or #ifCurtailed: termination blocks.
This message does not return to its point of invocation.

Return Value
none

Errors
It is erroneous to directly or indirectly send this message from within a #defaultAction method
to the receiver of the #defaultAction method.

5.5.4.10 Message: return: returnValue

Synopsis
Return the argument as the value of the block protected by the active exception handler.

Definition: <signaledException>
The returnValue is returned as the value of the protected block of the active exception handler.
Before returning, the exception environment and the evaluation context are restored to the same
states that were in effect when the active handler was created using #on:do:. Restoring the
evaluation context may result in the execution of #ensure: or #ifCurtailed: termination
blocks.

NCITS J20 DRAFT December, 1997 97
of ANSI Smalltalk Standard revision 1.9

This message does not return to its point of invocation.
Parameters

returnValue <Object> uncaptured
Return Value

none
Errors

It is erroneous to directly or indirectly send this message from within a #defaultAction method
to the receiver of the #defaultAction method.

5.5.5 Protocol: <exceptionSelector>

Conforms To:
<Object>

Description
This protocol describe the behavior of objects that are used to select an exception handler. In
particular, objects that conform to this protocol may occur as the first argument to #on:do:
message sent to blocks.

Messages
,
handles:

5.5.5.1 Message: , anotherException

Synopsis
Create an exception set.

Definition: <exceptionSelector>
Return an exception set that contains the receiver and the argument exception. This is commonly
used to specify a set of exception selectors for an exception handler.

Parameters
anotherException <exceptionSelector> captured

Return Value
<exceptionSet> new

Errors
none

5.5.5.2 Message: handles: exception

Synopsis
Determine whether an exception handler will accept a signaled exception.

Definition: <exceptionSelector>
This message determines whether the exception handler associated with the receiver may be used
to process the argument. Answer true if an associated handler should be used to process
exception. Answer false if an associated handler may not be used to process the exception.

Parameters

NCITS J20 DRAFT December, 1997 98
of ANSI Smalltalk Standard revision 1.9

exception <exceptionDescription> unspecified
Return Value

<boolean> unspecified
Errors

none

5.5.6 Protocol: <exceptionInstantiator>

Conforms To:
<exceptionSelector>, <exceptionSignaler>, <instantiator>

Description
This protocol describes the instantiation behavior of objects that can create exceptions.

Messages
new
signal

5.5.6.1 Message Refinement: new

Synopsis
Create a new object.

Definition: <instantiator>
Return a newly created object initialized to a standard initial state.

Refinement: <exceptionInstantiator>
The object returned is an <exceptionBuilder> that may be used to signal an exception of the same
type that would be signaled if the message #signal is sent to the receiver.

Return Value
<exceptionBuilder> new

Errors
none

5.5.6.2 Message Refinement: signal

Synopsis
Signal the occurrence on an exceptional condition.

Definition: <exceptionSignaler>
Associated with the receiver is an <exceptionDescription> called the signaled exception. The
current exception environment is searched for an exception handler whose exception selector
matches the signaled exception. The search proceeds from the most recently created exception
handler to the oldest exception handler.

NCITS J20 DRAFT December, 1997 99
of ANSI Smalltalk Standard revision 1.9

A matching handler is defined to be one which would return true if the message #handles: was
sent to its exception selector with the signaled exception as the argument.
If a matching handler is found, the exception action of the handler is evaluated in the exception
environment that was current when the handler was created and the state of the current exception
environment is preserved as the signaling environment.
The exception action is evaluated as if the message #value: were sent to it with a
<signaledException> passed as its argument. The <signaledException> is derived from the
signaled exception in an implementation dependent manner.
If the evaluation of the exception action returns normally (as if it had returned from the #value:
message), the handler environment is restored and the value returned from the exception action is
returned as the value of the #on:do: message that created the handler. Before returning, any
active #ensure: or #ifCurtailed: termination blocks created during evaluation of the receiver
of the #on:do: message are evaluated.
If a matching handler is not found when the exception environment is searched, the default action
for the signaled exception is performed. This is accomplished as if the message #defaultAction
were sent to the <signaledException> object derived from the signaled exception. The
#defaultAction method is executed in the context of the signaling environment. If the signaled
exception is resumable the value returned from the #defaultAction method is returned as the
value of the #signal message. If the signaled exception is not resumable the action taken upon
completion of the #defaultAction method is implementation defined.

Refinement: <exceptionInstantiator>
An exception of the type associated with the receiver is signaled. The <signaledException> is
initialized to its default state.

Return Value
<Object> unspecified

Errors
none

5.5.7 Protocol: <Exception class>

Conforms To:
<classDescription> <exceptionInstantiator>

Description
This protocol describe the behavior of class objects that are used to create, signal, and select
exceptions that exist within a specialization hierarchy.
The value of the standard global Exception is a class object that conforms to this protocol. The
class Exception is explicitly specified to be subclassable. Conforming implementations must
implement its behaviors in a non-fragile manner.

NCITS J20 DRAFT December, 1997 100
of ANSI Smalltalk Standard revision 1.9

Standard Globals
Exception A class name. Conforms to the protocol <Exception class>. Instances of

this class conform to the protocol <Exception>.
Messages

handles:
new
signal

5.5.7.1 Message Refinement: handles: exception

Definition: <exceptionSelector>
This message determines whether the exception handler associated with the receiver may be used
to process the argument. Answer true if an associated handler should be used to process
exception. Answer false if an associated handler may not be used to process the exception.

Refinement: <Exception class>
Return true if the class of exception is the receiver or a general subclass of the receiver.
This definition implies that subclasses of an exception class are considered to be subexceptions of
the type of exception defined by their superclass. An exception handler that handles an exception
class will also handle any exceptions that are instances of the exception class's subclasses.

Return Value
<boolean> unspecified

Errors
none

5.5.7.2 Message Refinement: new

Definition: <instantiator>
Return a newly created object initialized to a standard initial state.

Refinement: <exceptionInstantiator>
The object returned is an <exceptionBuilder> that may be used to signal an exception of the same
type that would be signaled if the message #signal is sent to the receiver.

Refinement: <Exception class>
The object returned conforms to <Exception>

Return Value
<Exception> new

Errors
none

5.5.7.3 Message Refinement: signal

Definition: <exceptionSignaler>
Associated with the receiver is an <exceptionDescription> called the signaled exception. The
current exception environment is searched for an exception handler whose exception selector
matches the signaled exception. The search proceeds from the most recently created exception
handler to the oldest exception handler.
A matching handler is defined to be one which would return true if the message #handles: was
sent to its exception selector with the signaled exception as the argument.
If a matching handler is found, the exception action of the handler is evaluated in the exception
environment that was current when the handler was created and the state of the current exception
environment is preserved as the signaling environment.

NCITS J20 DRAFT December, 1997 101
of ANSI Smalltalk Standard revision 1.9

The exception action is evaluated as if the message #value: were sent to it with a
<signaledException> passed as its argument. The <signaledException> is derived from the
signaled exception in an implementation dependent manner.
If the evaluation of the exception action returns normally (as if it had returned from the #value:
message), the handler environment is restored and the value returned from the exception action is
returned as the value of the #on:do: message that created the handler. Before returning, any
active #ensure: or #ifCurtailed: termination blocks created during evaluation of the receiver
of the #on:do: message are evaluated.
If a matching handler is not found when the exception environment is searched, the default action
for the signaled exception is performed. This is accomplished as if the message #defaultAction
were sent to the <signaledException> object derived from the signaled exception. The
#defaultAction method is executed in the context of the signaling environment. If the signaled
exception is resumable the value returned from the #defaultAction method is returned as the
value of the #signal message. If the signaled exception is not resumable the action taken upon
completion of the #defaultAction method is implementation defined.

Refinement: <Exception class>
The exception signaled conforms to <Exception> with all of its <exceptionDescription> attributes
set to their default values.

Return Value
<Object> unspecified

Errors
none

5.5.8 Protocol: <Exception>

Conforms To:
<exceptionBuilder>, <signaledException>

Description
This protocol describes the behavior of instances of class Exception. Typically, actual exceptions
used by an application will be either direct or indirect subclasses of this class. Exception combines
the behavior of <exceptionBuilder> and <signaledException>. Instances are used to both supplied
inform before an exception is signaled and to pass the information to an exception handler.
As Exception is explicitly specified to be subclassable, conforming implementations must
implement its behavior in a non-fragile manner.

Rationale
Exception is an abstract class. It is the only true abstract class specified by the standard. It is included so as to provide a
mechanism for the protable definition of new exception. Exceptions defined as subclasses of Exception will be portable to
any conforming implementation..

NCITS J20 DRAFT December, 1997 102
of ANSI Smalltalk Standard revision 1.9

Messages
none

5.5.9 Protocol: <Notification class>

Conforms To:
<Exception class>

Description
This protocol describe the behavior of the global Notification. The value of the standard global
Notification is a class object that conforms to this protocol. The class Notification is
explicitly specified to be subclassable in a standard conforming program. Conforming
implementations must implement its behaviors in a non-fragile manner.
The signaled exceptions generated by this type of object conform to the protocol <Notification>.

Standard Globals
Notification A class name. Conforms to the protocol <Notification class>.

Notification must inherit (possibly indirectly) from the class
Exception. Instances of this class conform to the protocol
<Notification>.

Messages
new

5.5.9.1 Message Refinement: new

Definition: <instantiator>
Return a newly created object initialized to a standard initial state.

Refinement: <exceptionInstantiator>
The object returned is an <exceptionBuilder> that may be used to signal an exception of the same
type that would be signaled if the message #signal is sent to the receiver.

Refinement: <Exception class>
The object returned conforms to <Exception>

Refinement: <Notification class>
The object returned conforms to <Notification>.

Return Value
<Notification> new

Errors
none

NCITS J20 DRAFT December, 1997 103
of ANSI Smalltalk Standard revision 1.9

5.5.10 Protocol: <Notification>

Conforms To:
<Exception>

Description
This protocol describes the behavior of instances of the class Notification. These are used to
represent exceptional conditions that may occur but which are not considered errors. Actual
notification exceptions used by an application may be subclasses of this class.
As Notification is explicitly specified to be subclassable, conforming implementations must
implement its behavior in a non-fragile manner.

Messages
defaultAction
isResumable

5.5.10.1 Message Refinement: defaultAction

Definition: <exceptionDescription>
If the exception described by the receiver is signaled and the current exception environment does
not contain a handler for the exception this method will be executed.
The exact behavior and result of this method is implementation defined.

Refinement: <Notification>
No action is taken. The value nil is returned as the value of the message that signaled the
exception.

Return Value
<nil> unspecified

Errors
none

5.5.10.2 Message Refinement: isResumable

Definition: <exceptionDescription>
This message is used to determine whether the receiver is a resumable exception. Answer true if
the receiver is resumable. Answer false if the receiver is not resumable.

Refinement: <Notification>
Answer true. Notification exceptions by default are specified to be resumable.

Return Value
<boolean> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 104
of ANSI Smalltalk Standard revision 1.9

5.5.11 Protocol: <Warning class>

Conforms To:
<Notification class>

Description
This protocol describe the behavior of the global Warning. The value of the standard global
Warning is a class object that conforms to this protocol. The class Warning is explicitly specified
to be subclassable in a standard conforming program. Conforming implementations must
implement its behaviors in a non-fragile manner.
The signaled exceptions generated by this type of object conform to the protocol <Warning>.

Standard Globals
Warning A class name. Conforms to the protocol <Warning class>. Warning

must inherit (possibly indirectly) from the class Notification.
Instances of this class conform to the protocol <Warning>.

Messages
new

5.5.11.1 Message Refinement: new

Definition: <instantiator>
Return a newly created object initialized to a standard initial state.

Refinement: <exceptionInstantiator>
The object returned is an <exceptionBuilder> that may be used to signal an exception of the same
type that would be signaled if the message #signal is sent to the receiver.

Refinement: <Exception class>
The object returned conforms to <Exception>

Refinement: <Warning class>
The object returned conforms to <Warning>

Return Value
<Warning> new

Errors
none

5.5.12 Protocol: <Warning>

Conforms To:
<Notification>

NCITS J20 DRAFT December, 1997 105
of ANSI Smalltalk Standard revision 1.9

Description
This protocol describes the behavior of instances of class Warning. These are used to represent
exceptional conditions that might occur that are not considered errors but which should be reported
to the user. Typically, the actual warning exceptions used by an application will be subclasses of
this class.
As Warning is explicitly specified to be subclassable, conforming implementations must
implement its behavior in a non-fragile manner.

Messages
defaultAction

5.5.12.1 Message Refinement: defaultAction

Synopsis
The default action taken if the exception is signaled.

Definition: <exceptionDescription>
If the exception described by the receiver is signaled and the current exception environment does
not contain a handler for the exception this method will be executed.
The exact behavior and result of this method is implementation defined.

Refinement: <Notification>
No action is taken. The value nil is returned as the value of the message that signaled the
exception.

Refinement: <Warning>
The user should be notified of the occurrence of an exceptional occurrence and given an option of
continuing or aborting the computation. The description of the occurrence should include any text
specified as the argument of the #signal: message.

Return Value
UNSPECIFIED

Errors
none

5.5.13 Protocol: <Error class>

Conforms To:
<Exception class>

Description
This protocol describe the behavior of the global Error. The value of the standard global Error is
a class object that conforms to this protocol. The class Error is explicitly specified to be
subclassable in a standard conforming program. Conforming implementations must implement its
behaviors in a non-fragile manner.

NCITS J20 DRAFT December, 1997 106
of ANSI Smalltalk Standard revision 1.9

The signaled exceptions generated by this type of object conform to the protocol <Error>.
Standard Globals

Error A class name. Conforms to the protocol <Error class>. Error must
inherit (possibly indirectly) from the class Exception. Instances of this
class conform to the protocol <Error>.

Messages
new

5.5.13.1 Message Refinement: new

Definition: <instantiator>
Return a newly created object initialized to a standard initial state.

Refinement: <exceptionInstantiator>
The object returned is an <exceptionBuilder> that may be used to signal an exception of the same
type that would be signaled if the message #signal is sent to the receiver.

Refinement: <Exception class>
The object returned conforms to <Exception>

Refinement: <Error class>
The object returned conforms to <Error>

Return Value
<Error> new

Errors
none

5.5.14 Protocol: <Error>

Conforms To:
<Exception>

Description
This protocol describes the behavior of instances of class Error. These are used to represent error
conditions that prevent the normal continuation of processing. Actual error exceptions used by an
application may be subclasses of this class.
As Error is explicitly specified to be subclassable, conforming implementations must implement
its behavior in a non-fragile manner.

Messages
defaultAction
isResumable

5.5.14.1 Message Refinement: defaultAction

Definition: <exceptionDescription>

NCITS J20 DRAFT December, 1997 107
of ANSI Smalltalk Standard revision 1.9

If the exception described by the receiver is signaled and the current exception environment does
not contain a handler for the exception this method will be executed.
The exact behavior and result of this method is implementation defined.

Refinement: <Error>
The current computation is terminated. The cause of the error should be logged or reported to the
user. If the program is operating in an interactive debugging environment the computation should
be suspended and the debugger activated.

Return Value
UNSPECIFIED

Errors
none

5.5.14.2 Message Refinement: isResumable

Synopsis
Determine whether an exception is resumable.

Definition: <exceptionDescription>
This message is used to determine whether the receiver is a resumable exception. Answer true if
the receiver is resumable. Answer false if the receiver is not resumable.

Refinement: <Error>
Answer false. Error exceptions by default are assumed to not be resumable. Subclasses may over-
ride this definition for situations where it is appropriate for an error to be resumable.

Return Value
<boolean> unspecified

Errors
none

5.5.15 Protocol: <ZeroDivide factory>

Conforms To:
<exceptionInstantiator>

Description
This protocol describe the behavior of the global ZeroDivide. It is used to as an exception
selector to catch zero divide exceptions and can also be used to signal that a division by zero error
has occured. Zero divide exceptions are resumable so any message in this protocol that signal
such an exception may ultimately return to their sender. The signaled exceptions generated by this
type of object conform to the protocol <ZeroDivide>

NCITS J20 DRAFT December, 1997 108
of ANSI Smalltalk Standard revision 1.9

Standard Globals
ZeroDivide Unspecified language element type. Conforms to the protocol

<ZeroDivide class>.
Messages

dividend:
signal

5.5.15.1 Message: dividend: argument

Synopsis
Signal the occurance of a division by zero.

Refinement: <ZeroDivide factory>
Signal the occurance of a division by zero exception. Capture the number that was being divided
such that it is available from the signaled exception.
If the message #dividend is subsequently sent to the <ZeroDivide> object that is the signaled
exception the value of argument is returned.

Parameters
argument <number> captured

Return Value
<Object> state

Errors
none

5.5.15.2 Message Refinement: signal

Definition: <exceptionSignaler>
Associated with the receiver is an <exceptionDescription> called the signaled exception. The
current exception environment is searched for an exception handler whose exception selector
matches the signaled exception. The search proceeds from the most recently created exception
handler to the oldest exception handler.
A matching handler is defined to be one which would return true if the message #handles: was
sent to its exception selector with the signaled exception as the argument.
If a matching handler is found, the exception action of the handler is evaluated in the exception
environment that was current when the handler was created and the state of the current exception
environment is preserved as the signaling environment.
The exception action is evaluated as if the message #value: were sent to it with a
<signaledException> passed as its argument. The <signaledException> is derived from the
signaled exception in an implementation dependent manner.
If the evaluation of the exception action returns normally (as if it had returned from the #value:
message), the handler environment is restored and the value returned from the exception action is
returned as the value of the #on:do: message that created the handler. Before returning, any
active #ensure: or #ifCurtailed: termination blocks created during evaluation of the receiver
of the #on:do: message are evaluated.
If a matching handler is not found when the exception environment is searched, the default action
for the signaled exception is performed. This is accomplished as if the message #defaultAction
were sent to the <signaledException> object derived from the signaled exception. The
#defaultAction method is executed in the context of the signaling environment. If the signaled
exception is resumable the value returned from the #defaultAction method is returned as the
value of the #signal message. If the signaled exception is not resumable the action taken upon
completion of the #defaultAction method is implementation defined.

NCITS J20 DRAFT December, 1997 109
of ANSI Smalltalk Standard revision 1.9

Refinement: <exceptionInstantiator>
An exception of the type associated with the receiver is signaled. The <signaledException> is
initialized to its default state.

Refinement: <ZeroDivide factory>
The signaled exception conforms to <ZeroDivide> and all of its <exceptionDescription> attributes
set to their default values.

Return Value
<Object> unspecified

Errors
none

5.5.16 Protocol: <ZeroDivide>

Conforms To:
<Error>

Description
This protocol describes the behavior of exceptions that are signalled when an attempt is made to
divide some number (the dividend) by zero.

Messages
dividend
isResumable

5.5.16.1 Message: dividend

Synopsis
Answer the number that was being divided by zero.

Definition: <ZeroDivide>
Answer the number that was being divided by zero.

Return Value
<number> state

Errors
none

5.5.16.2 Message Refinement: isResumable

Synopsis
Determine whether an exception is resumable.

NCITS J20 DRAFT December, 1997 110
of ANSI Smalltalk Standard revision 1.9

Definition: <exceptionDescription>
This message is used to determine whether the receiver is a resumable exception. Answer true if
the receiver is resumable. Answer false if the receiver is not resumable.

Refinement: <Error>
Answer false. Error exceptions by default are assumed to not be resumable. Subclasses may over-
ride this definition for situations where it is appropriate for an error to be resumable.

Refinement: <ZeroDivide>
Answer true.

Return Value
<boolean> unspecified

Errors
none

5.5.17 Protocol: <MessageNotUnderstoodSelector>

Conforms To:
<ExceptionSelector>

Description
This protocol describe the behavior of the value of the global named MessageNotUnderstood.
This object is used to as an exception selector to catch failed message sends. Message not
understood exceptions are resumable so any message in this protocol that signal such an
exception may ultimately return to their sender.
This object is not specifed as an <exceptionSignaler> or an <exceptionInstantiator>. It as assumed
that message not understood exceptions are signaled by the implemention dependent
implementaton of the message <Object> #doesNotUnderstand:.

Standard Globals
MessageNotUnderstood

Unspecified language element type. Conforms to the protocol
<MessageNotUnderstoodSelector>. Used as an exception selector .

Messages
handles:

5.5.17.1 Message Refinement: handles: exception

Synopsis
Determine whether an exception handler will accept a signaled exception.

Definition: <exceptionSelector>

NCITS J20 DRAFT December, 1997 111
of ANSI Smalltalk Standard revision 1.9

This message determines whether the exception handler associated with the receiver may be used
to process the argument. Answer true if an associated handler should be used to process
exception. Answer false if an associated handler may not be used to process the exception.

Refinement: <MessageNotUnderstoodSelector>
Return true if exception is an exception that is the result of a failed message send.

Parameters
exception <exceptionDescription> unspecified

Return Value
<boolean> unspecified

Errors
none

5.5.18 Protocol: <MessageNotUnderstood>

Conforms To:
<Error>

Description
This protocol describes the behavior of exceptions that are signalled if the receiver of a message
does not have a method with a matching selector.

Messages
message
isResumable
message
receiver

5.5.18.1 Message: message

Synopsis
Answer the selector and arguments of the message that failed.

Definition: <MessageNotUnderstood>
Answer the selector and arguments of the message that failed.

Return Value
<failedMessage> state

Errors
none

NCITS J20 DRAFT December, 1997 112
of ANSI Smalltalk Standard revision 1.9

5.5.18.2 Message Refinement: isResumable

Synopsis
Determine whether an exception is resumable.

Definition: <exceptionDescription>
This message is used to determine whether the receiver is a resumable exception. Answer true if
the receiver is resumable. Answer false if the receiver is not resumable.

Refinement: <Error>
Answer false. Error exceptions by default are assumed to not be resumable. Subclasses may over-
ride this definition for situations where it is appropriate for an error to be resumable.

Refinement: <MessageNotUnderstood>
Answer true.

Return Value
<boolean> unspecified

Errors
none

5.5.18.3 Message: message

Synopsis
Answer the selector and arguments of the message that failed.

Definition: <MessageNotUnderstood>
Answer the selector and arguments of the message that failed.

Return Value
<failedMessage> state

Errors
none

5.5.18.4 Message: receiver

Synopsis
Answer the receiver the message that failed.

Definition: <MessageNotUnderstood>
Answer the object that was the receiver of the message that failed.

Return Value
<Object> state

Errors
none

NCITS J20 DRAFT December, 1997 113
of ANSI Smalltalk Standard revision 1.9

5.5.19 Protocol: <exceptionSet>

Conforms To:
<exceptionSelector>

Description
This protocol describes the behavior of objects that may be used to group a set of
<exceptionSelector> objects into a single <exceptionSelector>. This is useful for establishing a
single exception handler that may deal with several different types of exceptions.

Messages
,

5.5.19.1 Message Refinement: , anotherException

Definition: <exceptionSelector>
Return an exception set that contains the receiver and the argument exception. This is commonly
used to specify a set of exception selectors for an exception handler.

Refinement: <exceptionSet>
In addition to anotherException the exception set that is returned contains all of theexception
selectors contained in the receiver.
The returned object may or may not be the same object as the receiver.

Parameters
anotherException <exceptionSelector> captured

Return Value
<exceptionSet> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 114
of ANSI Smalltalk Standard revision 1.9

5.6 Numeric Protocols

This section includes protocols that define the behavior of the standard numeric classes.

The graphs below shows the conformance relationships between the protocols defined in this
section, including <magnitude>. The protocols <factory> and <Object> are not part of this section.

<Magnitude>

<Number>

<rational> <Float> <ScaledDecimal>

<Integer> <Fraction>

<floatCharacterization> <Fraction factory>

NCITS J20 DRAFT December, 1997 115
of ANSI Smalltalk Standard revision 1.9

5.6.1 Protocol: <magnitude>

Conforms To
<Object>

Description
Provides protocol for comparing objects which are linearly ordered with respect to some
comparison operation.

Messages
<
<=
>
>=
between:and:
max:
min:

5.6.1.1 Message: < operand

Synopsis
Answer true if the receiver is less than operand. Answer false otherwise.

Definition: <magnitude>
Answer true if the receiver is less than operand with respect to the ordering defined for them.
Answer false otherwise.
It is erroneous if the receiver and operand are not comparable.
The semantics of the natural ordering must be defined by refinement, which may also restrict the
type of operand.

Parameters
operand <magnitude> uncaptured

Return Values
<boolean> unspecified

Errors
Receiver and operand are not comparable

5.6.1.2 Message: <= operand

Synopsis
Answer true if the receiver is less than or equal to operand. Answer false otherwise.

Definition: <magnitude>
Answer true if the receiver would answer true to either the #< or #= message with operand as the
parameter. Answer false otherwise.
It is erroneous if the receiver and operand are not comparable.

Parameters
operand <magnitude> uncaptured

Return Values
<boolean> unspecified

Errors
Receiver and operand are not comparable

NCITS J20 DRAFT December, 1997 116
of ANSI Smalltalk Standard revision 1.9

5.6.1.3 Message: > operand

Synopsis
Answer true if the receiver is greater than operand. Answer false otherwise.

Definition: <magnitude>
Answer true if the receiver is greater than operand with respect to the natural ordering. Answer
false otherwise.
It is erroneous if the receiver and operand are not comparable.
The semantics of the natural ordering must be defined by refinement, which may also restrict the
type of operand.

Parameters
operand <magnitude> uncaptured

Return Values
<boolean> unspecified

Errors
Receiver and operand are not comparable

5.6.1.4 Message: >= operand

Synopsis
Answer true if the receiver is greater than or equal to operand. Answer false otherwise.

Definition: <magnitude>
Answer true if the receiver answers true to either the #> or #= message with operand as the
parameter. Answer false otherwise.
It is erroneous if the receiver and operand are not comparable.

Parameters
operand <magnitude> uncaptured

Return Values
<boolean> unspecified

Errors
Receiver and operand are not comparable

5.6.1.5 Message: between: min and: max

Synopsis
Answer true if the receiver is less than or equal to max, and greater than or equal to min. Answer
false otherwise.

Definition: <magnitude>
Answer true if the receiver answers true to the #<= message with max as the parameter, and also
answers true to the #>= message with min as the parameter. Answer false otherwise.
It is erroneous if the receiver and min or max are not comparable.

Parameters
min <magnitude> uncaptured
max <magnitude> uncaptured

Return Values
<boolean> unspecified

Errors
Receiver and operands are not comparable.

NCITS J20 DRAFT December, 1997 117
of ANSI Smalltalk Standard revision 1.9

5.6.1.6 Message: max: operand

Synopsis
Answer the receiver if it is greater than operand. Answer operand otherwise.

Definition: <magnitude>
Answer the receiver if the receiver answers true to the #> message with operand as the parameter.
Answer operand otherwise.
It is erroneous if the receiver and operand are not comparable.

Parameters
operand <magnitude> uncaptured

Return Values
<magnitude> unspecified

Errors
Receiver and operand are not comparable

5.6.1.7 Message: min: operand

Synopsis
Answer the receiver if it is less than operand. Answer operand otherwise.

Definition: <magnitude>
Answer the receiver if the receiver answers true to the #< message with operand as the parameter.
Answer operand otherwise.
It is erroneous if the receiver and operand are not comparable.

Parameters
operand <magnitude> uncaptured

Return Values
<magnitude> unspecified

Errors
Receiver and operand are not comparable

5.6.2 Protocol: <number>

Conforms To
<magnitude>

Description
Provides protocol for objects that represent numeric quantities and support operations performing
arithmetic, arithmetic progressions, and conversion on numerical quantities.
The descriptions of messages in this protocol reference specific arithmetic and numerical
operations in the ISO/IEC 10967 standard, providing definition-by-reference for these operations.
Smalltalk provides for mixed-mode arithmetic with the receiver and argument having different
numeric representations. Unless otherwise specified by an individual operation the receiver and
argument are first converted to the same numeric representation according to the following table.

NCITS J20 DRAFT December, 1997 118
of ANSI Smalltalk Standard revision 1.9

Default Conversion Table:

operand
receiver

<integer> <scaledDecimal> <Fraction> <Float>e <Float>d <Float>q

<integer> <integer> <scaledDecimal> <Fraction> <Float>e <Float>d <Float>q
<scaledDecimal> <scaledDecimal> <scaledDecimal> <Fraction> <Float>e <Float>d <Float>q
<Fraction> <Fraction> <Fraction> <Fraction> <Float>e <Float>d <Float>q
<Float>e <Float>e <Float>e <Float>e <Float>e <Float>d <Float>q
<Float>d <Float>d <Float>d <Float>d <Float>d <Float>d <Float>q
<Float>q <Float>q <Float>q <Float>q <Float>q <Float>q <Float>q

If multiple representations of <Float> are available, the representations are ordered from smallest
to largest precision. This table contains multiple entries for <Float>, designated by a subscript, one
for each designation of floating point literal representation. Values that are converted to <Float> are
converted to the smallest precision of Float that can represent the number of digits in the original
value.
An <integer> converted to a <scaledDecimal> will have the scale of the other operand with the
fractional digits set to zero. A <scaledDecimal> converted to a <Fraction> will be a fraction having
the same numeric value but having an integer numerator and a denominator which is ten raised to
the power of the <scaledDecimal>'s scale factor.
The result type of most numeric opeations is based upon the operaand type. The Default Result
Type for all operand types except <Fraction> is the type to which the operands have been
converted according to the Default ConversionTable. If the converted operand type is <Fraction>
the Default Result Type is <rational>. In all cases where the type of the return value differs from the
default result type it is noted in the operation's description.
Operations can produce results that are outside the set of representable numbers, or
mathematically undefined. It is implementation defined whether errors are raised when results are
not representable or if unrepresentable results are wrapped in implementation-defined continuation
values or their equivalent. The effect of underflow and overflow is therefore implementation
defined.
<number> conforms to <magnitude>. All object that implement the <number> protocol or any
protocol that conforms to <number> are comparable.

Messages
*
+
- operand
//
<
=
>
\\
abs
asFloat
asFloatD
asFloatE
asFloatQ
asFraction
asInteger
asScaledDecimal:
ceiling
floor
fractionPart
integerPart
negated
negative

NCITS J20 DRAFT December, 1997 119
of ANSI Smalltalk Standard revision 1.9

positive
printString
quo:
raisedTo:
raisedToInteger:
reciprocal
rem:
rounded
roundTo:
sign
sqrt
squared
strictlyPositive
to:
to:by:
to:by:do:
to:do:
truncated
truncateTo:

5.6.2.1 Message: * operand

Synopsis
Answer the result of multiplying the receiver by operand.

Definition: <number>
Answer a number whose value is the result of multiplying the receiver and operand, as specified
by the ISO/IEC 10967 multiplication operation mul. To perform the operation both the receiver and
operand must be objects with identical numeric representations. If they have different
representations a conversion to their common numeric representation is performed, as specified
by the Default Conversion Table, before applying the operation. If the common representation is
<integer>, then the result value is defined by the ISO/IEC 10967 operation mulI. If the common
representation is <Float>, then the result value is defined by the ISO/IEC 10967 mulF . Otherwise,
the result is consistent with the mathematical definition of the ISO/IEC 10967 operation mul.
The protocol and representation of the return value is defined to be the Default Result Type. If the
return value conforms to <scaledDecimal> then the scale of the result is at least the scale of the
receiver after conversion if necessary.
If the result value is outside of the range of the common numeric representation, the effect of
underflow or overflow is implementation defined..

Parameters
operand<number> unspecified

Return Values
The Default Result Type

Errors
none

5.6.2.2 Message: + operand

Synopsis
Answer the result of adding operand to the receiver.

Definition: <number>
Answer a number whose value is the result of adding the receiver and operand, as specified by
the ISO/IEC 10967 addition operation add. To perform the operation both the receiver and
operand must be objects with identical numeric representations. If they have different

NCITS J20 DRAFT December, 1997 120
of ANSI Smalltalk Standard revision 1.9

representations a conversion to a common numeric representation is performed, as specified by
the Default Conversion Table, before applying the operation. If the resulting protocol is <integer>,
then the result value is defined by the ISO/IEC 10967 operation addI. If the resulting protocol is
<Float>, then the result value is defined by the ISO/IEC 10967 addF . Otherwise, the result is
consistent with the mathematical definition of the ISO/IEC 10967 operation add.
The protocol and representation of the return value is defined by the Default Result Type. If the
return value conforms to <scaledDecimal> then the scale of the result is at least the scale of the
receiver after conversion if necessary. If the result value is outside of the range of the common
numeric representation, the effect of underflow or overflow is implementation defined.

Parameters
operand<number> unspecified

Return Values
The Default Result Type

Errors
none

5.6.2.3 Message: - operand

Synopsis
Answer the result of subtracting operand from the receiver.

Definition: <number>
Answer a number whose value is the result of subtracting the receiver and operand, as specified
by the ISO/IEC 10967 subtraction operation sub. To perform the operation both the receiver and
operand must be objects with identical numeric representations. If they have different
representations a conversion to a common numeric representation is performed, as specified by
the Default Conversion Table, before applying the operation. If the resulting protocol is <integer>,
then the result value is defined by the ISO/IEC 10967 operation subI. If the resulting protocol is
<Float>, then the result value is defined by the ISO/IEC 10967 subF . Otherwise, the result is
consistent with the mathematical definition of the ISO/IEC 10967 operation sub.
The protocol and representation of the return value is defined by the Default Result Type. If the
return value conforms to <scaledDecimal> then the scale of the result is at least the scale of the
receiver after conversion if necessary. If the result value is outside of the range of the common
numeric representation, the effect of underflow or overflow is implementation defined.

Parameters
operand<number> unspecified

Return Values
The Default Result Type

Errors
none

5.6.2.4 Message: / operand

Synopsis
Answer the result of dividing the receiver by operand.

Definition: <number>
Answer a number whose value is the result of dividing the receiver by operand, as specified by
the ISO/IEC 10967 flooring division operation div To perform the operation both the receiver and
operand must be objects with identical numeric representations. If they have different
representations a conversion to a common numeric representation is performed, as specified by
the Default Conversion Table, before applying the operation. If the resulting protocol is <integer>,

NCITS J20 DRAFT December, 1997 121
of ANSI Smalltalk Standard revision 1.9

then the result value is a <rational> with the receiver as the numerator and the operand as the
denominator. If the resulting protocol is <Float>, then the result value is defined by the ISO/IEC
10967 divF . Otherwise, the result is consistent with the mathematical definition of the ISO/IEC
10967 operation div.
If both operands conform to <integer> the result value will conform to <rational>. Otherwise the
protocol and representation of the return value are defined by the Default Result Type. If the return
value conforms to <scaledDecimal> then the scale of the result is at least the scale of the receiver
after conversion if necessary.
If the result value is outside of the range of the common numeric representation, the effect of
underflow or overflow is implementation defined. If either the receiver or operand are of type
<Float> and the operand has a value of zero, the result is implementation defined. The
implementation must either signal the ZeroDivide exception or provide a continuation value. For all
other numeric representations the ZeroDivide exception is signaled.

Parameters
operand<number> unspecified

Return Values
If the operands conform to integer then <rational>
otherwise the Default Result Type

Errors
operand = 0 unless receiver or operand are of type <Float>

5.6.2.5 Message: // operand

Synopsis
Answer the truncated quotient resulting from dividing the receiver by operand. The truncation is
towards negative infinity.

Definition: <number>
Answer an integer whose value is the truncated result of dividing the receiver by operand, as
specified by the ISO/IEC 10967 flooring division operation divf. Truncation is towards negative
infinity. The sign of the result is positive if the receiver and operand have the same sign, and
negative if the signs are different.
To perform the operation both the receiver and operand must be objects with identical numeric
representations. If they have different representations a conversion to a common numeric
representation is performed, as specified by the Default Conversion Table, before applying the
operation. If the resulting protocol is <integer>, then the result value is defined by the ISO/IEC
10967 operation divf

 I. If the resulting protocol is <Float>, then the result value is defined by the
ISO/IEC 10967 divf

 F . Otherwise, the result is consistent with the mathematical definition of the
ISO/IEC 10967 operation divf.
If the operand has a value of zero the ZeroDivide exception is signaled.

Parameters
operand<number> unspecified

Return Values
<integer> unspecified

Errors
operand = 0 unless receiver or operand are of type <Float>

5.6.2.6 Message Refinement: < operand

Synopsis
Answer true if the receiver is less than operand. Answer false otherwise.

NCITS J20 DRAFT December, 1997 122
of ANSI Smalltalk Standard revision 1.9

Definition: <magnitude>
Answer true if the receiver is less than operand with respect to the ordering defined for them.
Answer false otherwise.
It is erroneous if the receiver and operand are not comparable.
The semantics of the natural ordering must be defined by refinement, which may also restrict the
type of operand.

Refinement: <number>
Answer true if the operand is numerically less than the receiver, as specified by the ISO/IEC
10967 comparison operation lss. Answer false otherwise.
To perform the operation both the receiver and operand must be objects with identical numeric
representations. If they have different representations a conversion to a common numeric
representation is performed, as specified by the Default Conversion Table, before applying the
operation. If the resulting protocol is <integer>, then the result value is defined by the ISO/IEC
10967 operation lssI. If the resulting protocol is <Float>, then the result value is defined by the
ISO/IEC 10967 lssF. Otherwise, the result is consistent with the mathematical definition of the
ISO/IEC 10967 operation lss.

Parameters
operand<number> uncaptured

Return Values
<boolean> unspecified

Errors
none

5.6.2.7 Message Refinement: = comparand

Synopsis
Object equivalence test.

Definition: <Object>
This message tests whether the receiver and the comparand are equivalent objects at the time the
message is processed. Return true if the receiver is equivalent to comparand. Otherwise return
false.
The meaning of "equivalent" cannot be precisely defined but the intent is that two objects are
considered equivalent if they can be used interchangeably. Conforming protocols may choose to
more precisely define the meaning of "equivalent".
The value of

receiver = comparand

is true if and only if the value of
comparand = receiver

would also be true. If the value of
receiver = comparand

is true then the receiver and comparand must have equivalent hash values. Or more formally:

receiver = comparand
receiver hash = comparand hash

The equivalence of objects need not be temporally invariant. Two independent invocations of #=
with the same receiver and operand objects may not always yield the same results. Note that a

NCITS J20 DRAFT December, 1997 123
of ANSI Smalltalk Standard revision 1.9

collection that uses #= to discriminate objects may only reliably store objects whose hash values
do not change while the objects are contained in the collection.

Refinement: <number>
Answer true if the operand is numerically equal to the receiver, as specified by the ISO/IEC 10967
equality operation eq. Answer false if they are not numerically equal or if operand is not a number.
To perform the operation both the receiver and operand must be objects with identical numeric
representations. If they have different representations a conversion to a common numeric
representation is performed, as specified by the Default Conversion Table, before applying the
operation. If the resulting protocol is <integer>, then the result value is defined by the ISO/IEC
10967 operation eqI. If the resulting protocol is <Float>, then the result value is defined by the
ISO/IEC 10967 eqF. Otherwise, the result is consistent with the mathematical definition of the
ISO/IEC 10967 operation eq.
Numeric equality is defined by implementation defined conventions regarding round-off error and
representation of numbers, hence behavior of this message may differ between platforms.

Parameters
comparand <Object> uncaptured

Return Values
<boolean> unspecified

Errors
none

5.6.2.8 Message Refinement: > operand

Synopsis
Answer true if the receiver is greater than operand. Answer false otherwise.

Definition: <magnitude>
Answer true if the receiver is greater than operand with respect to the natural ordering. Answer
false otherwise.
It is erroneous if the receiver and operand are not comparable.
The semantics of the natural ordering must be defined by refinement, which may also restrict the
type of operand.

Refinement: <number>
Answer true if the operand is numerically less than the receiver, as specified by the ISO/IEC
10967 comparison operation gtr. Answer false otherwise.
To perform the operation both the receiver and operand must be objects with identical numeric
representations. If they have different representations a conversion to a common numeric
representation is performed, as specified by the Default Conversion Table, before applying the
operation. If the resulting protocol is <integer>, then the result value is defined by the ISO/IEC
10967 operation gtrI. If the resulting protocol is <Float>, then the result value is defined by the
ISO/IEC 10967 gtrF. Otherwise, the result is consistent with the mathematical definition of the
ISO/IEC 10967 operation gtr.

Parameters
operand<number> uncaptured

Return Values
<boolean> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 124
of ANSI Smalltalk Standard revision 1.9

5.6.2.9 Message: \\ operand

Synopsis
Answer the remainder after integer division of the receiver by the operand.

Definition: <number>
Answer the remainder of truncating integer division as specified by the ISO/IEC 10967 remainder
operation remf. The remainder has the same sign as operand. To perform the operation both the
receiver and operand must be objects with identical numeric representations. If they have different
representations a conversion to a common numeric representation is performed, as specified by
the Default Conversion Table, before applying the operation. If the resulting protocol is <integer>,
then the result value is defined by the ISO/IEC 10967 operation remI. If the resulting protocol is
<Float>, then the result value is defined by the ISO/IEC 10967 remF . Otherwise, the result is
consistent with the mathematical definition of the ISO/IEC 10967 operation rem.
The protocol and representation of the return value is defined by the Default Result Type. If the
return value conforms to <scaledDecimal> then the scale of the result is at least the scale of the
receiver.
Within the limits of representation, the following invariant should hold:
(receiver // operand) * operand + (receiver \\ operand) = receiver
If the result value is outside of the range of the common numeric representation, the effect of
underflow or overflow is implementation defined. If either the receiver or operand is of type <Float>
and the operand has a value of zero, the result is implementation defined. The implementation may
signal the ZeroDivide exception or provide a continuation value. For all other numeric
representations the ZeroDivide exception is signaled.

Parameters
operand<number> unspecified

Return Values
The Default Result Type

Errors
operand = 0 unless receiver or operand are of type <Float>

5.6.2.10 Message: abs

Synopsis
Answer the absolute value of the receiver.

Definition: <number>
Return the absolute value of the receiver, as specified by the ISO/IEC 10967 operation abs. If the
receiver is greater than or equal to zero, answer an object equal to the receiver. Otherwise answer
an object which is equal to the negation of the receiver.

Return Values
<RECEIVER> unspecified

Errors
none

5.6.2.11 Message: asFloat

Synopsis
Answer a floating-point number approximating the receiver.

Definition: <number>
Return the nearest floating-point number to the receiver, as specified by the ISO/IEC 10967 cvt
operation.

NCITS J20 DRAFT December, 1997 125
of ANSI Smalltalk Standard revision 1.9

If an implementation supports multiple representations for floating point numbers, the result is the
representation with the smallest precision that will represent a number with the same number of
digits as the receiver, truncating to the maximum precision of the representation with the largest
precision.
The effect of underflow or overflow is implementation defined.

Return Values
<Float> unspecified

Errors
None

5.6.2.12 Message: asFloatD

Synopsis
Answer a d precision floating-point number approximating the receiver .

Definition: <number>
Return the nearest floating-point number to the receiver, as specified by the ISO/IEC 10967 cvt
operation.
Use the object representation for floating point numbers that corresponds to the representation
used for numeric literals with the exponent designation 'd'.
The effect of underflow and overflow is implementation defined.

Return Values
<Float> unspecified

Errors
None

5.6.2.13 Message: asFloatE

Synopsis
Answer a floating-point number approximating the receiver.

Definition: <number>
Return the nearest floating-point number to the receiver, as specified by the ISO/IEC 10967 cvt
operation.
Use the object representation for floating point numbers that corresponds to the representation
used for numeric literals with the exponent designation 'e'.
The effect of underflow and overflow is implementation defined.

Return Values
<Float> unspecified

Errors
None

5.6.2.14 Message: asFloatQ

Synopsis
Answer a floating-point number approximating the receiver.

Definition: <number>
Return the nearest floating-point number to the receiver, as specified by the ISO/IEC 10967 cvt
operation.
Use the object representation for floating point numbers that corresponds to the representation
used for numeric literals with the exponent designation 'q'.

NCITS J20 DRAFT December, 1997 126
of ANSI Smalltalk Standard revision 1.9

The effect of underflow and overflow is implementation defined.
Return Values

<Float> unspecified
Errors

None

5.6.2.15 Message: asFraction

Synopsis
Answer a fraction approximating the receiver.

Definition: <number>
Answer a fraction that reasonably approximates the receiver. If the receiver is an integral value the
result may be <integer>.

Return Values
<rational> unspecified

Errors
none

5.6.2.16 Message: asInteger

Synopsis
Answer an integer approximating the receiver.

Definition: <number>
Answer the result of sending #rounded to the receiver.

Return Values
<integer> unspecified

Errors
none

5.6.2.17 Message: asScaledDecimal: scale

Synopsis
Answer a scaled decimal number, with a fractional precision of scale, approximating the receiver.

Definition: <number>
This is a conversion message. Answer a scaled decimal number, with a fractional precision of
scale, which minimizes the difference between the answered value and the receiver.
The effect of underflow and overflow is implementation defined.

Return Values
<scaledDecimal> unspecified

Errors
None

5.6.2.18 Message: ceiling

Synopsis
Answer the smallest integer greater than or equal to the receiver.

Definition: <number>
Answer the smallest integer greater than or equal to the receiver.

NCITS J20 DRAFT December, 1997 127
of ANSI Smalltalk Standard revision 1.9

Return Values
<integer> unspecified

Errors
none

5.6.2.19 Message: floor

Synopsis
Answer the largest integer less than or equal to the receiver.

Definition: <number>
Answer the largest integer less than or equal to the receiver.

Return Values
<integer> unspecified

Errors
none

5.6.2.20 Message: fractionPart

Synopsis
Answer the fractional part of the receiver.

Definition: <number>
Return an object conforming to the protocol of the receiver that is equal to the fractional part of the
receiver. Within the limits of representation, the following invariants should hold:
receiver integerPart + receiver fractionPart = receiver
receiver \\1 = receiver fractionPart

Return Values
<RECEIVER> unspecified

Errors
none

5.6.2.21 Message: integerPart

Synopsis
Answer the integer part of the receiver.

Definition: <number>
Return an object that is equal to the integer part of the receiver. If the receiver is type <Fraction>
return an object conforming to <integer>. Otherwise return an object conforming to the protocol of
the receiver.

Return Values
receiver result
<rational> <rational>
<scaledDecimal> <scaledDecimal>
<Float> <Float>

Rationale
The return value is not restricted to <integer> to avoid unnecessary mixed mode arithmetic.

Errors
none

NCITS J20 DRAFT December, 1997 128
of ANSI Smalltalk Standard revision 1.9

5.6.2.22 Message: negated

Synopsis
Answer the negation of the receiver.

Definition: <number>
Answer an object conforming to the receiver's protocol that is equal to the negation of the receiver
(equal in magnitude to the receiver but opposite in sign), as specified by the ISO/IEC 10967 neg
operation.

Return Values
<RECEIVER> unspecified

Errors
none

5.6.2.23 Message: negative

Synopsis
Answer true if the receiver is negative.

Definition: <number>
Answer true if the receiver is negative. Answer false otherwise.

Return Values
<boolean> unspecified

Errors
none

5.6.2.24 Message: positive

Synopsis
Answer true if the receiver is positive or zero.

Definition: <number>
Answer true if the receiver is positive or zero. Answer false otherwise.

Return Values
<boolean> unspecified

Errors
none

5.6.2.25 Message Refinement: printString

Synopsis
Return a string that describes the receiver.

Definition: <Object>
A string consisting of a sequence of characters that describe the receiver are returned as the
result.
The exact sequence of characters that describe an object are implementation defined.

Refinement: <number>
Answer a string that is a valid literal representation that approximates the numeric value of the
receiver.

Return Values
<readableString> unspecified

NCITS J20 DRAFT December, 1997 129
of ANSI Smalltalk Standard revision 1.9

Errors
none

5.6.2.26 Message: quo: operand

Synopsis
Answer the truncated integer quotient resulting from dividing the receiver by operand. Truncation
is towards zero.

Definition: <number>
Answer a number whose value is the result of dividing the receiver by operand, as specified by
the ISO/IEC 10967 flooring division operation div To perform the operation both the receiver and
operand must be objects with identical numeric representations. If they have different
representations a conversion to a common numeric representation is performed, as specified by
the Default Conversion Table, before applying the operation. If the resulting protocol is <integer>,
then the result value is a <rational> with the receiver as the numerator and the operand as the
denominator. If the resulting protocol is <Float>, then the result value is defined by the ISO/IEC
10967 divF . Otherwise, the result is consistent with the mathematical definition of the ISO/IEC
10967 operation div.
The protocol and representation of the return value are defined by the Default Result Type. If the
return value conforms to <scaledDecimal> then the scale of the result is at least the scale of the
receiver after conversion if necessary.
If the result value is outside of the range of the common numeric representation, the effect of
underflow or overflow is implementation defined. If either the receiver or operand are of type
<Float> and the operand has a value of zero, the result is implementation defined. The
implementation must either signal the ZeroDivide exception or provide a continuation value. For all
other numeric representations the ZeroDivide exception is signaled.

Parameters
operand<number> unspecified

Return Values
<integer> unspecified

Errors
operand = 0 unless receiver or operand are of type <Float>

5.6.2.27 Message: raisedTo: operand

Synopsis
Answer the receiver raised to the power operand.

Definition: <number>
If operand conforms to <integer>, answer the result of sending #raisedToInteger: with
argument operand to the receiver.
Otherwise answer

(receiver asFloat ln * operand) exp.

It is erroneous if the receiver equals zero and the operand is less than or equal to zero, or if the
receiver is less than zero. The effect of underflow and overflow is implementation defined.
If the numeric representation of the result has does not have unbounded precision, the effect of
underflow or overflow is implementation defined.

Parameters
operand <number> uncaptured

Return Values

NCITS J20 DRAFT December, 1997 130
of ANSI Smalltalk Standard revision 1.9

<number> unspecified
Errors

receiver = 0 and operand <= 0
receiver < 0

5.6.2.28 Message: raisedToInteger: operand

Synopsis
Answer the receiver raised to the power operand.

Definition: <number>
Answer the receiver raised to the power operand, which must be a whole number. If the operand
is a whole number greater than or equal to zero, then the result is the receiver raised to the power
operand. If operand is a negative whole number then the result is equivalent to the reciprocal of
the absolute value of the receiver raised to the power operand.
It is erroneous if the operand does not conform to the protocol <integer>. If the numeric
representation of the result has does not have unbounded precision, the effect of underflow or
overflow is implementation defined.

Parameters
operand<integer> uncaptured

Return Values
<RECEIVER> unspecified

Errors
Receiver is not an integer.

5.6.2.29 Message: reciprocal

Synopsis
Answer the reciprocal of the receiver.

Definition: <number>
Answer the reciprocal of the receiver, which is equal to the result of the operation (1/receiver).
Signal a ZeroDivide exception if the receiver is equal to zero.

Return Values
receiver result
<integer> <rational>
<Fraction> <rational>
<scaledDecimal> <scaledDecimal>
<Float> <Float>

Errors
receiver = 0

5.6.2.30 Message: rem: operand

Synopsis
Answer the remainder after integer division of the receiver by the operand.

Definition: <number>
Answer the remainder with respect to integer division, as specified by the ISO/IEC 10967
remainder operation rem. The sign of the remainder is the same sign as the receiver. Within the
limits of representation, the following invariant should hold:

NCITS J20 DRAFT December, 1997 131
of ANSI Smalltalk Standard revision 1.9

(receiver quo: operand)*operand + receiver rem: operand) = receiver

To perform the operation both the receiver and operand must be objects with identical numeric
representations. If they have different representations a conversion to a common numeric
representation is performed, as specified by the Default Conversion Table,
The protocol and representation of the return value is defined by the Default Result Type. If the
return value conforms to <scaledDecimal> then the scale of the result is at least the scale of the
receiver after conversion if necessary. If either the receiver or operand are of type <Float> and the
operand has a value of zero, the result is implementation defined. The implementation may signal
the ZeroDivide exception or provide a continuation value. For all other numeric representations the
ZeroDivide exception is signaled. If the result value is outside of the range of the common numeric
representation, the effect of underflow or overflow is implementation defined.

Parameters
operand<number> unspecified

Return Values
<number> unspecified

Errors
operand = 0 unless receiver or operand are of type <Float>

5.6.2.31 Message: rounded

Synopsis
Answer the integer nearest the receiver.

Definition: <number>
Answer the integer nearest the receiver according to the following property:

N rounded = the nearest integer I = N + (N sign * (1/2)) truncated towards zero.
For example, 0.5 rounded = 1 and -0.5 rounded = -1.

Return Values
<integer> unspecified

Errors
None

5.6.2.32 Message: roundTo: factor

Synopsis
Answer the number nearest the receiver that is a multiple of factor.

Definition: <number>
Answer the number nearest the receiver that is a multiple of factor. The result conforms to either
the receiver's or operand's protocol, according to the Default Conversion Table.
The result is undefined if factor equals zero. If the numeric representation of the result has does
not have unbounded precision, the effect of underflow or overflow is implementation defined.

Parameters
factor <number> uncaptured

Return Values
The Default Result Type

Errors
None

NCITS J20 DRAFT December, 1997 132
of ANSI Smalltalk Standard revision 1.9

5.6.2.33 Message: sign

Synopsis
Answer the sign of the receiver.

Definition: <number>
Answer 1 if the receiver is positive, 0 if the receiver equals 0, and -1 if it is negative, as specified by
the ISO/IEC 10967 operation sign.

Return Values
<integer> unspecified

Errors
none

5.6.2.34 Message: sqrt

Synopsis
Answer the positive square root of the receiver.

Definition: <number>
Answer a number equal to the positive square root of the receiver as specified by the ISO/IEC
10967 remainder operation sqrt. If the receiver's protocol is <integer>, then the result value is
defined by the ISO/IEC 10967 operation sqrtI. If the receiver's protocol is <Float>, then the result
value is defined by the ISO/IEC 10967 sqrtF . Otherwise, the result is consistent with the
mathematical definition of the ISO/IEC 10967 operation sqrt.
The result is undefined if the receiver is less than zero.

Return Values
<number> unspecified

Errors
none

5.6.2.35 Message: squared

Synopsis
Answer the receiver squared.

Definition: <number>
Answer a number that is the receiver multiplied by itself. The answer must conform to the same
protocol as the receiver.

Return Values
<RECEIVER> unspecified

Errors
none

5.6.2.36 Message: strictlyPositive

Synopsis
Answer true if the receiver is greater than zero.

Definition: <number>
Answer true if the receiver is greater than zero.

Return Values
<boolean> unspecified

Errors

NCITS J20 DRAFT December, 1997 133
of ANSI Smalltalk Standard revision 1.9

none

5.6.2.37 Message: to: stop

Synopsis
Answer an object conforming to <interval> which represents an arithmetic progression from the
receiver to stop in increments of 1.

Definition: <number>
Answer an interval which represents an arithmetic progression from the receiver to stop, using the
increment 1 to compute each successive element. The elements conform to the receiver's protocol.
Note that stop may not be the last element in the sequence, which is given by the formula

receiver + ((stop - receiver) // 1)

The interval answered will be empty if the receiver is greater than stop.
Parameters

stop <number> unspecified
Return Values

<Interval> unspecified
Errors

none

5.6.2.38 Message: to: stop by: step

Synopsis
Answer an interval which represents an arithmetic progression from receiver to stop in increments
of step.

Definition: <number>
Answer an interval which represents an arithmetic progression from the receiver to stop, using the
increment step to compute each successive element. The value of step can be positive or
negative, but it must be non-zero. The elements conform to either the receiver's or step's protocol,
according to the Default Conversion Table.
Note that stop may not be the last element in the sequence, which is given by the formula

(((stop - receiver) // step) * step) + receiver

The interval answered will be empty if:
1. receiver < stop, and step < 0.
2. receiver > stop, and step > 0.

Parameters
stop <number> unspecified
step <number> unspecified

Return Values
<Interval> unspecified

Errors
step = 0

5.6.2.39 Message: to: stop by: step do: operation

Synopsis

NCITS J20 DRAFT December, 1997 134
of ANSI Smalltalk Standard revision 1.9

Evaluate operation for each element of an interval which represents an arithmetic progression
from the receiver to stop in increments of step.

Definition: <number>
Evaluate operation for each element of an interval starting at the receiver and stopping at stop
where each element is step greater than the previous. The value of step can be positive or
negative, but it must be non-zero. The elements must all conform to either the receiver's or step's
protocol, according to the Default Conversion Table.
Note that stop is not necessarily an element in the sequence, which is given by the formula

(((stop - receiver) // step) * step) + receiver

No evaluation takes place if:
1. receiver < stop, and step < 0.
2. receiver > stop, and step > 0.

Implementations are not required to actually create the interval described by the receiver, stop
and step. Implementations may restrict the definition of this message to specific classes.

Parameters
stop <number> unspecified
step <number> unspecified
operation <monadicBlock> unspecified

Return Values
UNSPECIFIED

Errors
step = 0

5.6.2.40 Message: to: stop do: operation

Synopsis
Evaluate operation for each element of an interval which represents an arithmetic progression
from receiver to stop in increments of 1.

Definition: <number>
Evaluate operation for each element of an interval starting at the receiver and stopping at stop
where each element is 1 greater than the previous. The elements must all conform to the receiver's
protocol according to the Default Conversion Table.
Note that stop may not be the last element in the sequence, which is given by the formula

receiver + ((stop - receiver) // 1)

No evaluation takes place if the receiver is greater than stop.
Implementations are not required to actually create the interval described by the receiver and
stop.

Parameters
stop <number> unspecified
operation <monadicBlock> unspecified

Return Values
UNSPECIFIED

Errors
none

NCITS J20 DRAFT December, 1997 135
of ANSI Smalltalk Standard revision 1.9

5.6.2.41 Message: truncated

Synopsis
Answer an integer equal to the receiver truncated towards zero.

Definition: <number>
As specified by the ISO/IEC 10967 truncation operation trunc. If the receiver is positive, answer the
largest integer less than or equal to the receiver. If it is negative, answer the smallest integer
greater than or equal to the receiver.

Return Values
<integer> unspecified

Errors
none

5.6.2.42 Message: truncateTo: factor

Synopsis
Answer the number nearest the receiver truncated towards zero which is a multiple of factor.

Definition: <number>
If the receiver is positive, answer the largest number less than or equal to the receiver which is a
multiple of factor. If it is negative, answer the smallest number greater than or equal to the
receiver which is a multiple of factor.
The type of the return value depends on the type of the receiver and factor, as indicated by the
Default Conversion Table.

Parameters
factor <number> uncaptured

Return Values
The Default Result Type

Errors
none

5.6.3 Protocol: <rational>

Conforms To
<number>

Description
Rational numbers may be either integers or fractions. An integer is logically a fraction whose
denominator is one. This protocol is necessary because some integer and most fraction operations
can produce results that may be either an integer or a fraction.

Messages
denominator
numerator

NCITS J20 DRAFT December, 1997 136
of ANSI Smalltalk Standard revision 1.9

5.6.3.1 Message: denominator

Synopsis
Answer the denominator of the receiver.

Definition: <rational>
Treating the receiver as a fraction, answer the lowest common denominator of the receiver.

Return Values
<integer> unspecified

Errors
none

5.6.3.2 Message: numerator

Synopsis
Answer the numerator of the receiver.

Definition: <rational>
Treating the receiver as a fraction reduced to its lowest common denominator, answer the integer
numerator.

Return Values
<integer> unspecified

Errors
none

5.6.4 Protocol: <Fraction>

Conforms To
<rational>

Description
An exact representation for rational numbers. It is unspecific whether the rational number are
maintain in a reduced form but messages that reveal the numerator and denominator answer
values as if the fraction was reduced.

Messages
denominator
numerator
printString

5.6.4.1 Message Refinement: denominator

Synopsis
Answer the denominator of the receiver.

NCITS J20 DRAFT December, 1997 137
of ANSI Smalltalk Standard revision 1.9

Definition: <rational>
Treating the receiver as a fraction, answer the lowest common denominator of the recevier.

Refinement: <Fraction>
Answer the integer smallest integer denominator of the receiver.

Return Values
<integer> unspecified

Errors
none

5.6.4.2 Message Refinement: numerator

Synopsis
Answer the numerator of the receiver.

Definition: <rational>
Treating the receiver as a fraction, answer the integer numerator.

Refinement: <Fraction>
Answer the integer numerator of the receiver reduced to its lowest denominator.

Return Values
<integer> unspecified

Errors
none

5.6.4.3 Message Refinement: printString

Definition: <Object>
A string consisting of a sequence of characters that describe the receiver are returned as the
result.
The exact sequence of characters that describe an object are implementation defined.

Refinement: <number>
Answer a string that is a valid literal representation equal to the receiver.

Refinement: <Fraction>
Answer a string consisting of the numerator and denominator for a reduced fraction, equivalent to
the receiver . The numerator and denominator are separated by the character '/' as follows:
numerator/denominator

Return Values
<readableString> unspecified

Errors
none

5.6.5 Protocol: <integer>

Conforms To
<rational>

NCITS J20 DRAFT December, 1997 138
of ANSI Smalltalk Standard revision 1.9

Description
Represents an abstraction for integer numbers whose value is exact. Representations must
provide unbounded precision and range, hence the ISO/IEC 10967 integer type parameter
bounded is bound to false.

Messages:
allMask:
anyMask:
asScaledDecimal:
bitAnd:
bitAt:
bitAt:put:
bitOr:
bitShift:
bitXor:
even
factorial
gcd:
highBit
lcm:
noMask:
odd
printStringRadix:
printOn:base:showRadix:

5.6.5.1 Message: allMask: mask

Synopsis
Answer true if all of the bits that are 1 in the binary representation of mask are 1 in the binary
representation of the receiver. Answer false otherwise.

Definition: <integer>
Answer true if all of the bits that are 1 in the binary representation of mask are 1 in the binary
representation of the receiver. Answer false otherwise. If the receiver has fewer bits than the
operand, the receiver is treated as if it were extended on the left with zeros to the length of the
operand.
The result is undefined if either the receiver or the operand is a negative integer.

Parameters
mask <integer> uncaptured

Return Values
<boolean> unspecified

Errors
none

5.6.5.2 Message: anyMask: mask

Synopsis
Answer true if any of the bits that are 1 in the binary representation of mask are 1 in the binary
representation of the receiver. Answer false otherwise.

Definition: <integer>
Answer true if any of the bits that are 1 in the binary representation of mask are 1 in the binary
representation of the receiver. Answer false otherwise. If the receiver has fewer bits than the
operand, the receiver is treated as if it were extended on the left with zeros to the length of the
operand.
Result is undefined if either the receiver or the operand is a negative integer.

NCITS J20 DRAFT December, 1997 139
of ANSI Smalltalk Standard revision 1.9

Parameters
mask <integer> uncaptured

Return Values
<boolean> unspecified

Errors
none

5.6.5.3 Message Refinement: asScaledDecimal: scale

Synopsis
Answer a scaled decimal number, with a fractional precision of scale, approximating the receiver.

Definition: <number>
This is a conversion message. Answer a scaled decimal number, with a fractional precision of
scale, which minimizes the difference between the answered value and the receiver.
The effect of underflow and overflow is implementation defined.

Refinement: <integer>
The number of significant digits of the answer is the same as the number of decimal digits in the
receiver. The scale of the answer is 0.
It is an error if the receiver cannot be represented within the maximum precision of the
<scaledDecimal> implementation.

Return Values
<scaledDecimal> unspecified

Errors
scaled decimal overflow

5.6.5.4 Message: bitAnd: operand

Synopsis
Answer the bit-wise logical and of the receiver and the operand.

Definition: <integer>
Answer the result of the bit-wise logical and of the binary representation of the receiver and the
binary representation of operand. The shorter of the receiver or the operand is extended on the
left with zeros to the length of the longer of the two.
The result is undefined if either the receiver or the operand is a negative integer.

Parameters
operand <integer> uncaptured

Return Values
<integer> unspecified

Errors
none

5.6.5.5 Message: bitAt: index

Synopsis
Answer the value of the bit at index in the binary representation of the receiver.

Definition: <integer>
Answer the value of the bit at index in the binary representation of the receiver. Answer an integer
value of 0 or 1, depending upon the value of the bit at position index in the binary representation

NCITS J20 DRAFT December, 1997 140
of ANSI Smalltalk Standard revision 1.9

of the receiver. The least significant bit of the receiver is designated as bit 1, with indices increasing
to the left.
The result is undefined if either the receiver is negative. It is erroneous if index is less that or
equal to zero.

Parameters
index <integer> uncaptured

Return Values
<integer> unspecified

Errors
index less than or equal to zero

5.6.5.6 Message: bitAt: index put: value

Synopsis
Set the value of the bit at index in the binary representation of the receiver.

Definition: <integer>
Return an integer whose binary representation is identical to the receiver with the exception that
the value of the bit at position index is equal to the low order bit of value.
The least significant bit of the receiver is designated as position 1, with indices increasing to the
left.
The result is undefined if either the receiver or value is a negative integer. It is erroneous if index
is less that or equal to zero.

Parameters
index <integer> uncaptured

Return Values
<integer> unspecified

Errors
index less than or equal to zero

5.6.5.7 Message: bitOr: operand

Synopsis
Answer the logical or of the receiver and operand.

Definition: <integer>
Answer the result of bit-wise logical or the binary representation of the receiver and the binary
representation of operand. The shorter of the receiver or the operand is extended on the left with
zeros to the length of the longer of the two.
The result is undefined if either the receiver or the operand is a negative integer.

Parameters
operand<integer> uncaptured

Return Values
<integer> unspecified

Errors
none

5.6.5.8 Message: bitShift: shift

Synopsis

NCITS J20 DRAFT December, 1997 141
of ANSI Smalltalk Standard revision 1.9

Answer the result of logically bit-wise shifting the binary representation of the receiver by shift
bits.

Definition: <integer>
If shift is positive, the receiver is shifted left and zeros (0) are shifted in on the right. If shift is
negative, the receiver is shifted right and low order bits are discarded.
The result is undefined if either the receiver is negative.

Parameters
shift <integer> uncaptured

Return Values
<integer> unspecified

Errors
none

5.6.5.9 Message: bitXor: operand

Synopsis
Answer bit-wise exclusive or of the receiver and the operand.

Definition: <integer>
Answer the result of the bit-wise exclusive or of the binary representation of the receiver and the
binary representation of operand. The shorter of the receiver or the operand is extended on the
left with zeros to the length of the longer of the two.
The result is undefined if either the receiver or the operand is a negative integer.

Parameters
operand <integer> uncaptured

Return Values
<integer> unspecified

Errors
none

5.6.5.10 Message: even

Synopsis
Answer true if the receiver is even.

Definition: <integer>
Answer true if the receiver is divisible by 2 with no remainder.

Return Values
<boolean> unspecified

Errors
none

5.6.5.11 Message: factorial

Synopsis
Answer the factorial of the receiver.

Definition: <integer>
Answer the product of all numbers between the receiver and 1 inclusive. The result is undefined if
the receiver is negative.

NCITS J20 DRAFT December, 1997 142
of ANSI Smalltalk Standard revision 1.9

Return Values
<integer> unspecified

Errors
none

5.6.5.12 Message: gcd: operand

Synopsis
Answer the greatest common divisor of the receiver and operand.

Definition: <integer>
Answer the largest non-negative integer that divides both the receiver and operand with no
remainder. Answer 0 if the receiver and operand are zero.

Parameters
operand <integer> uncaptured

Return Values
<integer> unspecified

Errors
none

5.6.5.13 Message: highBit

Synopsis
Answer the index of the most significant non-zero bit in the binary representation of the receiver.

Definition: <integer>
Answer the index of the most significant non-zero bit in the binary representation of the receiver.
Answer 0 if the receiver is 0. The index of the least significant bit of the receiver is 1, with indices
increasing to the left.
The result is undefined if the receiver is negative.

Return Values
<integer> unspecified

Errors
none

5.6.5.14 Message: lcm: operand

Synopsis
Answer the least common multiple of the receiver and operand.

Definition: <integer>
Answer the smallest non-negative integer which is evenly divided by both the receiver and
operand. Answer 0 if the receiver and operand are zero.

Parameters
operand <integer> uncaptured

Return Values
<integer> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 143
of ANSI Smalltalk Standard revision 1.9

5.6.5.15 Message: noMask: mask

Synopsis
Answer true if none of the bits that are 1 in the binary representation of mask are 1 in the binary
representation of the receiver. Answer false otherwise.

Definition: <integer>
Answer true if none of the bits that are 1 in the binary representation of mask are 1 in the binary
representation of the receiver. Answer false otherwise. If the receiver has fewer bits than the
operand, the receiver is treated as if it were extended on the left with zeros to the length of the
operand.
The result is undefined if either the receiver or the operand is a negative integer.

Parameters
mask <integer> uncaptured

Return Values
<boolean> unspecified

Errors
none

5.6.5.16 Message: odd

Synopsis
Answer true if the receiver is odd.

Definition: <integer>
Answer true if the receiver is divisible by two (2) with remainder one (1).

Return Values
<boolean> unspecified

Errors
none

5.6.5.17 Message: printStringRadix: base

Synopsis
Answer a string which represents the receiver in radix base.

Definition: <integer>
Return a string containing a sequence of characters that represents the numeric value of the
receiver in the radix specified by the argument. The sequence of characters must be
recognizable using the radixDigits production of the Smalltalk Lexical Grammar as if the numeric
value of the radixSpecifier was base. If the receiver is negative, a minus sign ('-') is prepended
to the sequence of characters. The result is undefined if base is less than two or greater than 36.

Parameters
base <integer> uncaptured

Return Values
<readableString> unspecified

Errors
none

5.6.5.18 Message: printOn: output base: base showRadix: flag

Synopsis

NCITS J20 DRAFT December, 1997 144
of ANSI Smalltalk Standard revision 1.9

Write a sequence of characters that describes the receiver in radix base with optional radix
specifier.

Definition: <integer>
Write to output a sequence of characters that describes the receiver, starting at output's current
position. If the parameter flag is true, produce a sequence of characters that are recognizable using
the radixInteger production of the Smalltalk Lexical Grammar. If the flag is false, then the
sequence of characters must be recognizable using the radixDigits production as if the numeric
value of the radixSpecifier was base. If the receiver is negative, a minus sign ('-') is prepended
to the sequence of characters. The result is undefined if base is less than two or greater than 36.

Parameters
output <puttableStream> uncaptured
base <integer> uncaptured
flag <boolean> uncaptured

Return Values
UNSPECIFIED

Errors
none

5.6.6 Protocol: <scaledDecimal>

Conforms To
<number>

Description
Provides a numeric representation of fixed point decimal numbers. The representation must be
able to accurately represent decimal fractions. The standard recommends that the implementation
of this protocol support unbounded precision, with no limit to the number of digits before and after
the decimal point. If a bounded implementation is provided, then any operation which exceeds the
bounds has an implementation-specified result.

Messages:
scale

5.6.6.1 Message: scale

Synopsis
Answer a integer which represents the total number of digits used to represent the fraction part of
the receiver, including trailing zeroes.

Definition: <scaledDecimal>
Answer a integer which represents the total number of digits used to represent the fraction part of
the receiver, including trailing zeroes.

Return Values
<integer> unspecified

NCITS J20 DRAFT December, 1997 145
of ANSI Smalltalk Standard revision 1.9

Errors
none

5.6.7 Protocol: <Float>

Conforms To
<number>

Description
Represents a floating point representation for real numbers, whose value may be approximate.
Provides protocol for performing trigonometry, exponentiation, and conversion on numerical
quantities.
Operations can produce results that are outside the set of representable numbers, or that are
mathematically undefined. It is implementation defined whether errors are raised when results are
not representable or if unrepresentable results are wrapped in implementation-defined continuation
values or their equivalent. The effect of underflow and overflow is therefore implementation
defined. It is erroneous if the result of an operation is mathematically undefined.

Messages:
=
arcCos
arcSin
arcTan
cos
degreesToRadians
exp
floorLog:
ln
log:
printString
radiansToDegrees
sin
tan

5.6.7.1 Message Refinement: = comparand

Synopsis
Object equivalence test.

Definition: <Object>
This message tests whether the receiver and the comparand are equivalent objects at the time the
message is processed. Return true if the receiver is equivalent to comparand. Otherwise return
false.

NCITS J20 DRAFT December, 1997 146
of ANSI Smalltalk Standard revision 1.9

The meaning of "equivalent" cannot be precisely defined but the intent is that two objects are
considered equivalent if they can be used interchangeably. Conforming protocols may choose to
more precisely define the meaning of "equivalent".
The value of

receiver = comparand

is true if and only if the value of
comparand = receiver

would also be true. If the value of
receiver = comparand

is true then the receiver and comparand must have equivalent hash values. Or more formally:

receiver = comparand
receiver hash = comparand hash

The equivalence of objects need not be temporally invariant. Two independent invocations of #=
with the same receiver and operand objects may not always yield the same results. Note that a
collection that uses #= to discriminate objects may only reliably store objects whose hash values
do not change while the objects are contained in the collection.

Refinement: <number>
Answer true if the operand is numerically equal to the receiver, as specified by the ISO/IEC 10967
equality operation eq. Answer false if they are not numerically equal or if operand is not a number.
To perform the operation both the receiver and operand must be objects with identical numeric
representations. If they have different representations a conversion to a common numeric
representation is performed, as specified by the Default Conversion Table, before applying the
operation. If the resulting protocol is <integer>, then the result value is defined by the ISO/IEC
10967 operation eqI. If the resulting protocol is <Float>, then the result value is defined by the
ISO/IEC 10967 eqF. Otherwise, the result is consistent with the mathematical definition of the
ISO/IEC 10967 operation eq.
Numeric equality is defined by implementation defined conventions regarding round-off error and
representation of numbers, hence behavior of this message may differ between platforms.

Refinement: <Float>
Answer true if the operand is a number which represents the same floating point number as the
receiver, as specified by the ISO/IEC 10967 operation eqf. If the comparand and the receiver do
not conform to the same protocol, they are converted according to the Default Conversion Table.

Parameters
comparand <Object> uncaptured

Return Values
<boolean> unspecified

Errors
none

5.6.7.2 Message: arcCos

Synopsis
Answer the inverse cosine of the receiver in radians.

Definition: <Float>

NCITS J20 DRAFT December, 1997 147
of ANSI Smalltalk Standard revision 1.9

Answer the inverse cosine of the receiver in radians, as specified by the ISO/IEC 10967
trigonometric operation arccosf. Within the limits of precision, the following invariant holds:

receiver arcCos cos = receiver

It is erroneous if the absolute value of the receiver is greater than 1.
Return Values

<Float> unspecified
Errors

|receiver| > 1

5.6.7.3 Message: arcSin

Synopsis
Answer the inverse sine of the receiver in radians.

Definition: <Float>
Answer the inverse sine of the receiver in radians, as specified by the ISO/IEC 10967 trigonometric
operation arcsinf. Within the limits of precision, the following invariant holds:

receiver arcSin sin = receiver

It is erroneous if the absolute value of the receiver is greater than 1.
Return Values

<Float> unspecified
Errors

|receiver| > 1

5.6.7.4 Message: arcTan

Synopsis
Answer the inverse tangent of the receiver in radians.

Definition: <Float>
Answer the inverse tangent of the receiver in radians, as specified by the ISO/IEC 10967
trigonometric operation arctanf. Within the limits of precision, the following invariant holds:

receiver arcTan tan = receiver

Return Values
<Float> unspecified

Errors
none

5.6.7.5 Message: cos

Synopsis
Answer the cosine of the receiver in radians.

Definition: <Float>
Answer a <Float> equal to the cosine of the receiver in radians, as specified by the ISO/IEC 10967
trigonometric operation cosf.
The effect of underflow is implementation defined.

Return Values
<Float> unspecified

NCITS J20 DRAFT December, 1997 148
of ANSI Smalltalk Standard revision 1.9

Errors
none

5.6.7.6 Message: degreesToRadians

Synopsis
Answer the receiver converted from degrees to radians.

Definition: <Float>
Answer a floating-point number representing the receiver converted from degrees to radians. The
result is equivalent to multiplying the receiver by (Pi / 180).

Return Values
<Float> unspecified

Errors
none

5.6.7.7 Message: exp

Synopsis
Answer the natural exponential of the receiver. This is the inverse of #ln.

Definition: <Float>
Answer a floating-point number representing the irrational number e (= 2.718281...) raised to the
power of the receiver, as specified by the ISO/IEC 10967 operation expf. This is the inverse of the
#ln message.
The effect of underflow and overflow is implementation defined.

Return Values
<Float> unspecified

Errors
none

5.6.7.8 Message: floorLog: operand

Synopsis
Answer the largest integer less than or equal to the logarithm to the base operand of the receiver.

Definition: <Float>
Answer the largest integer less than or equal to the power to which the operand must be raised to
obtain the receiver (that is, the logarithm base operand of the receiver).
The result is undefined if the receiver is less than or equal to zero, or if the operand is less than or
equal to 1.

Parameters
operand <number> uncaptured

Return Values
<integer> unspecified

Errors
none

5.6.7.9 Message: ln

Synopsis
Answer the natural logarithm of the receiver.

NCITS J20 DRAFT December, 1997 149
of ANSI Smalltalk Standard revision 1.9

Definition: <Float>
Answer the natural logarithm of the receiver, as specified by the ISO/IEC 10967 operation lnf.,
which is a floating-point number representing the power to which the irrational number e (=
2.718281...) must be raised to obtain the receiver. This is the inverse of the #exp message.
The result is undefined if the receiver is less than or equal to zero.

Return Values
<Float> unspecified

Errors
none

5.6.7.10 Message: log: operand

Synopsis
Answer the logarithm to the base operand of the receiver.

Definition: <Float>
Answer the logarithm to the base operand of the receiver, as specified by the ISO/IEC 10967
operation logff, which is a floating-point number representing the power to which operand must be
raised to obtain the receiver. The receiver must be positive, and operand must be greater than
one. This is the inverse of the #raisedTo: message.
The result is undefined if operand equals 1, if operand is less than or equal to zero, or if the
receiver is less than or equal to zero. The effect of underflow and overflow is implementation
defined.

Parameters
operand <number> uncaptured

Return Values
<Float> unspecified

Errors
none

5.6.7.11 Message Refinement: printString

Synopsis
Return a string that describes the receiver.

Definition: <Object>
A string consisting of a sequence of characters that describe the receiver are returned as the
result.
The exact sequence of characters that describe an object are implementation defined.

Refinement: <number>
Answer a string that is a valid literal representation that approximates the numeric value of the
receiver.

Refinement: <Float>
Answer a string which is a valid Smalltalk literal representation approximately equal to the receiver.
An exponent literal form is produced if the value of the exponent is greater than the precision of the
receiver.

Return Values
<readableString> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 150
of ANSI Smalltalk Standard revision 1.9

5.6.7.12 Message: radiansToDegrees

Synopsis
Answer the receiver converted from radians to degrees.

Definition: <Float>
Answer a floating-point number representing the receiver converted from radians to degrees. The
result is equivalent to multiplying the receiver by (180 / Pi).

Return Values
<Float> unspecified

Errors
none

5.6.7.13 Message: sin

Synopsis
Answer the sine of the receiver.

Definition: <Float>
Answer a floating-point number equal to the sine of the receiver in radians, as specified by the
ISO/IEC 10967 trigonometric operation sinF.
The effect of underflow is implementation defined.

Return Values
<Float> unspecified

Errors
none

5.6.7.14 Message: tan

Synopsis
Answer the tangent of the receiver.

Definition: <Float>
Answer a floating-point number equal to the tangent of the receiver in radians, as specified by the
ISO/IEC 10967 trigonometric root operation tanf.
The effect of underflow and overflow is implementation defined.

Return Values
<Float> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 151
of ANSI Smalltalk Standard revision 1.9

5.6.8 Protocol: <floatCharacterization>

Conforms To
<Object>

Description
Objects supporting this protocol characterize a floating point representation for real numbers.
These characterizations are required by ISO/IEC 10967 for each precision of floating point
numbers provided by an implementation.

Standard Globals
Float Conforms to the protocol <floatCharacterization>. Its language element

type is implementation defined. The value of this global is equivalent to
the value of one of the globals: FloatE, FloatE, or FloatE.

FloatE Conforms to the protocol <floatCharacterization>. Its language element
type is implementation defined. This global characterizes the floating
point representation corresponding to the 'e' floating point literal syntax.

FloatD Conforms to the protocol <floatCharacterization>. Its language element
type is implementation defined. This global characterizes the floating
point representation corresponding to the 'd' floating point literal syntax.

FloatQ Conforms to the protocol <floatCharacterization>. Its language element
type is implementation defined. This global characterizes the floating
point representation corresponding to the 'q' floating point literal syntax.

Messages
denormalized
e
emax
emin
epsilon
fmax
fmin
fminDenormalized
fminNormalized
pi
precision
radix

5.6.8.1 Message: denormalized

Synopsis
Indication of whether the characterized floating point object representation allows denormalized
values.

Definition: <floatCharacterization>
Report a boolean indicating whether the characterized floating point object representation contains
denormalized values. This satisfies the ISO/IEC 10967 floating point characterization requirement
denorm.

Return Values
<boolean> unspecified

Errors
none

5.6.8.2 Message: e

Synopsis
The closest floating point approximation of the irrational number e.

NCITS J20 DRAFT December, 1997 152
of ANSI Smalltalk Standard revision 1.9

Definition: <floatCharacterization>
Return the closest floating point approximation of the irrational number e for the characterized
floating point object representation.

Return Values
<Float> unspecified

Errors
none

5.6.8.3 Message: emax

Synopsis
The largest exponent of the characterized floating point object representation.

Definition: <floatCharacterization>
Report the largest exponent allowed by the characterized floating point object representation,
providing the upper bound of the range of representable floating point numbers. This satisfies the
ISO/IEC 10967 floating point characterization requirement emax.

Return Values
<integer> unspecified

Errors
none

5.6.8.4 Message: emin

Synopsis
The smallest exponent of the characterized floating point object representation.

Definition: <floatCharacterization>
Report the smallest exponent allowed by the characterized floating point object representation,
providing the lower bound of the range of representable floating point numbers. This satisfies the
ISO/IEC 10967 floating point characterization requirement emin.

Return Values
<integer> unspecified

Errors
none

5.6.8.5 Message: epsilon

Synopsis
The maximum relative spacing in the characterized floating point object representation.

Definition: <floatCharacterization>
Report the maximum relative spacing in the characterized floating point object representation,
satisfying the ISO/IEC 10967 floating point characterization requirement epsilon. The return value
is equal to

self radix raisedTo: (1 - self precision)

Return Values
<Float> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 153
of ANSI Smalltalk Standard revision 1.9

5.6.8.6 Message: fmax

Synopsis
The largest value allowed by the characterized floating point object representation.

Definition: <floatCharacterization>
Report the largest value allowed by the characterized floating point object representation. This
satisfies the ISO/IEC 10967 floating point characterization requirement fmax, and is equal to

(1 - (self radix raisedTo: self precision negated)) * self radix
raisedTo: self emax

Return Values
<Float> unspecified

Errors
none

5.6.8.7 Message: fmin

Synopsis
The minimum value allowed by the characterized floating point object representation.

Definition: <floatCharacterization>
Report the minimum value allowed by the characterized floating point object representation. This
satisfies the ISO/IEC 10967 floating point characterization requirement fmin. If the described
representation contains normalized values, then the result is equal to the result of sending
#fminNormalized to the receiver, otherwise the result is equal to the result of sending
#fminDenormalized to the receiver.

Return Values
<Float> unspecified

Errors
none

5.6.8.8 Message: fminDenormalized

Synopsis
The minimum denormalized value allowed by the characterized floating point object representation.

Definition: <floatCharacterization>
Report the minimum denormalized value allowed by the characterized floating point object
representation. This satisfies the ISO/IEC 10967 floating point characterization requirement fminD,
and is equal to

self radix raisedTo: (self emin - self precision)

The result is unspecified if denormalized values are not allowed by the characterized
representation.

Return Values
<Float> unspecified

Errors
none

5.6.8.9 Message: fminNormalized

Synopsis

NCITS J20 DRAFT December, 1997 154
of ANSI Smalltalk Standard revision 1.9

The minimum normalized value allowed by the characterized floating point object representation.
Definition: <floatCharacterization>

Report the minimum normalized value allowed by the characterized floating point object
representation. This satisfies the ISO/IEC 10967 floating point characterization requirement fminN,
and is equal to

self radix raisedTo: (self emin - 1).

Return Values
<Float> unspecified

Errors
none

5.6.8.10 Message: pi

Synopsis
The closest floating point approximation to Pi.

Definition: <floatCharacterization>
Return the closest floating point approximation to Pi for the characterized floating point object
representation.

Return Values
<Float> unspecified

Errors
none

5.6.8.11 Message: precision

Synopsis
The precision of the characterized floating point object representation.

Definition: <floatCharacterization>
Report the precision, the number of radix digits, of floating point objects of the characterized
floating point object representation. This satisfies the ISO/IEC 10967 floating point characterization
requirement p. The result must be greater than or equal to two.

Return Values
<integer> unspecified

Errors
none

5.6.8.12 Message: radix

Synopsis
The radix of the characterized floating point object representation.

Definition: <floatCharacterization>
Report the base, or radix, of the characterized floating point object representation. This satisfies the
ISO/IEC 10967 floating point characterization requirement r. The result must be an even number
greater than or equal to two.

Return Values
<integer> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 155
of ANSI Smalltalk Standard revision 1.9

5.6.9 Protocol: <Fraction factory>

Conforms To
<Object>

Description
Represents protocol for creating an exact representation for rational numbers.

Standard Globals
Fraction Conforms to the protocol <Fraction factory>. Its language element type is

implementation defined.
Messages

numerator:denominator:

5.6.9.1 Message: numerator: top denominator: bottom

Synopsis
Answer a new fraction whose numerator is top, and whose denominator is bottom.

Definition: <Fraction factory>
Answer a new fraction whose numerator is top, and whose denominator is bottom. It is
unspecified whether the result is reduced to the smallest possible denominator. If (top = bottom)
or (|bottom = 1) the result conforms to <integer> otherwise it conforms to <Fraction>. If bottom =
0 a ZeroDivide exception is signaled.

Parameters
top <integer> unspecified
bottom <integer> unspecified

Return Values
<Fraction> unspecified
<integer> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 156
of ANSI Smalltalk Standard revision 1.9

5.7 Collection Protocols

This section includes protocols that define the behavior of the standard collection classes.

The graphs below shows the conformance relationships between the protocols defined in this
section (except for <magnitude>, which is contained in the section on numeric protocols).

<sequencedContractibleCollection><sequencedReadableCollection><extensibleCollection><abstractDictionary>

<Dictionary><IdentityDictionary> <Bag> <Set> <sequencedCollection> <Interval> <readableString>

<symbol><string><Array> <ByteArray><OrderedCollection><SortedCollection>

<magnitude><collection>

<initializableCollection factory>
< Dictionary factory > <IdentityDictionary factory>

<Bag factory>
<Set factory>

<Interval factory>

<string factory><Array factory>
<ByteArray factory> <OrderedCollection factory><SortedCollection factory>

<collection factory>

NCITS J20 DRAFT December, 1997 157
of ANSI Smalltalk Standard revision 1.9

5.7.1 Protocol: <collection>

Conforms To
<Object>

Description
Provides protocol for manipulating and operating on a collection of objects, called elements, either
individually or as a whole. A collection can be fixed or variable sized, ordered or unordered, and its
elements may or may not be accessible by external keys.
Some implementations of collections may choose to use the hash values, as defined by either the
message #hash or the message #identityHash, of either the elements of the collection or the
keys by which those elements are accessed (if there are any). If the hash values of such objects
are modified, the behavior of any message sent to such a collection is undefined until the message
#rehash has been sent to the collection in order to restore the consistency of the collection.

Rationale
#rehash message was moved to Collection to avoid any pre-existing implementation assumptions about its use in the
implementation of collection. Any collection concievable might use hashing and hence could need to be rehashed.

Messages
allSatisfy:
anySatisfy:
asArray
asBag
asByteArray
asOrderedCollection
asSet
asSortedCollection
asSortedCollection:
collect:
detect:
detect:ifNone:
do:
do:separatedBy:
includes:
inject:into:
isEmpty
notEmpty
occurrencesOf:
rehash
reject:
select:
size

5.7.1.1 Message: allSatisfy: discriminator

Synopsis
Return true if the discriminator evaluates to true for every element of the receiver. Otherwise
return false.

Definition: <collection>
Return true if the discriminator evaluates to true for every element of the receiver. Return true
if the receiver is empty. Otherwise return false.
It is unspecified whether the discriminator will be evaluated with every element of the receiver.

NCITS J20 DRAFT December, 1997 158
of ANSI Smalltalk Standard revision 1.9

Parameters
discriminator<monadicValuable> uncaptured

Return Values
<boolean> unspecified

Errors
If the elements of the receiver are inappropriate for use as arguments to discriminator.
If discriminator evaluates to an object that does not conform to the protocol <boolean> for
each element of the receiver.

5.7.1.2 Message: anySatisfy: discriminator

Synopsis
Return true if the discriminator evaluates to true for any element of the receiver. Otherwise
return false.

Definition: <collection>
Return true if the discriminator evaluates to true for any element of the receiver. Otherwise
return false. Return false if the receiver is empty.
It is unspecified whether the discriminator will be evaluated with every element of the receiver.

Parameters
discriminator<monadicValuable> uncaptured

Return Values
<boolean> unspecified

Errors
If the elements of the receiver are inappropriate for use as arguments to discriminator.
If discriminator evaluates to an object that does not conform to the protocol <boolean> for any
element of the receiver.

5.7.1.3 Message: asArray

Synopsis
Answer an array whose elements are the elements of the receiver.

Definition: <collection>
Answer an array with the same elements as the receiver. The result has the same size as the
receiver, as defined by the #size message.
If the receiver maintains an ordering for its elements, the order of those elements will be preserved
in the result.

Return Values
<Array> unspecified

Errors
none

5.7.1.4 Message: asBag

Synopsis
Answer a bag with the same elements as the receiver.

Definition: <collection>
Answer a bag with the same elements as the receiver.
The result is unspecified if the receiver contains nil.

NCITS J20 DRAFT December, 1997 159
of ANSI Smalltalk Standard revision 1.9

Return Values
<Bag> unspecified

Errors
none

5.7.1.5 Message: asByteArray

Synopsis
Answer a byte array whose elements are the elements of the receiver.

Definition: <collection>
Answer a byte array with the same elements as the receiver. The result has the same size as the
receiver, as defined by the #size message.
If the receiver maintains an ordering for its elements, the order of those elements will be preserved
in the result.

Return Values
<ByteArray> unspecified

Errors
If any elements in the receiver are not integers with values between 0 and 255.

5.7.1.6 Message: asOrderedCollection

Synopsis
Answer an ordered collection whose elements are the elements of the receiver.

Definition: <collection>
Answer a ordered collection with the same elements as the receiver. The result has the same size
as the receiver, as defined by the #size message.
If the receiver maintains an ordering for its elements, the order of those elements will be preserved
in the result.

Return Values
<OrderedCollection> unspecified

Errors
none

5.7.1.7 Message: asSet

Synopsis
Answer a set with the same elements as the receiver.

Definition: <collection>
Answer a set with the same elements as the receiver. Since sets do not store duplicate elements,
the result may have fewer elements than the receiver.
The result is undefined if the receiver contains nil.

Return Values
<Set> unspecified

Errors
none

5.7.1.8 Message: asSortedCollection

Synopsis

NCITS J20 DRAFT December, 1997 160
of ANSI Smalltalk Standard revision 1.9

Answer a sorted collection with the same elements as the receiver.
Definition: <collection>

Answer a sorted collection with the same elements as the receiver. The default sort block is used.
Return Values

<SortedCollection> unspecified
Errors

If any element of the receiver is not appropriate as a parameter to the default sort block.

5.7.1.9 Message: asSortedCollection: sortBlock

Synopsis
Answer a sorted collection with the same elements as the receiver. The parameter sortBlock is
used as the sort block.

Definition: <collection>
Answer a sorted collection with the same elements as the receiver. The parameter sortBlock is
used as the sort block and must meet the requirements of a sort block as specified by
<SortedCollection>.

Parameters
sortBlock <dyadicValuable> captured

Return Values
<SortedCollection> unspecified

Errors
If sortBlock does not meet the requirements for a sort block as specified by <SortedCollection>.
If any element of the receiver is not appropriate as a parameter to the sortBlock.

5.7.1.10 Message: collect: transformer

Synopsis
Answer a new collection constructed by gathering the results of evaluating transformer with
each element of the receiver.

Definition: <collection>
For each element of the receiver, transformer is evaluated with the element as the parameter.
The results of these evaluations are collected into a new collection.
The elements are traversed in the same order as they would be if the message #do: had been
sent to the receiver.
Unless specifically refined, this message is defined to answer an object conforming to the same
protocol as the receiver.

Parameters
transformer <monadicValuable> uncaptured

Return Values
<RECEIVER> new

Errors
If any element of the receiver is inappropriate for use as arguments to transformer.
If the result of evaluating the transformer does not conform to any element type restrictions of
the collection to be returned.

NCITS J20 DRAFT December, 1997 161
of ANSI Smalltalk Standard revision 1.9

5.7.1.11 Message: detect: discriminator

Synopsis
Return the first element of the receiver which causes discriminator to evaluate to true when
the element is used as the argument.

Definition: <collection>
Return the first element of the receiver for which the discriminator evaluates to true when
given that element as an argument. The discriminator will only be evaluated until such an
object is found or until all of the elements of the collection have been used as arguments. That is,
there may be elements of the receiver that are never used as arguments to the discriminator.
The elements are traversed in the same order as they would be if the message #do: had been
sent to the receiver.
The result is undefined if discriminator does not evaluate to true for any element.

Parameters
discriminator<monadicValuable> uncaptured

Return Values
<Object> state

Errors
If the elements of the receiver are inappropriate for use as arguments to discriminator.
If discriminator evaluates to an object that does not conform to the protocol <boolean> for any
element of the receiver.

5.7.1.12 Message: detect: discriminator ifNone: exceptionHandler

Synopsis
Return the first element of the receiver which causes discriminator to evaluate to true when
used as the argument to the evaluation. Answer the result of evaluating exceptionHandler if no
such element is found.

Definition: <collection>
Return the first element of the receiver for which the discriminator evaluates to true when
given that element as an argument. The discriminator will only be evaluated until such an
object is found or until all of the elements of the collection have been used as arguments. That is,
there may be elements of the receiver that are never used as arguments to the discriminator.
The elements are traversed in the same order as they would be if the message #do: had been
sent to the receiver.
If no element causes discriminator to evaluate to true, answer the result of
exceptionHandler value.

Parameters
discriminator <monadicValuable> uncaptured
exceptionHandler <niladicValuable> uncaptured

Return Values
<Object> state
<Object> unspecified

Errors
If the elements of the receiver are inappropriate for use as arguments to discriminator.
If discriminator evaluates to an object that does not conform to the protocol <boolean> for any
element of the receiver.

NCITS J20 DRAFT December, 1997 162
of ANSI Smalltalk Standard revision 1.9

5.7.1.13 Message: do: operation

Synopsis
Evaluate operation with each element of the receiver.

Definition: <collection>
For each element of the receiver, operation is evaluated with the element as the parameter.
Unless specifically refined, the elements are not traversed in a particular order. Each element is
visited exactly once. Conformant protocols may refine this message to specify a particular ordering.

Parameters
operation <monadicValuable> uncaptured

Return Values
UNSPECIFIED

Errors
If the elements of the receiver are inappropriate for use as arguments to operation.

5.7.1.14 Message: do: operation separatedBy: separator

Synopsis
Evaluate operation with each element of the receiver interspersed by evaluation of separator.

Definition: <collection>
For each element of the receiver, operation is evaluated with the element as the parameter.
Before evaluating operation the second and subsequent times evaluate separator.
Separator is not evaluated if there are less than two elements nor after the last element.

Parameters
operation <monadicValuable> uncaptured
separator <niladicValuable> uncaptured

Return Values
UNSPECIFIED

Errors
None

5.7.1.15 Message: includes: target

Synopsis
Answer true if an element of the receiver is equivalent to target. Answer false otherwise.

Definition: <collection>
This message is used to test an object for inclusion among the receiver's elements. Answer true if
at least one of the receiver's elements is equivalent to target. Answer false otherwise.

Parameters
target <Object> uncaptured

Return Values
<boolean> unspecified

Errors
none

5.7.1.16 Message: inject: initialValue into: operation

Synopsis

NCITS J20 DRAFT December, 1997 163
of ANSI Smalltalk Standard revision 1.9

Answer the final result of evaluating operation using each element of the receiver and the
previous evaluation result as the parameters.

Definition: <collection>
The first evaluation of operation is performed with initialValue as the first parameter, and
the first element of the receiver as the second parameter. Subsequent evaluations are done with
the result of the previous evaluation as the first parameter, and the next element as the second
parameter. The result of the last evaluation is answered.
The elements are traversed in the same order as they would be if the message #do: had been
sent to the receiver.

Parameters
initialValue <Object> uncaptured
operation <dyadicValuable> uncaptured

Return Values
<Object> unspecified

Errors
none

5.7.1.17 Message: isEmpty

Synopsis
Return true if the receiver contains no elements. Return false otherwise.

Definition: <collection>
Return true if and only if

receiver size = 0

is true. Otherwise return false.
Return Values

<boolean> unspecified
Errors

none

5.7.1.18 Message: notEmpty

Synopsis
Return true if the receiver contains elements. Return false otherwise.

Definition: <collection>
Return true if the receiver contains elements. Return false otherwise. This is equivalent to

receiver isEmpty not

Return Values
<boolean> unspecified

Errors
none

5.7.1.19 Message: occurrencesOf: target

Synopsis
Answer the number of elements of the receiver which are equivalent to target.

NCITS J20 DRAFT December, 1997 164
of ANSI Smalltalk Standard revision 1.9

Definition: <collection>
Answer the number of elements of the receiver which are equivalent to target.

Parameters
target <Object> uncaptured

Return Values
<integer> unspecified

Errors
none

5.7.1.20 Message: rehash

Synopsis
Re-establish hash invariants, if any.

Definition: <collection>
Re-establish any hash invariants of the receiver.

Return Values
UNSPECIFIED

Errors
none

5.7.1.21 Message: reject: discriminator

Synopsis
Answer a new collection which includes only the elements in the receiver which cause
discriminator to evaluate to false.

Definition: <collection>
For each element of the receiver, discriminator is evaluated with the element as the
parameter. Each element which causes discriminator to evaluate to false is included in the
new collection.
The elements are traversed in the same order as they would be if the message #do: had been
sent to the receiver.
Unless specifically refined, this message is defined to answer an object conforming to the same
protocol as the receiver. If both the receiver and the result maintain an ordering of their elements,
the elements of the result will be in the same relative order as the elements of the receiver.

Parameters
discriminator<monadicValuable> uncaptured

Return Values
<RECEIVER> new

Errors
If the elements of the receiver are inappropriate for use as arguments to discriminator.
If discriminator evaluates to an object that does not conform to the protocol <boolean> for any
element of the receiver.

5.7.1.22 Message: select: discriminator

Synopsis
Answer a new collection which contains only the elements in the receiver which cause
discriminator to evaluate to true.

NCITS J20 DRAFT December, 1997 165
of ANSI Smalltalk Standard revision 1.9

Definition: <collection>
For each element of the receiver, discriminator is evaluated with the element as the
parameter. Each element which causes discriminator to evaluate to true is included in the new
collection.
The elements are traversed in the same order as they would be if the message #do: had been
sent to the receiver.
Unless specifically refined, this message is defined to answer an object conforming to the same
protocol as the receiver. If both the receiver and the result maintain an ordering of their elements,
the elements of the result will be in the same relative order as the elements of the receiver.

Parameters
discriminator<monadicValuable> uncaptured

Return Values
<RECEIVER> new

Errors
If the elements of the receiver are inappropriate for use as arguments to discriminator.
If discriminator evaluates to an object that does not conform to the protocol <boolean> for any
element of the receiver.

5.7.1.23 Message: size

Synopsis
Answer the number of elements in the receiver.

Definition: <collection>
Answer the number of elements in the receiver.

Return Values
<integer> unspecified

Errors
none

5.7.2 Protocol: <abstractDictionary>

Conforms To
<collection>

Description
Provides protocol for accessing, adding, removing, and iterating over the elements of an unordered
collection whose elements are accessed using an explicitly assigned external key.

Glossary Entries

NCITS J20 DRAFT December, 1997 166
of ANSI Smalltalk Standard revision 1.9

Messages
addAll:
at:
at:ifAbsent:
at:ifAbsentPut:
at:put:
collect:
includesKey:
keyAtValue:
keyAtValue:ifAbsent:
keys
keysAndValuesDo:
keysDo:
reject:
removeAllKeys:
removeAllKeys:ifAbsent:
removeKey:
removeKey:ifAbsent:
select:
values

5.7.2.1 Message: addAll: dictionary

Synopsis
Store the elements of dictionary in the receiver at the corresponding keys from dictionary.

Definition: <abstractDictionary>
This message is equivalent to repeatedly sending the #at:put: message to the receiver with
each of the keys and elements in dictionary in turn. If a key in dictionary is key equivalent to
a key in the receiver, the associated element in dictionary replaces the element in the receiver.

Parameters
dictionary <abstractDictionary> unspecified

Return Values
UNSPECIFIED

Errors
none

5.7.2.2 Message: at: key

Synopsis
Answer the element at key in the receiver.

Definition: <abstractDictionary>
This message defines element lookup based on a key. Answer the element stored at key.
Lookup is successful if an element has been previously stored in the receiver at a key that is key
equivalent to key. This element is answered. Specifically, the following expression must return true
for all appropriate bindings of dictionary, key, and value:

dictionary at: key put: value.
^(dictionary at: key) == value

The result is undefined if the receiver does not contain an element keyed by key or if the key is nil.
Parameters

key <Object> uncaptured
Return Values

NCITS J20 DRAFT December, 1997 167
of ANSI Smalltalk Standard revision 1.9

<Object> state
Errors

none

5.7.2.3 Message: at: key ifAbsent: operation

Synopsis
Answer the element at key in the receiver. If key lookup for key fails, then answer the result of
evaluating operation.

Definition: <abstractDictionary>
Answer the element stored at the specified key if key lookup is successful. If the key lookup fails,
answer the result of evaluating operation with no parameters.
The result is undefined if the key is nil.

Parameters
key <Object> uncaptured
operation <niladicValuable> uncaptured

Return Values
<Object> state
<ANY> unspecified

Errors
none

5.7.2.4 Message: at: key ifAbsentPut: operation

Synopsis
Answer the element at key in the receiver. If key lookup for key fails, then store and return the
result of evaluating operation.

Definition: <abstractDictionary>
This message is the same as the #at: message if key lookup is successful. If the key lookup fails,
the result of evaluating operation with no parameters is added at key and answered.
The result is undefined if the key is nil.

Parameters
key <Object> unspecified
operation <niladicValuable> uncaptured

Return Values
<Object> state

Errors
none

5.7.2.5 Message: at: key put: newElement

Synopsis
Store newElement at key in the receiver. Answer newElement.

Definition: <abstractDictionary>
If lookup succeeds for key, then newElement replaces the element previously stored at key.
Otherwise, the newElement is stored at the new key. In either case, subsequent successful
lookups for key will answer newElement. Answer newElement.

NCITS J20 DRAFT December, 1997 168
of ANSI Smalltalk Standard revision 1.9

The result is undefined if the key is nil.
Parameters

key <Object> unspecified
newElement <Object> captured

Return Values
<Object> state

Errors
none

5.7.2.6 Message Refinement: collect: transformer

Synopsis
Answer a new collection constructed by gathering the results of evaluating transformer with
each element of the receiver.

Definition: <collection>
For each element of the receiver, transformer is evaluated with the element as the parameter.
The results of these evaluations are collected into a new collection.
The elements are traversed in the order specified by the #do: message for the receiver.
Unless specifically refined, this message is defined to answer an object conforming to the same
protocol as the receiver.

Refinement: <abstractDictionary>
Answer a new instance of the receiver's type with the same keys. For each key of the answer, a
new element is obtained by evaluating transformer with the corresponding element of the
receiver as the parameter.

Parameters
transformer <monadicValuable> uncaptured

Return Values
<RECEIVER> new

Errors
If the elements of the receiver are inappropriate for use as arguments to transformer.
If the result of evaluating the transformer does not conform to any element type restrictions of
the collection to be returned.

5.7.2.7 Message: includesKey: key

Synopsis
Answer true if the receiver contains an element stored at key. Answer false otherwise.

Definition: <abstractDictionary>
Answer true if the key lookup for the key succeeds. Answer false otherwise.
The result is undefined if the key is nil.

Parameters
key <Object> uncaptured

Return Values
<boolean> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 169
of ANSI Smalltalk Standard revision 1.9

5.7.2.8 Message: keyAtValue: value

Synopsis
Answer a key such that the element stored at this key is equal to value. Answer nil if no such key
is found.

Definition: <abstractDictionary>
Answer an object such that key lookup with this object will answer an element in the receiver
equivalent to value. Note that if there are multiple elements in the receiver that are equivalent to
value, then the one whose key is answered is arbitrary.
The result is undefined if the receiver does not contain an element equivalent to value.

Parameters
value <Object> uncaptured

Return Values
<Object> state

Errors
none

5.7.2.9 Message: keyAtValue: value ifAbsent: operation

Synopsis
Answer a key such that the element stored at this key is equivalent to value. Answer the result of
evaluating operation if no such key is found.

Definition: <abstractDictionary>
Answer an object such that key lookup with this object will answer an element in the receiver
equivalent to value. If no element equivalent to value is found, then the result of evaluating
operation with no parameters is answered.

Parameters
value <Object> uncaptured
operation <niladicValuable> uncaptured

Return Values
<Object> state
<ANY> unspecified

Errors
none

5.7.2.10 Message: keys

Synopsis
Answer a collection of keys at which there is an element stored in the receiver.

Definition: <abstractDictionary>
Answer a collection of all the keys in the receiver. The size of the result is equal to the size of the
receiver.

Return Values
<collection> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 170
of ANSI Smalltalk Standard revision 1.9

5.7.2.11 Message: keysAndValuesDo: operation

Synopsis
Iteratively evaluate operation with each of the receiver's keys and values.

Definition: <abstractDictionary>
For each element in the receiver, operation is evaluated with the corresponding key as the first
argument and the element as the second argument.
The order in which the elements are traversed is not specified. Each key is visited exactly once.

Parameters
operation <dyadicValuable> uncaptured

Return Values
UNSPECIFIED

Errors
If any of the keys or values are not appropriate as an argument to operation.

5.7.2.12 Message Refinement: keysDo: operation

Synopsis
Iteratively evaluate operation with each of the receiver's keys at which there are elements
stored.

Definition: <abstractDictionary>
For each key in the receiver, operation is evaluated with the key used as the parameter.
The order in which the elements are traversed is not specified. Each key is visited exactly once.

Parameters
operation <monadicValuable> uncaptured

Return Values
UNSPECIFIED

Errors
If any of the keys are not appropriate as an argument to operation.

5.7.2.13 Message Refinement: reject: discriminator

Synopsis
Answer a new collection which excludes the elements in the receiver which cause
discriminator to evaluate to true.

Definition: <collection>
For each element of the receiver, discriminator is evaluated with the element as the
parameter. Each element which causes discriminator to evaluate to false is added to the new
collection.
The elements are traversed in the order specified by the #do: message for the receiver.
Unless specifically refined, this message is defined to answer an object conforming to the same
protocol as the receiver.

Refinement: <abstractDictionary>
For each key of the receiver, discriminator is evaluated with the corresponding element as the
parameter. If the element causes discriminator to evaluate to false, the key is added to the
answer with the element as its corresponding value.

Parameters

NCITS J20 DRAFT December, 1997 171
of ANSI Smalltalk Standard revision 1.9

discriminator <monadicValuable> uncaptured
Return Values

<RECEIVER> new
Errors

If the elements of the receiver are inappropriate for use as arguments to discriminator.
If discriminator evaluates to an object that does not conform to the protocol <boolean> for any
element of the receiver.

5.7.2.14 Message: removeAllKeys: keys

Synopsis
Remove any elements from the receiver which are stored at the keys specified in keys.

Definition: <abstractDictionary>
This message has the same effect on the receiver as repeatedly sending the #removeKey:
message for each element in keys.
The result is undefined if duplicate keys, as defined by key equivalence, are in the keys or if any
element in keys is not a valid key of the receiver.

Parameters
keys <collection> uncaptured

Return Values
UNSPECIFIED

Errors
none

5.7.2.15 Message: removeAllKeys: keys ifAbsent: operation

Synopsis
Remove any elements from the receiver which are stored at the keys specified in keys. For any
element in keys which is not a valid key of the receiver, evaluate operation with that element as
the argument, but do not stop the enumeration.

Definition: <abstractDictionary>
This message has the same effect on the receiver as repeatedly sending the
#removeKey:ifAbsent: message for each element in keys. If any element in keys is not a
valid key of the receiver, evaluate operation with that element as the parameter and continue the
enumeration.

Parameters
keys <collection> uncaptured
operation <monadicValuable> uncaptured

Return Values
UNSPECIFIED

Errors
If any element of keys is not a valid key of the receiver and inappropriate for use as an argument
to the operation.

5.7.2.16 Message: removeKey: key

Synopsis
Remove the element which is stored at key in the receiver. Answer the removed element.

NCITS J20 DRAFT December, 1997 172
of ANSI Smalltalk Standard revision 1.9

Definition: <abstractDictionary>
This message defines removal of a key from the receiver. If key lookup for key is successful, then
both key and its corresponding element are removed. Answer the removed element.
The result is undefined if the receiver does not contain an element keyed by key.
The result is undefined if the key is nil.

Parameters
key <Object> uncaptured

Return Values
<Object> state

Errors
none

5.7.2.17 Message: removeKey: key ifAbsent: operation

Synopsis
Remove the element which is stored at key in the receiver and answer the removed element.
Answer the result of evaluating operation if no such key is found in the receiver.

Definition: <abstractDictionary>
If key lookup for key is successful, then both key and its corresponding element are removed.
Answer the removed element.
If the key lookup fails, the result of evaluating operation with no parameters is answered.
The result is undefined if the key is nil.

Parameters
key <Object> uncaptured
operation <niladicValuable> uncaptured

Return Values
<Object> state
<ANY> unspecified

Errors
none

5.7.2.18 Message Refinement: select: discriminator

Synopsis
Answer a new collection which contains the elements in the receiver which cause
discriminator to evaluate to true.

Definition: <collection>
For each element of the receiver, discriminator is evaluated with the element as the
parameter. Each element which causes discriminator to evaluate to true is added to the new
collection.
The elements are traversed in the order specified by the #do: message for the receiver.
Unless specifically refined, this message is defined to answer an object conforming to the same
protocol as the receiver.

Refinement: <abstractDictionary>
For each key of the receiver, discriminator is evaluated with the element as the parameter. If
element causes discriminator to evaluate to true, the key is added to the answer with value
element.

NCITS J20 DRAFT December, 1997 173
of ANSI Smalltalk Standard revision 1.9

If discriminator evaluates to an object that does not conform to the protocol <boolean> for any
element of the receiver.

Parameters
discriminator <monadicValuable> uncaptured

Return Values
<RECEIVER> new

Errors
If the elements of the receiver are inappropriate for use as arguments to discriminator.

5.7.2.19 Message: values

Synopsis
Answer a collection of the receiver's elements.

Definition: <abstractDictionary>
Answer a collection of the receiver's elements.

Return Values
<sequencedReadableCollection> unspecified

Errors
none

5.7.3 Protocol: <Dictionary>

Conforms To
<abstractDictionary>

Description
Represents an unordered collection whose elements can be accessed using an explicitly assigned
external key. Key equivalence is defined as sending the #= message.

Messages
none

5.7.4 Protocol: <IdentityDictionary>

Conforms To
<abstractDictionary>

NCITS J20 DRAFT December, 1997 174
of ANSI Smalltalk Standard revision 1.9

Description
This protocol defines the behavior of unordered collections whose elements can be accessed using
an explicitly-assigned, external key. Key equivalence is defined as sending the #== message.

Messages
none

5.7.5 Protocol: <extensibleCollection>

Conforms To
<collection>

Description
Provides protocol for adding elements to and removing elements from a variable sized collection.

Messages
add:
addAll:
remove:
remove:ifAbsent:
removeAll:

5.7.5.1 Message: add: newElement

Synopsis
Add newElement to the receiver's elements.

Definition: <extensibleCollection>
This message adds a newElement to the receiver. Unless specifically refined, the position of the
newElement in the element traversal order is unspecified.
Conformant protocols may place restrictions on the type of objects that are valid elements. Unless
otherwise specified, any object is acceptable.

Parameters
newElement <Object> captured

Return Values
UNSPECIFIED

Errors
none

5.7.5.2 Message: addAll: newElements

Synopsis
Add each element of newElements to the receiver's elements.

Definition: <extensibleCollection>
This message adds each element of newElements to the receiver.

NCITS J20 DRAFT December, 1997 175
of ANSI Smalltalk Standard revision 1.9

The operation is equivalent to adding each element of newElements to the receiver using the
#add: message with the element as the parameter. The newElements are traversed in the order
specified by the #do: message for newElements.

Parameters
newElements <collection> unspecified

Return Values
UNSPECIFIED

Errors
none

5.7.5.3 Message: remove: oldElement

Synopsis
Remove the first element of the receiver which is equivalent to oldElement and return the
removed element.

Definition: <extensibleCollection>
Remove the first element of the receiver which is equivalent to oldElement and return the
removed element.
The elements are tested in the same order in which they would be enumerated by the message
#do: for this receiver.
The behavior is undefined if an object equivalent to oldElement is not found.

Parameters
oldElement <Object> uncaptured

Return Values
<Object> state

Errors
none

5.7.5.4 Message: remove: oldElement ifAbsent: exceptionHandler

Synopsis
Remove the first element of the receiver which is equivalent to oldElement. If it is not found,
answer the result of evaluating exceptionHandler.

Definition: <extensibleCollection>
The first element of the receiver which is equivalent to oldElement is removed from the receiver's
elements. If no such element is found, answer the result of evaluating exceptionHandler with
no parameters.
The elements are tested in the same order in which they would be enumerated by the message
#do: for this receiver.

Parameters
oldElement <Object> uncaptured
exceptionHandler <niladicValuable> uncaptured

Return Values
<Object> state
<Object> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 176
of ANSI Smalltalk Standard revision 1.9

5.7.5.5 Message: removeAll: oldElements

Synopsis
For each element in oldElements, remove the first element from the receiver which is equivalent
to this element.

Definition: <extensibleCollection>
This message is used to remove each element of a given collection from the receiver's elements.
The operation is defined to be equivalent to removing each element of oldElements from the
receiver using the #remove: message with the element as the parameter.
The behavior is undefined if any element of oldElements is not found.

Parameters
oldElements <collection> uncaptured

Return Values
UNSPECIFIED

Errors:
none

5.7.6 Protocol: <Bag>

Conforms To
<extensibleCollection>

Description
Represents an unordered, variable sized collection whose elements can be added or removed, but
cannot be individually accessed by external keys. A bag is similar to a set but can contain duplicate
elements. Elements are duplicates if they are equivalent.

Messages
add:
add:withOccurrences:
addAll:
collect:

5.7.6.1 Message Refinement: add: newElement

Synopsis
Add newElement to the receiver's elements.

Definition: <extensibleCollection>
This message adds a newElement to the receiver. Unless specifically refined, the position of the
newElement in the element traversal order is unspecified.
Conformant protocols may place restrictions on the type of objects that are valid elements. Unless
otherwise specified, any object is acceptable.

NCITS J20 DRAFT December, 1997 177
of ANSI Smalltalk Standard revision 1.9

Refinement: <Bag>
The result is undefined if newElement is nil.

Parameters
newElement <Object> captured

Return Values
UNSPECIFIED

Errors
none

5.7.6.2 Message: add: newElement withOccurrences: count

Synopsis
Add newElement count times to the receiver's elements.

Definition: <Bag>
This message adds an element to the receiver multiple times. The operation is equivalent to adding
newElement to the receiver count times using the #add: message with newElement as the
parameter.
The result is undefined if newElement is nil.

Parameters
newElement <Object> captured
count <integer> unspecified

Return Values
UNSPECIFIED

Errors
none

5.7.6.3 Message Refinement: addAll: newElements

Synopsis
Add each element of newElements to the receiver's elements.

Definition: <extensibleCollection>
This message adds each element of newElements to the receiver.
The operation is equivalent to adding each element of newElements to the receiver using the
#add: message with the element as the parameter. The newElements are traversed in the order
specified by the #do: message for newElements.

Refinement: <Bag>
The result is undefined if newElements contains nil.
The traversal order is unspecified.

Parameters
newElements <collection> uncaptured

Return Values
UNSPECIFIED

Errors
none

NCITS J20 DRAFT December, 1997 178
of ANSI Smalltalk Standard revision 1.9

5.7.6.4 Message Refinement: collect: transformer

Synopsis
Answer a new collection constructed by gathering the results of evaluating transformer with
each element of the receiver.

Definition: <collection>
For each element of the receiver, transformer is evaluated with the element as the parameter.
The results of these evaluations are collected into a new collection.
The elements are traversed in the order specified by the #do: message for the receiver.
Unless specifically refined, this message is defined to answer an objects conforming to the same
protocol as the receiver.

Refinement: <Bag>
The result is undefined if transformer evaluates to nil for any element of the receiver.

Parameters
transformer <monadicValuable> uncaptured

Return Values
<RECEIVER> new

Errors
If the elements of the receiver are inappropriate for use as arguments to transformer.
If the result of evaluating the transformer does not conform to any element type restrictions of
the collection to be returned.

5.7.7 Protocol: <Set>

Conforms To
<extensibleCollection>

Description
Represents an unordered, variable sized collection whose elements can be added or removed, but
cannot be individually accessed by external keys. A set is similar to a bag but cannot contain
duplicate elements.

Messages
add:
addAll:
collect:

5.7.7.1 Message Refinement: add: newElement

Synopsis
Add newElement to the receiver's elements.

Definition: <extensibleCollection>
This message adds a newElement to the receiver. Unless specifically refined, the position of the
newElement in the element traversal order is unspecified.

NCITS J20 DRAFT December, 1997 179
of ANSI Smalltalk Standard revision 1.9

Conformant protocols may place restrictions on the type of objects that are valid elements. Unless
otherwise specified, any object is acceptable.

Refinement: <Set>
Since sets may not contain duplicates, if there is already an element in the receiver that is
equivalent to newElement, this operation has no effect.
The results are undefined if newElement is nil.
The equivalence of newElement with respect to other objects should not be changed while
newElement is in the collection, as this would violate the invariant under which the element was
placed within the collection.

Parameters
newElement <Object> captured

Return Values
UNSPECIFIED

Errors
none

5.7.7.2 Message Refinement: addAll: newElements

Synopsis
Add each element of newElements to the receiver's elements.

Definition: <extensibleCollection>
This message adds each element of newElements to the receiver.
The operation is equivalent to adding each element of newElements to the receiver using the
#add: message with the element as the parameter. The newElements are traversed in the order
specified by the #do: message for newElements.

Refinement: <Set>
Duplicates will not be added.
The results are undefined if newElements contains nil.

Parameters
newElements <collection> unspecified

Return Values
UNSPECIFIED

Errors
none

5.7.7.3 Message Refinement: collect: transformer

Synopsis
Answer a new collection constructed by gathering the results of evaluating transformer with
each element of the receiver.

Definition: <collection>
For each element of the receiver, transformer is evaluated with the element as the parameter.
The results of these evaluations are collected into a new collection.
The elements are traversed in the order specified by the #do: message for the receiver.
Unless specifically refined, this message is defined to answer an objects conforming to the same
protocol as the receiver.

Refinement: <Set>

NCITS J20 DRAFT December, 1997 180
of ANSI Smalltalk Standard revision 1.9

Duplicates will not be added.
The results are undefined if newElements contains nil.

Parameters
transformer <monadicValuable> uncaptured

Return Values
<RECEIVER> new

Errors
If the elements of the receiver are inappropriate for use as arguments to transformer.
If the result of evaluating the transformer does not conform to any element type restrictions of
the collection to be returned.

5.7.8 Protocol: <sequencedReadableCollection>

Conforms To
<collection>

Description
Provides protocol for reading an ordered collection of objects whose elements can be accessed
using external integer keys. The keys are between one (1) and the number of elements in the
collection, inclusive.

Messages
,
=
after:
at:
at:ifAbsent:
before:
copyFrom:to:
copyReplaceAll:with:
copyReplaceFrom:to:with:
copyReplaceFrom:to:withObject:
copyReplacing:withObject:
copyWith:
copyWithout:
do:
findFirst:
findLast:
first
from:to:do:
from:to:keysAndValuesDo:
indexOf:
indexOf:ifAbsent:
indexOfSubCollection:startingAt:
indexOfSubCollection:startingAt:ifAbsent:
keysAndValuesDo:
last
reverse
reverseDo:
with:do:

NCITS J20 DRAFT December, 1997 181
of ANSI Smalltalk Standard revision 1.9

5.7.8.1 Message: , operand

Synopsis
Answer a new collection which is the concatenation of the receiver and operand.

Definition: <sequenceReadableCollection>
Answer a new collection containing all of the receiver's elements in their original order followed by
all of the elements of operand, in their original order. The size of the new collection is equal to the
sum of the sizes of the receiver and operand, as defined by the #size message.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.

Parameters
operand<sequencedReadableCollection> uncaptured

Return Values
<RECEIVER> new

Errors
If the elements of operand are not suitable for storage in instances of the receiver's class.

5.7.8.2 Message Refinement: = comparand

Synopsis
Object equivalence test.

Definition: <Object>
This message tests whether the receiver and the comparand are equivalent objects at the time the
message is processed. Answer true if the receiver is equivalent to comparand. Otherwise answer
false.
The meaning of "equivalent" cannot be precisely defined but the intent is that two objects are
considered equivalent if they can be used interchangeably. Conformant protocols may choose to
more precisely define the meaning of "equivalent".
The value of

receiver = comparand

is true if and only if the value of
comparand = receiver

would also be true. If the value of
receiver = comparand

is true then the receiver and comparand must have equivalent hash values. Or more formally:

receiver = comparand
receiver hash = comparand hash

The equivalence of objects need not be temporally invariant. Two independent invocations of #=
with the same receiver and operand objects may not always yield the same results. However, only
objects whose implementation of #= is temporally invariant can be reliably stored within collections
that use #= to discriminate objects.

Refinement: <sequenceReadableCollection>
Unless specifically refined, the receiver and operand are equivalent if all of the following are true:
1. The receiver and operand are instances of the same class.
2. They answer the same value for the #size message.

NCITS J20 DRAFT December, 1997 182
of ANSI Smalltalk Standard revision 1.9

3. For all indices of the receiver, the element in the receiver at a given index is equivalent to the
element in operand at the same index.
Element lookup is defined by the #at: message for the receiver and operand.

Parameters
comparand <Object> uncaptured

Return Values
<boolean> unspecified

Errors
none

5.7.8.3 Message: after: target

Synopsis
Answer the object immediately following the first element which is equivalent to target in the
receiver.

Definition: <sequenceReadableCollection>
Answer the object immediately following the first element which is equivalent to target in the
receiver. An element immediately follows another if its index is one greater than that of the other.
The order used to determine which of the receiver's elements is the first to be equivalent to
target is the traversal order defined by #do: for the receiver.
It is an error if the first occurrence of target is the last element of the receiver, or if the receiver
does not include target.

Parameters
target <Object> uncaptured

Return Values
<Object> state

Errors
If there is no element in the receiver which is equivalent to target.
If the element which is equal to target is the last element in the receiver.

5.7.8.4 Message: at: index

Synopsis
Answer the element at the position index in the receiver.

Definition: <sequenceReadableCollection>
This message defines element retrieval based on an index. Answer the element at the specified
index. The result is undefined if the receiver has no element at position index.

Parameters
index <integer> uncaptured

Return Values
<Object> state

Errors
If index is <= 0.
If index is greater than the receiver's size.

NCITS J20 DRAFT December, 1997 183
of ANSI Smalltalk Standard revision 1.9

5.7.8.5 Message: at: index ifAbsent: exceptionBlock

Synopsis
Answer the element at the position index in the receiver. If there is no position corresponding to
index in the receiver, then answer the result of evaluating exceptionBlock.

Definition: <sequenceReadableCollection>
This message defines element retrieval based on an index. Answer the element at the specified
index. If there is no position corresponding to index in the receiver, then answer the result of
evaluating exceptionBlock.

Parameters
index <integer> uncaptured
exceptionBlock <niladicValuable> uncaptured

Return Values
<Object> state
<ANY> unspecified

Errors
none

5.7.8.6 Message: before: target

Synopsis
Answer the object immediately preceding the first element which is equivalent to target in the
receiver.

Definition: <sequenceReadableCollection>
Answer the object immediately preceding the first element which is equivalent to target in the
receiver. An element immediately precedes another if its index is one less than that of the other.
It is an error if target is the first element of the receiver, or if the receiver does not include
target.

Parameters
target <Object> uncaptured

Return Values
<Object> state

Errors
If there is no element in the receiver which is equivalent to target.
If the element which is equal to target is the first element in the receiver.

5.7.8.7 Message: copyFrom: start to: stop

Synopsis
Answer a new collection containing all of the elements of the receiver between the indices start
and stop inclusive. If stop < start, the result has a size of zero.

Definition: <sequenceReadableCollection>
Answer a new collection containing the specified range of elements of the receiver in their original
order. The element at index start in the receiver is at index 1 in the new collection; the element at
index start+1 is at index 2, etc. If stop is less than start, then the new collection is empty.
Otherwise, the size of the new collection is the maximum of (stop - start + 1) and 0.
The parameters start and stop must be positive..

Parameters

NCITS J20 DRAFT December, 1997 184
of ANSI Smalltalk Standard revision 1.9

start <integer> uncaptured
stop <integer> uncaptured

Return Values
<RECEIVER> new

Errors
If stop >= start and (start < 1 or start > the receiver's size).
If stop >= start and (stop < 1 or stop > the receiver's size).

5.7.8.8 Message: copyReplaceAll: targetElements with: replacementElements

Synopsis
Answer a new collection in which all subsequences of elements in the receiver matching
targetElements are replaced in the new collection by the elements in replacementElements.

Definition: <sequenceReadableCollection>
Answer a new collection with the elements of the receiver in their original order, except where a
subsequence in the receiver matches targetElements. A subsequence in the receiver is said to
match the elements of targetElements if:
1. They have the same number of elements.
2. For all indices of the subsequence, the element in the subsequence at a given index is
equivalent to the element in targetElements at the same index.
Starting with the first element of the receiver and proceeding through ascending elements, each
non-overlapping subsequence of the receiver matching targetElements is detected. The result
is a copy of the receiver with each detected subsequence replaced by the sequence of elements of
replacementElements.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.

Parameters
targetElements <sequencedReadableCollection> uncaptured
replacementElements<sequencedReadableCollection> uncaptured

Return Values
<RECEIVER> new

Errors
If any of the elements in replacementElements does not conform to any element type
restrictions of instances of the receiver's class.

5.7.8.9 Message: copyReplaceFrom: start to: stop with: replacementElements

Synopsis
Answer a new collection, containing the same elements as the receiver, but with the elements in
the receiver between start and stop inclusive replaced by the elements in
replacementElements.

Definition: <sequenceReadableCollection>
This message can be used to insert, append, or replace. The size of replacementElements (as
defined by #size) need not be the same as the number of elements being replaced. There are
three cases:
1. If stop = start - 1 , and start is less than or equal to the size of the receiver, then the
replacementElements are inserted between the elements at index stop and start. None of
the receiver's elements are replaced.

NCITS J20 DRAFT December, 1997 185
of ANSI Smalltalk Standard revision 1.9

2. If stop = the size of the receiver and start = stop + 1, then the operation is an append, and
the replacementElements are placed at the end of the new collection.
3. Otherwise, the operation is a replacement, and the receiver's elements in the given range are
replaced by the elements from replacementElements.
In all cases, the resulting collection consists of the receiver's elements from indices 1 to start - 1
in their original order, followed by the elements of replacementElements, followed by the
remainder of the receiver's elements from index stop + 1 in their original order. The size of the
result is the receiver's size - (stop - start + 1) + the replacementElements size.
The parameters start and stop must be positive.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.

Parameters
start <integer> uncaptured
stop <integer> uncaptured
replacementElements<sequencedReadableCollection> uncaptured

Return Values
<RECEIVER> new

Errors
The elements in replacementElements are not suitable for storage in instances of the receiver's
class.
start > receiver's size + 1
start < 1
stop > receiver's size
stop < start - 1

5.7.8.10 Message: copyReplaceFrom: start to: stop withObject: replacementElement

Synopsis
Answer a new collection conforming to the same protocols as the receiver, in which the elements of
the receiver between start and stop inclusive have been replaced with replacementElement.

Definition: <sequenceReadableCollection>
This message can be used to insert, append, or replace. There are three cases:
1. If stop = start - 1 , and start is less than or equal to the size of the receiver, then
replacementElement is inserted between the elements at index stop and start. None of the
receiver's elements are replaced.
2. If stop = the size of the receiver and start = stop + 1, then the operation is an append, and
replacementElement is placed at the end of the new collection.
3. Otherwise, the operation is a replacement, and each of the receiver's elements in the given
range is replaced by replacementElement.
The parameters start and stop must be non-negative.
Collections that by definition enforce an ordering on their elements are permitted to refine this
message to reorder the result.

Parameters
start <integer> uncaptured
stop <integer> uncaptured
replacementElement <Object> uncaptured

NCITS J20 DRAFT December, 1997 186
of ANSI Smalltalk Standard revision 1.9

Return Values
<RECEIVER> new

Errors
The replacementElement is not suitable for storage in instances of the receiver's class.
start > receiver's size + 1
start < 1
stop > receiver's size
stop < start - 1

5.7.8.11 Message: copyReplacing: targetElement withObject: replacementElement

Synopsis
Answer a new collection conforming to the same protocols as the receiver, in which any
occurrences of targetElement are replaced by replacementElement.

Definition: <sequenceReadableCollection>
A new collection is created and initialized with the same elements as the receiver in the same
order, except that any objects in the receiver which are equivalent to targetElement are
replaced in the new collection by replacementElement.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.

Parameters
targetElement <Object> uncaptured
replacementElement <Object> uncaptured

Return Values
<RECEIVER> new

Errors
If the replacementElement is inappropriate for storage in instances of the receiver's class.

5.7.8.12 Message: copyWith: newElement

Synopsis
Answer a new collection containing the same elements as the receiver, with newElement added.

Definition: <sequenceReadableCollection>
Answer a new collection with size one greater than the size of the receiver containing the elements
of the receiver and newElement placed at the end.
Unless specifically refined, this message is defined to answer an instance of the same class as the
receiver.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.

Parameters
newElement <Object> captured

Return Values
<RECEIVER> new

Errors
none

NCITS J20 DRAFT December, 1997 187
of ANSI Smalltalk Standard revision 1.9

5.7.8.13 Message Refinement: copyWithout: oldElement

Synopsis
Answer a new collection, containing the same elements as the receiver in their original order
omitting any elements equivalent to oldElement.

Definition: <sequenceReadableCollection>
Answer a new collection with all of the elements of the receiver that are not equivalent to
oldElement, in their original order.

Parameters
oldElement <Object> uncaptured

Return Values
<RECEIVER> new

Errors
none

5.7.8.14 Message Refinement: do: operation

Synopsis
Evaluate operation with each element of the receiver.

Definition: <collection>
For each element of the receiver, operation is evaluated with the element as the parameter.
Unless specifically refined, the elements are not traversed in a particular order. Each element is
visited exactly once. Conformant protocols may refine this message to specify a particular ordering.

Refinement: <sequenceReadableCollection>
The operation is evaluated with each element of the receiver in indexed order starting at 1. The
first element is at index 1, the second at index 2, etc. The index of the last element is equal to the
receiver's size.

Parameters
operation <monadicValuable> uncaptured

Return Values
UNSPECIFIED

Errors
If the elements of the receiver are inappropriate for use as arguments to operation.

5.7.8.15 Message: findFirst: discriminator

Synopsis
Answer the index of the first element of the receiver which causes discriminator to evaluate to
true when the element is used as the parameter. Answer zero (0) if no such element is found.

Definition: <sequenceReadableCollection>
For each element of the receiver, discriminator is evaluated with the element as the
parameter. Answer the index of the first element which results in an evaluation of true; no further
elements are considered. If no such element exists in the receiver, answer 0.
The elements are traversed in the order specified by the #do: message for the receiver.

Parameters
discriminator <monadicValuable> uncaptured

Return Values

NCITS J20 DRAFT December, 1997 188
of ANSI Smalltalk Standard revision 1.9

<integer> unspecified
Errors

If an evaluation of discriminator results in an object that does not conform to <boolean> .
If the elements of the receiver are inappropriate for use as arguments to discriminator.

5.7.8.16 Message: findLast: discriminator

Synopsis
Answer the index of the last element of the receiver which causes discriminator to evaluate to
true when the element is used as the parameter. Answer zero (0) if no such element is found.

Definition: <sequenceReadableCollection>
For each element of the receiver, in reverse order starting with the last, discriminator is
evaluated with the element as the parameter. Answer the index of the first element which results in
an evaluation of true; no further elements are considered. Answer 0 if no such element is found in
the receiver.
The elements are traversed in the order specified by the #reverseDo: message for the receiver.

Parameters
discriminator<monadicValuable> uncaptured

Return Values
<integer> unspecified

Errors
If an evaluation of discriminator results in an object that does not conform to <boolean> .
If the elements of the receiver are inappropriate for use as arguments to discriminator.

5.7.8.17 Message: first

Synopsis
Answer the first element of the receiver.

Definition: <sequenceReadableCollection>
Answer the element at index 1 in the receiver. The result is undefined if the receiver is empty
(answers true to the #isEmpty message).

Return Values
<Object> state

Errors
none

5.7.8.18 Message: from: start to: stop do: operation

Synopsis
For those elements of the receiver between positions start and stop, inclusive, evaluate
operation with each element of the receiver.

Definition: <sequenceReadableCollection>
For each index in the range start to stop, the operation is evaluated with the element at that
index as its argument.

Parameters
start <integer> uncaptured
stop <integer> uncaptured
operation <monadicValuable> uncaptured

NCITS J20 DRAFT December, 1997 189
of ANSI Smalltalk Standard revision 1.9

Return Values
UNSPECIFIED

Errors
If the elements of the receiver are inappropriate for use as arguments to operation.
start < 1
stop > receiver's size

5.7.8.19 Message: from: start to: stop keysAndValuesDo: operation

Synopsis
For those elements of the receiver between positions start and stop, inclusive, evaluate
operation with an element of the receiver as the first argument and the element's position (index)
as the second.

Definition: <sequenceReadableCollection>
For each index in the range start to stop, the operation is evaluated with the index as the first
argument and the element at that index as the second argument.

Parameters
start <integer> uncaptured
stop <integer> uncaptured
operation <dyadicValuable> uncaptured

Return Values
UNSPECIFIED

Errors
If the elements of the receiver or its indices are inappropriate for use as arguments to operation.
start < 1
stop > receiver's size

5.7.8.20 Message: indexOf: target

Synopsis
Answer the index of the first element of the receiver which is equivalent to target. Answer zero
(0) if no such element is found.

Definition: <sequenceReadableCollection>
Answer the index of the first element which is equivalent to target; no further elements are
considered. Answer 0 if no such element exists in the receiver.
The elements are traversed in the order specified by the #do: message for the receiver.

Parameters
target <Object> uncaptured

Return Values
<integer> unspecified

Errors
none

5.7.8.21 Message: indexOf: target ifAbsent: exceptionHandler

Synopsis

NCITS J20 DRAFT December, 1997 190
of ANSI Smalltalk Standard revision 1.9

Answer the index of the first element of the receiver which is equivalent to target. Answer the
result of evaluating exceptionHandler with no parameters if no such element is found.

Definition: <sequenceReadableCollection>
Answer the index of the first element which is equivalent to target; no further elements are
considered. Answer exceptionHandler evaluated with no parameters if no such element is
found.
The elements are traversed in the order specified by the #do: message for the receiver.

Parameters
target <Object> uncaptured
exceptionHandler <niladicValuable> uncaptured

Return Values
<integer> unspecified
<Object> unspecified

Errors
none

5.7.8.22 Message: indexOfSubCollection: targetSequence startingAt: start

Synopsis
Answer the index of the first element of the receiver which is the start of a subsequence which
matches targetSequence. Start searching at index start in the receiver. Answer 0 if no such
subsequence is found.

Definition: <sequenceReadableCollection>
Each subsequence of the receiver starting at index start is checked for a match with
targetSequence. To match, each element of a subsequence of the receiver must be equivalent
to the corresponding element of targetSequence. Answer the index of the first element which
begins a matching subsequence; no further subsequences are considered. Answer 0 if no such
subsequence is found in the receiver, or if targetSequence is empty.
The elements are traversed in the order specified by the #do: message for the receiver.

Parameters
targetSequence <sequencedReadableCollection> uncaptured
start <integer> uncaptured

Return Values
<integer> unspecified

Errors
start < 1
start > the receiver's size

5.7.8.23 Message: indexOfSubCollection: targetSequence startingAt: start ifAbsent:
exceptionHandler

Synopsis
Answer the index of the first element of the receiver which is the start of a subsequence which
matches targetSequence. Start searching at index start in the receiver. Answer the result of
evaluating exceptionHandler with no parameters if no such subsequence is found.

Definition: <sequenceReadableCollection>

NCITS J20 DRAFT December, 1997 191
of ANSI Smalltalk Standard revision 1.9

Each subsequence of the receiver starting at index start is checked for a match with
targetSequence. To match, each element of a subsequence of the receiver must be equivalent
to the corresponding element of targetSequence. Answer the index of the first element which
begins a matching subsequence; no further subsequences are considered. Answer the result of
evaluating exceptionHandler with no parameters if no such subsequence is found or if
targetSequence is empty.
The elements are traversed in the order specified by the #do: message for the receiver.

Parameters
targetSequence <sequencedReadableCollection> uncaptured
start <integer> uncaptured
exceptionHandler <niladicValuable> uncaptured

Return Values
<integer> unspecified
<Object> unspecified

Errors
start < 1
start > the receiver's size

5.7.8.24 Message: keysAndValuesDo: operation

Synopsis
Evaluate operation with the index of each element of the receiver, in order, together with the
element itself.

Definition: <sequenceReadableCollection>
The operation is evaluated with the index of each element of the receiver as the first argument
and the element itself as the second argument. Evaluation is in indexed order starting at 1. The first
element is at index 1, the second at index 2, etc. The index of the last element is equal to the
receiver's size.

Parameters
operation <dyadicValuable> uncaptured

Return Values
UNSPECIFIED

Errors
If the elements of the receiver are inappropriate for use as arguments to operation.

5.7.8.25 Message: last

Synopsis
Answer the last element of the receiver.

Definition: <sequenceReadableCollection>
Answer the last element of the receiver, the element at the index equal to the receiver's size. The
result is unspecified if the receiver is empty (answers true to the #isEmpty message).

Return Values
<Object> state

Errors
none

NCITS J20 DRAFT December, 1997 192
of ANSI Smalltalk Standard revision 1.9

5.7.8.26 Message: reverse

Synopsis
Answer a collection with the elements of the receiver arranged in reverse order.

Definition: <sequenceReadableCollection>
Answer a collection conforming to the same protocols as the receiver, but with its elements
arranged in reverse order.
This operation is equivalent to:
1. Create a new collection which conforms to the same protocols as the receiver;
2. Traverse the elements of the receiver in the order specified by the #reverseDo: message,
adding each element of the receiver to the new collection;
3. Answer the new collection.

Return Values
<RECEIVER> new

Errors
none

5.7.8.27 Message: reverseDo: operation

Synopsis
Evaluate operation with each element of the receiver in the reverse of the receiver's standard
traversal order.

Definition: <sequenceReadableCollection>
For each element of the receiver, evaluate operation with the element as the parameter. The
elements are traversed in the opposite order from the #do: message. Each element is visited
exactly once.

Parameters
operation <monadicValuable> uncaptured

Return Values
UNSPECIFIED

Errors
If the elements of the receiver are inappropriate for use as arguments to operation.

5.7.8.28 Message: with: otherCollection do: operation

Synopsis
Evaluate operation with each element of the receiver and the corresponding element of
otherCollection as parameters.

Definition: <sequenceReadableCollection>
For each element of the receiver and the corresponding element of otherCollection, evaluate
operation with the receiver's element as the first parameter, and the element of
otherCollection as the second parameter. The receiver and otherCollection must have
the same size.
The elements of the receiver and otherCollection are traversed in indexed order starting at 1.
The operation is first evaluated with the elements at index 1 in the two
<sequencedReadableCollection>s, then index 2, etc.

Parameters
otherCollection <sequencedReadableCollection> uncaptured

NCITS J20 DRAFT December, 1997 193
of ANSI Smalltalk Standard revision 1.9

operation <dyadicValuable> uncaptured
Return Values

UNSPECIFIED
Errors

If the elements of the receiver or the elements of otherCollection are inappropriate for use as
arguments to operation.
If the receiver's size is not equal to the size of otherCollection.

5.7.9 Protocol: <Interval>

Conforms To
<sequencedReadableCollection>

Description
Represents a collection whose elements are numbers which form an arithmetic progression.
Elements cannot be accessed externally.

Messages
,
collect:
copyFrom:to:
copyReplaceAll:with:
copyReplaceFrom:to:with:
copyReplaceFrom:to:withObject:
copyReplacing:withObject:
copyWith:
copyWithout:
reject:
reverse
select:

5.7.9.1 Message Refinement: , operand

Synopsis
Answer a new collection which is the concatenation of the receiver and operand.

Definition: <sequenceReadableCollection>
Answer a new collection containing all of the receiver's elements in their original order followed by
all of the elements of operand, in their original order. The size of the new collection is equal to the
sum of the sizes of the receiver and operand, as defined by the #size message.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.
Unless specifically refined, this message is defined to answer an instance of the same type as the
receiver.

Refinement: <Interval>
Answer a collection containing the elements of operand appended to the elements of the receiver.
The enumeration order defined by the #do: message is used. The return type is generalized to
<sequencedReadableCollection>.

NCITS J20 DRAFT December, 1997 194
of ANSI Smalltalk Standard revision 1.9

Parameters
operand<sequencedReadableCollection> uncaptured

Return Values
<sequencedReadableCollection> new

Errors
none

5.7.9.2 Message Refinement: collect: transformer

Synopsis
Answer a new collection constructed by gathering the results of evaluating transformer with
each element of the receiver.

Definition: <collection>
For each element of the receiver, transformer is evaluated with the element as the parameter.
The results of these evaluations are collected into a new collection.
The elements are traversed in the order specified by the #do: message for the receiver.
Unless specifically refined, this message is defined to answer an objects conforming to the same
protocol as the receiver.

Refinement: <Interval>
The return type is generalized to <sequencedReadableCollection>.

Parameters
transformer <monadicValuable> uncaptured

Return Values
<sequencedReadableCollection> new

Errors
If the elements of the receiver are inappropriate for use as arguments to transformer.

5.7.9.3 Message Refinement: copyFrom: start to: stop

Synopsis
Answer a new collection containing all of the elements of the receiver between the indices start
and stop inclusive. If stop < start, the result has a size of zero.

Definition: <sequenceReadableCollection>
Answer a new collection containing the specified range of elements of the receiver in their original
order. The element at index start in the receiver is at index 1 in the new collection; the element at
index start+1 is at index 2, etc. If stop is less than start, then the new collection is empty.
Otherwise, the size of the new collection is the maximum of (stop - start + 1) and 0.
The parameters start and stop must be positive.
Unless specifically refined, this message is defined to answer an instance of the same class as the
receiver's class.

Refinement: <Interval>
The return type is generalized to <sequencedReadableCollection>.

Parameters
start <integer> uncaptured
stop <integer> uncaptured

Return Values
<sequencedReadableCollection> new

NCITS J20 DRAFT December, 1997 195
of ANSI Smalltalk Standard revision 1.9

Errors
If start < 1 or start > self size.
If stop < 1 or stop > self size.

5.7.9.4 Message Refinement: copyReplaceAll: targetElements with: replacementElements

Synopsis
Answer a new collection in which all subsequences of elements in the receiver matching
targetElements are replaced in the new collection by the elements in replacementElements.

Definition: <sequenceReadableCollection>
Answer a new collection with the elements of the receiver in their original order, except where a
subsequence in the receiver matches targetElements. A subsequence in the receiver is said to
match the elements of targetElements if:
1. They have the same number of elements.
2. For all indices of the subsequence, the element in the subsequence at a given index is
equivalent to the element in targetElements at the same index.
Where a subsequence match is found, the elements from replacementElements are placed in
the new collection instead.
Unless specifically refined, this message is defined to answer an instance of the same class as the
receiver.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.

Refinement: <Interval>
The return type is generalized to <sequencedReadableCollection>.

Parameters
targetElements <sequencedReadableCollection> uncaptured
replacementElements<sequencedReadableCollection> unspecified

Return Values
<sequencedReadableCollection> new

Errors
If any of the elements in replacementElements is inappropriate for storage in instances of the
result.

5.7.9.5 Message Refinement: copyReplaceFrom: start to: stop with: replacementElements

Synopsis
Answer a new collection, containing the same elements as the receiver, but with the elements in
the receiver between start and stop inclusive replaced by the elements in
replacementElements.

Definition: <sequenceReadableCollection>
This message can be used to insert, append, or replace. The size of replacementElements (as
defined by #size) need not be the same as the number of elements being replaced. There are
three cases:
1. If stop = start - 1 , and start is less than or equal to the size of the receiver, then the
replacementElements are inserted between the elements at index stop and start. None of
the receiver's elements are replaced.
2. If stop = the size of the receiver and start = stop + 1, then the operation is an append, and
the replacementElements are placed at the end of the new collection.

NCITS J20 DRAFT December, 1997 196
of ANSI Smalltalk Standard revision 1.9

3. Otherwise, the operation is a replacement, and the receiver's elements in the given range are
replaced by the elements from replacementElements.
In all cases, the resulting collection consists of the receiver's elements from indices 1 to start - 1
in their original order, followed by the elements of replacementElements, followed by the
remainder of the receiver's elements from index stop + 1 in their original order. The size of the
result is the receiver's size - (stop - start + 1) + the replacementElements size.
The parameters start and stop must be positive.
Unless specifically refined, this message is defined to answer an instance of the same class as the
receiver's class.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.

Refinement: <Interval>
The return type is generalized to <sequencedReadableCollection>.

Parameters
start <integer> uncaptured
stop <integer> uncaptured
replacementElements<sequencedReadableCollection> unspecified

Return Values
<sequencedReadableCollection> new

Errors
The elements in replacementElements are not suitable for storage in instances of the result.

5.7.9.6 Message Refinement: copyReplaceFrom: start to: stop withObject: replacementElement

Synopsis
Answer a new collection conforming to the same protocols as the receiver, in which the elements of
the receiver between start and stop inclusive have been replaced with replacementElement.

Definition: <sequenceReadableCollection>
This message can be used to insert, append, or replace. There are three cases:

1. If stop = start - 1 , and start is less than or equal to the size of the receiver, then
replacementElement is inserted between the elements at index stop and start. None of
the receiver's elements are replaced.
2. If stop = the size of the receiver and start = stop + 1, then the operation is an append,
and replacementElement is placed at the end of the new collection.
3. Otherwise, the operation is a replacement, and each of the receiver's elements in the given
range is replaced by replacementElement.

The parameters start and stop must be non-negative.
Unless specifically refined, this message is defined to answer an instance of the same class as the
receiver's class.
Collections that by definition enforce an ordering on their elements are permitted to refine this
message to reorder the result.

Refinement: <Interval>
The return type is generalized to <sequencedReadableCollection>.

Parameters
start <integer> uncaptured
stop <integer> uncaptured

NCITS J20 DRAFT December, 1997 197
of ANSI Smalltalk Standard revision 1.9

replacementElement <Object> captured
Return Values

<sequencedReadableCollection> new
Errors

none

5.7.9.7 Message Refinement: copyReplacing: targetElement withObject: replacementElement

Synopsis
Answer a new collection conforming to the same protocols as the receiver, in which any
occurrences of targetElement are replaced by replacementElement.

Definition: <sequenceReadableCollection>
A new collection is created and initialized with the same elements as the receiver in the same
order, except that any objects in the receiver which are equivalent to targetElement are
replaced in the new collection by replacementElement.
Unless specifically refined, this message is defined to answer an instance of the same class as the
receiver.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.

Refinement: <Interval>
The return type is generalized to <sequencedReadableCollection>.

Parameters
targetElement <Object> uncaptured
replacementElement <Object> captured

Return Values
<sequencedReadableCollection> new

Errors
none

5.7.9.8 Message Refinement: copyWith: newElement

Synopsis
Answer a new collection containing the same elements as the receiver, with newElement added.

Definition: <sequenceReadableCollection>
Answer a new collection with size one greater than the size of the receiver containing the elements
of the receiver and newElement placed at the end.
Unless specifically refined, this message is defined to answer an instance of the same class as the
receiver.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.

Refinement: <Interval>
The return type is generalized to <sequencedReadableCollection>.

Parameters
newElement <Object> captured

Return Values
<sequencedReadableCollection> new

Errors

NCITS J20 DRAFT December, 1997 198
of ANSI Smalltalk Standard revision 1.9

none

5.7.9.9 Message Refinement: copyWithout: oldElement

Synopsis
Answer a new collection, containing the same elements as the receiver in their original order
omitting any elements equivalent to oldElement.

Definition: <sequenceReadableCollection>
Answer a new collection with all of the elements of the receiver that are not equivalent to
oldElement, in their original order.
Unless specifically refined, this message is defined to answer an instance of the same type as the
receiver.

Refinement: <Interval>
The return type is generalized to <sequencedReadableCollection>.

Parameters
oldElement <Object> uncaptured

Return Values
<sequencedReadableCollection> new

Errors
none

5.7.9.10 Message Refinement: reject: discriminator

Synopsis
Answer a new collection which excludes the elements in the receiver which cause
discriminator to evaluate to true.

Definition: <collection>
For each element of the receiver, discriminator is evaluated with the element as the
parameter. Each element which causes discriminator to evaluate to false is added to the new
collection.
The elements are traversed in the order specified by the #do: message for the receiver.
Unless specifically refined, this message is defined to answer an object conforming to the same
protocol as the receiver.

Refinement: <Interval>
The return type is refined to <sequencedReadableCollection>.

Parameters
discriminator<monadicValuable> uncaptured

Return Values
<sequenceReadableCollection> new

Errors
If the elements of the receiver are inappropriate for use as arguments to discriminator.
If discriminator evaluates to an object that does not conform to the protocol <boolean> for any
element of the receiver.

5.7.9.11 Message Refinement: reverse

Synopsis
Answer a collection with the elements of the receiver arranged in reverse order.

NCITS J20 DRAFT December, 1997 199
of ANSI Smalltalk Standard revision 1.9

Definition: <sequenceReadableCollection>
Answer a collection conforming to the same protocols as the receiver, but with its elements
arranged in reverse order.
This operation is equivalent to:
1. Create a new collection which conforms to the same protocols as the receiver;
2. Traverse the elements of the receiver in the order specified by the #reverseDo: message,
adding each element of the receiver to the new collection;
3. Answer the new collection.

Refinement: <Interval>
The return type is generalized to <sequencedReadableCollection>.

Return Values
<sequenceReadableCollection> new

Errors
none

5.7.9.12 Message Refinement: select: discriminator

Synopsis
Answer a new collection which contains the elements in the receiver which cause
discriminator to evaluate to true.

Definition: <collection>
For each element of the receiver, discriminator is evaluated with the element as the
parameter. Each element which causes discriminator to evaluate to true is added to the new
collection.
The elements are traversed in the order specified by the #do: message for the receiver.
Unless specifically refined, this message is defined to answer an objects conforming to the same
protocol as the receiver.

Refinement: <Interval>
The return type is refined to <sequencedReadableCollection>.

Parameters
discriminator <monadicValuable> uncaptured

Return Values
<sequenceReadableCollection> new

Errors
If the elements of the receiver are inappropriate for use as arguments to discriminator.
If discriminator evaluates to an object that does not conform to the protocol <boolean> for any
element of the receiver.

NCITS J20 DRAFT December, 1997 200
of ANSI Smalltalk Standard revision 1.9

5.7.10 Protocol: <readableString>

Conforms To
<magnitude> <sequencedReadableCollection>

Description
Provides protocol for string operations such as copying, comparing, replacing, converting, indexing,
and matching. All objects that conform to the protocol <readableString> are comparable.

Messages
,
<
<=
>
>=
asLowercase
asString
asSymbol
asUppercase
copyReplaceAll:with:
copyReplaceFrom:to:with:
copyReplacing:withObject:
copyWith:
sameAs:
subStrings:

5.7.10.1 Message Refinement: , operand

Synopsis
Answer a new collection which is the concatenation of the receiver and operand.

Definition: <sequenceReadableCollection>
Answer a new collection containing all of the receiver's elements in their original order followed by
all of the elements of operand, in their original order. The size of the new collection is equal to the
sum of the sizes of the receiver and operand, as defined by the #size message.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.
Unless specifically refined, this message is defined to answer an instance of the same type as the
receiver.

Refinement: <readableString>
The parameter operand must be a <readableString>.

Parameters
operand <readableString> uncaptured

Return Values
<readableString> new

Errors
none

5.7.10.2 Message Refinement: < operand

Synopsis
Answer true if the receiver is less than operand. Answer false otherwise.

Definition: <magnitude>

NCITS J20 DRAFT December, 1997 201
of ANSI Smalltalk Standard revision 1.9

Answer true if the receiver is less than operand with respect to the ordering defined for them.
Answer false otherwise.
The result is undefined if the receiver and operand are not comparable.
The semantics of the natural ordering must be defined by refinement, which may also restrict the
type of operand.

Refinement: <readableString>
Answer true if the receiver collates before operand, according to the implementation defined
collating algorithm. Answer false otherwise.

Parameters
operand <readableString> uncaptured

Return Values
<boolean> unspecified

Errors
none

5.7.10.3 Message Refinement: <= operand

Synopsis
Answer true if the receiver is less than or equal to operand. Answer false otherwise.

Definition: <magnitude>
Answer true if the receiver would answer true to either the #< or #= message with operand as the
parameter. Answer false otherwise.
The result is undefined if the receiver and operand are not comparable.

Refinement: <readableString>
Answer true if the receiver answers true to either the #< or #sameAs: messages with operand as
the parameter. Answer false otherwise.

Parameters
operand <readableString> uncaptured

Return Values
<boolean> unspecified

Errors
none

5.7.10.4 Message Refinement: > operand

Synopsis
Answer true if the receiver is greater than operand. Answer false otherwise.

Definition: <magnitude>
Answer true if the receiver is greater than operand with respect to the natural ordering. Answer
false otherwise.
The result is undefined if the receiver and operand are not comparable.
The semantics of the natural ordering must be defined by refinement, which may also restrict the
type of operand.

Refinement: <readableString>
Answer true if the receiver collates after operand, according to the implementation defined
collating algorithm. Answer false otherwise.

Parameters

NCITS J20 DRAFT December, 1997 202
of ANSI Smalltalk Standard revision 1.9

operand <readableString> uncaptured
Return Values

<boolean> unspecified
Errors

none

5.7.10.5 Message Refinement: >= operand

Synopsis
Answer true if the receiver is greater than or equal to operand. Answer false otherwise.

Definition: <magnitude>
Answer true if the receiver answers true to either the #> or #= message with operand as the
parameter. Answer false otherwise.
The result is undefined if the receiver and operand are not comparable.

Refinement: <readableString>
Answer true if the receiver answers true to either the #> or #sameAs: messages with operand as
the parameter. Answer false otherwise.

Parameters
operand <readableString> uncaptured

Return Values
<boolean> unspecified

Errors
none

5.7.10.6 Message: asLowercase

Synopsis
Answer a new string which contains all of the elements of the receiver converted to their lower case
equivalents.

Definition: <readableString>
Answer a new string which contains all of the elements of the receiver converted to their lower case
equivalents. Individual element of the string are converted as if they were receivers of the message
#asLowercase.

Return Values
<readableString> new

Errors
none

5.7.10.7 Message: asString

Synopsis
Answer a string containing the same characters as the receiver.

Definition: <readableString>
Answer a string containing the same characters as the receiver, in their original order.

Return Values
<readableString> unspecified

Errors

NCITS J20 DRAFT December, 1997 203
of ANSI Smalltalk Standard revision 1.9

none

5.7.10.8 Message: asSymbol

Synopsis
Answer a symbol containing the same characters as the receiver.

Definition: <readableString>
Answer a symbol containing the same characters as the receiver, in their original order.

Return Values
<symbol> unspecified

Errors
none

5.7.10.9 Message: asUppercase

Synopsis
Answer a new string which contains all of the elements of the receiver converted to their upper
case equivalents.

Definition: <readableString>
Answer a new string which contains all of the elements of the receiver converted to their upper
case equivalents. Individual element of the string are converted as if they were receivers of the
message #asUppercase.

Return Values
<readableString> new

Errors
none

5.7.10.10 Message Refinement: copyReplaceAll: targetElements with: replacementElements

Synopsis
Answer a new collection in which all subsequences of elements in the receiver matching
targetElements are replaced in the new collection by the elements in replacementElements.

Definition: <sequenceReadableCollection>
Answer a new collection with the elements of the receiver in their original order, except where a
subsequence in the receiver matches targetElements. A subsequence in the receiver is said to
match the elements of targetElements if:
1. They have the same number of elements.
2. For all indices of the subsequence, the element in the subsequence at a given index is
equivalent to the element in targetElements at the same index.
Where a subsequence match is found, the elements from replacementElements are placed in
the new collection instead.
Unless specifically refined, this message is defined to answer an instance of the same class as the
receiver.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.

Refinement: <readableString>
The elements of targetElements and replacementElements must conform to the protocol
<character> and be valid elements for the result.

Parameters

NCITS J20 DRAFT December, 1997 204
of ANSI Smalltalk Standard revision 1.9

targetElements <sequenceReadableCollection> uncaptured
replacementElements <sequenceReadableCollection> unspecified

Return Values
<readableString> new

Errors
none

5.7.10.11 Message Refinement: copyReplaceFrom: start to: stop with: replacementElements

Synopsis
Answer a new collection, containing the same elements as the receiver, but with the elements in
the receiver between start and stop inclusive replaced by the elements in
replacementElements.

Definition: <sequenceReadableCollection>
This message can be used to insert, append, or replace. The size of replacementElements (as
defined by #size) need not be the same as the number of elements being replaced. There are
three cases:
1. If stop = start - 1 , and start is less than or equal to the size of the receiver, then the
replacementElements are inserted between the elements at index stop and start. None of
the receiver's elements are replaced.
2. If stop = the size of the receiver and start = stop + 1, then the operation is an append, and
the replacementElements are placed at the end of the new collection.
3. Otherwise, the operation is a replacement, and the receiver's elements in the given range are
replaced by the elements from replacementElements.
In all cases, the resulting collection consists of the receiver's elements from indices 1 to start - 1
in their original order, followed by the elements of replacementElements, followed by the
remainder of the receiver's elements from index stop + 1 in their original order. The size of the
result is the receiver's size - (stop - start + 1) + the replacementElements size.
The parameters start and stop must be positive.
Unless specifically refined, this message is defined to answer an instance of the same class as the
receiver's class.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.

Refinement: <readableString>
The elements of replacementElements must be characters.

Parameters
start <integer> uncaptured
stop <integer> uncaptured
replacementElements<sequenceReadableCollection> unspecified

Return Values
<readableString> new

Errors
none

NCITS J20 DRAFT December, 1997 205
of ANSI Smalltalk Standard revision 1.9

5.7.10.12 Message Refinement: copyReplacing: targetElement withObject:
replacementElement

Synopsis
Answer a new collection conforming to the same protocols as the receiver, in which any
occurrences of targetElement are replaced by replacementElement.

Definition: <sequenceReadableCollection>
A new collection is created and initialized with the same elements as the receiver in the same
order, except that any objects in the receiver which are equivalent to targetElement are
replaced in the new collection by replacementElement.
Unless specifically refined, this message is defined to answer an instance of the same class as the
receiver.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.

Refinement: <readableString>
The parameters targetElement and replacementElement must be characters.

Parameters
targetElement <character> uncaptured
replacementElement <character> captured

Return Values
<readableString> new

Errors
none

5.7.10.13 Message Refinement: copyWith: newElement

Synopsis
Answer a new collection containing the same elements as the receiver, with newElement added.

Definition: <sequenceReadableCollection>
Answer a new collection with size one greater than the size of the receiver containing the elements
of the receiver and newElement placed at the end.
Unless specifically refined, this message is defined to answer an instance of the same class as the
receiver.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.

Refinement: <readableString>
The parameter newElement must be characters.

Parameters
newElement <character> captured

Return Values
<readableString> new

Errors
none

5.7.10.14 Message: sameAs: operand

Synopsis
Answer true if the receiver collates the same as operand. Answer false otherwise.

NCITS J20 DRAFT December, 1997 206
of ANSI Smalltalk Standard revision 1.9

Definition: <readableString>
Answer true if the receiver collates the same as operand, according to the implementation-defined
collating algorithm. Answer false otherwise.
This message differs from the #= message because two strings which are not equal can collate the
same, and because the receiver and operand do not need to conform to the same protocols.

Parameters
operand <readableString> uncaptured

Return Values
<boolean> unspecified

Errors
none

5.7.10.15 Message: subStrings: separators

Synopsis
Answer an array containing the substrings in the receiver separated by the elements of
separators.

Definition: <readableString>
Answer an array of strings. Each element represents a group of characters separated by any of the
characters in the list of separators.

Parameters
separators <sequencedReadableCollection> uncaptured

Return Values
<Array> unspecified

Errors
If the list of separators contains anything other than characters.

5.7.11 Protocol: <symbol>

Conforms To
<readableString>

Description
Represents an ordered, variable sized and immutable collection of characters. There is a unique
object conforming to this protocol for every possible sequence of characters. Symbols are identity
objects.

Messages
asString
asSymbol

NCITS J20 DRAFT December, 1997 207
of ANSI Smalltalk Standard revision 1.9

5.7.11.1 Message Refinement: asString

Synopsis
Answer a string containing the same characters as the receiver.

Definition: <readableString>
Answer a string containing the same characters as the receiver, in their original order.

Refinement: <symbol>
Answer an object that is not identical to the receiver

Return Values
<readableString> unspecified

Errors
none

5.7.11.2 Message Refinement: asSymbol

Synopsis
Answer a symbol containing the same characters as the receiver.

Definition: <readableString>
Answer a symbol containing the same characters as the receiver, in their original order.

Refinement: <symbol>
Answer the receiver.

Return Values
<RECEIVER> unspecified

Errors
none

See Also
#asString

5.7.12 Protocol: <sequencedCollection>

Conforms To
<sequencedReadableCollection>

Description
Provides protocol for writing to an ordered collection of objects, whose elements can be accessed
using external integer keys.

Messages
at:put:
atAll:put:
atAllPut:
replaceFrom:to:with:
replaceFrom:to:with:startingAt:
replaceFrom:to:withObject:

NCITS J20 DRAFT December, 1997 208
of ANSI Smalltalk Standard revision 1.9

5.7.12.1 Message: at: index put: newElement

Synopsis
Replace the element in the receiver at index with newElement. Answer newElement.

Definition: <sequencedCollection>
This message sets one of the receiver's elements based on index. The newElement is stored at
index in the receiver's elements, replacing any previously stored object. Subsequent retrievals at
this index will answer newElement.

Parameters
index <integer> uncaptured
newElement <Object> captured

Return Values
<Object> state

Errors
If index < 0.
If index > the receiver's size.
If newElement does not conform to any element type restrictions of the receiver.

5.7.12.2 Message: atAll: indices put: newElement

Synopsis
Replace the elements in the receiver specified by indices with newElement.

Definition: <sequencedCollection>
The newElement is stored at each index in the receiver specified by the elements of the indices
collection, replacing any previously stored objects at these indices. Subsequent retrievals at these
indices will answer newElement.
This message is equivalent to storing newElement in the receiver at each index specified by
indices using the #at:put: message for the receiver.

Parameters
indices <collection> uncaptured
newElement <Object> captured

Return Values
UNSPECIFIED

Errors
If any element of indices does not conform to <integer>.
If any element in indices is <= 0 or greater than the receiver's size.
If newElement does not conform to any element type restrictions of the receiver.

5.7.12.3 Message: atAllPut: newElement

Synopsis
Replace all the elements in the receiver with newElement.

Definition: <sequencedCollection>
The newElement is stored at each index in the receiver, replacing any previously stored objects.
This message is equivalent to storing newElement in the receiver at each index from 1 to the
receiver's size using the #at:put: message for the receiver.

NCITS J20 DRAFT December, 1997 209
of ANSI Smalltalk Standard revision 1.9

Parameters
newElement <Object> captured

Return Values
UNSPECIFIED

Errors
If newElement does not conform to any element type restrictions of the receiver.

5.7.12.4 Message: replaceFrom: start to: stop with: replacementElements

Synopsis
Replace the elements of the receiver between positions start and stop inclusive, with the
elements of replacementElements in their original order. Answer the receiver.

Definition: <sequencedCollection>
The first element of replacementElements is stored in the receiver at position start, the
second at position start + 1, etc. Any previously stored elements at these positions are replaced.
If the size of replacementElements is not equal to stop - start + 1, the result of sending this
message is unspecified.

Parameters
start <integer> uncaptured
stop <integer> uncaptured
replacementElements<sequencedReadableCollection> unspecified

Return Values
UNSPECIFIED

Errors
If start < 1 or start > the receiver's size.
If stop < 1 or stop > the receiver's size.
If replacementElements size <> stop - start + 1.

5.7.12.5 Message: replaceFrom: start to: stop with: replacementElements startingAt:
replacementStart

Synopsis
Replace the elements of the receiver between positions start and stop inclusive with the
elements of replacementElements, in their original order, starting at position
replacementStart. Answer the receiver.

Definition: <sequencedCollection>
The element at position replacementStart in replacementElements is stored in the receiver
at position start; the element at replacementStart + 1 is stored at position start + 1; etc.
Any previously stored elements at these positions in the receiver are replaced.
If the size of replacementElements is not equal to (replacementStart + stop - start), the
result of sending this message is unspecified.

Parameters
start <integer> uncaptured
stop <integer> uncaptured
replacementElements<sequencedReadableCollection> unspecified
replacementStart <integer> uncaptured

NCITS J20 DRAFT December, 1997 210
of ANSI Smalltalk Standard revision 1.9

Return Values
UNSPECIFIED

Errors
If start < 1 or start > the receiver's size.
If stop < 1 or stop > the receiver's size.
If replacementStart < 1 or replacementStart > replacementElements size.
If replacementElements size - replacementStart + 1 < stop - start + 1.

5.7.12.6 Message: replaceFrom: start to: stop withObject: replacementElement

Synopsis
Replace the elements of the receiver between start and stop inclusive with
replacementElement. Answer the receiver.

Definition: <sequencedCollection>
Replace the elements of the receiver between start and stop inclusive with
replacementElement. Answer the receiver.

Parameters
start <integer> uncaptured
stop <integer> uncaptured
replacementElement <Object> captured

Return Values
UNSPECIFIED

Errors
If start < 1 or start > the receiver's size.
If stop < 1 or stop > the receiver's size.

5.7.13 Protocol: <String>

Conforms To
<readableString> <sequencedCollection>

Description
Provides protocol for string operations such as copying, storing, comparing, replacing, converting,
indexing, and matching. The element type of <String> is <Character>. The range of codePoints of
characters that may be elements of a <String> is implementation defined.

Messages
asString

NCITS J20 DRAFT December, 1997 211
of ANSI Smalltalk Standard revision 1.9

5.7.13.1 Message Refinement: asString

Synopsis
Answer a string containing the same characters as the receiver.

Definition: <readableString>
Answer a string containing the same characters as the receiver, in their original order.

Refinement: <String>
Answer the receiver.

Return Values
<String> unspecified

Errors
none

5.7.14 Protocol: <Array>

Conforms To
<sequencedCollection>

Description
Represents a keyed collection of objects which can be accessed externally using sequential integer
keys. The index of the first element is one (1).

Messages
none

5.7.15 Protocol: <ByteArray>

Conforms To
<sequencedCollection>

Description
Represents a keyed collection whose element type is <integer> and is limited to the range 0 to 255,
inclusive. The elements can be accessed externally using sequential integer keys. The index of the
first element is one (1).

Messages
none

NCITS J20 DRAFT December, 1997 212
of ANSI Smalltalk Standard revision 1.9

5.7.16 Protocol: <sequencedContractibleCollection>

Conforms To
<collection>

Description
Provides protocol for removing elements from an ordered collection of objects, whose elements
can be accessed using external integer keys.

Messages
removeAtIndex:
removeFirst
removeLast

5.7.16.1 Message: removeAtIndex: index

Synopsis
Remove the element of the receiver at position index, and answer the removed element.

Definition: <sequenceContractibleCollection>
The element of the receiver which is at position index is removed from the receiver's elements.
Answer the removed element.
index must be a positive integer less than or equal to the receiver's size.

Parameters
index <integer> uncaptured

Return Values
<Object> unspecified

Errors
If index is 0 or negative.
If index is greater than the receiver's size.

5.7.16.2 Message: removeFirst

Synopsis
Remove and answer the first element of the receiver.

Definition: <sequenceContractibleCollection>
The first element of the receiver is removed and answered. The element (if any) that was
previously the second element in the traversal order now becomes the first, and the receiver has
one fewer elements.

Return Values
<Object> state

Errors
The receiver is empty

5.7.16.3 Message: removeLast

Synopsis
Remove and answer the last element of the receiver.

Definition: <sequenceContractibleCollection>

NCITS J20 DRAFT December, 1997 213
of ANSI Smalltalk Standard revision 1.9

The last element of the receiver is removed and answered. The element (if any) that was
previously the second from last element in the traversal order now becomes the last, and the
receiver has one fewer elements.

Return Values
<Object> state

Errors
The receiver is empty

5.7.17 Protocol: <SortedCollection>

Conforms To
<extensibleCollection> <sequencedContractibleCollection> <sequencedReadableCollection>

Description
Represents a variable sized collection of objects whose elements are ordered based on a sort
order. The sort order is specified by a <dyadicValuable> called the sort block. Elements may be
added, removed or inserted, and can be accessed using external integer keys.

Messages
,
add:
asSortedCollection
collect:
copyReplaceAll:with:
copyReplaceFrom:to:with:
copyReplaceFrom:to:withObject:
copyReplacing:withObject:
reverse
sortBlock
sortBlock:

5.7.17.1 Message Refinement: , operand

Synopsis
Answer a new collection which is the concatenation of the receiver and operand.

Definition: <sequenceReadableCollection>
Answer a new collection containing all of the receiver's elements in their original order followed by
all of the elements of operand, in their original order. The size of the new collection is equal to the
sum of the sizes of the receiver and operand, as defined by the #size message.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.
Unless specifically refined, this message is defined to answer an instance of the same type as the
receiver.

Refinement: <SortedCollection>
Since the receiver sorts its elements, the result will also be sorted as defined by the receiver's sort
block.

Parameters

NCITS J20 DRAFT December, 1997 214
of ANSI Smalltalk Standard revision 1.9

operand<sequencedReadableCollection> uncaptured
Return Values

<SortedCollection> new
Errors

If the elements of operand cannot be sorted using receiver's sort block.

5.7.17.2 Message Refinement: add: newElement

Synopsis
Add newElement to the receiver's elements.

Definition: <extensibleCollection>
This message adds a newElement to the receiver. Unless specifically refined, the position of the
newElement in the element traversal order is unspecified.
Conformant protocols may place restrictions on the type of objects that are valid elements. Unless
otherwise specified, any object is acceptable.

Refinement: <SortedCollection>
Since the receiver maintains its elements in sorted order, the position of newElement will depend
on the receiver's sort block.

Parameters
newElement <Object> captured

Return Values
UNSPECIFIED

Errors
If newElement cannot be sorted using receiver's sort block.

5.7.17.3 Message Refinement: asSortedCollection

Synopsis
Answer a sorted collection with the same elements as the receiver.

Definition: <collection>
Answer a sorted collection with the same elements as the receiver. The default sort block is used
unless another sort block is specified in a refinement.

Refinement: <SortedCollection>
The receiver's sort block is used in the result.

Return Values
<SortedCollection> unspecified

Errors
none

5.7.17.4 Message Refinement: collect: transformer

Synopsis
Answer a new collection constructed by gathering the results of evaluating transformer with
each element of the receiver.

Definition: <collection>
For each element of the receiver, transformer is evaluated with the element as the parameter.
The results of these evaluations are collected into a new collection.

NCITS J20 DRAFT December, 1997 215
of ANSI Smalltalk Standard revision 1.9

The elements are traversed in the order specified by the #do: message for the receiver.
Unless specifically refined, this message is defined to answer an objects conforming to the same
protocol as the receiver.

Refinement: <SortedCollection>
Answer a <sequencedCollection>.

Parameters
transformer <monadicValuable> uncaptured

Return Values
<sequencedCollection> new

Errors
If the elements of the receiver are inappropriate for use as arguments to transformer.
If the result of evaluating the transformer is inappropriate for storage in the collection to be
returned.

5.7.17.5 Message Refinement: copyReplaceAll: targetElements with: replacementElements

Synopsis
Answer a new collection in which all subsequences of elements in the receiver matching
targetElements are replaced in the new collection by the elements in replacementElements.

Definition: <sequenceReadableCollection>
Answer a new collection with the elements of the receiver in their original order, except where a
subsequence in the receiver matches targetElements. A subsequence in the receiver is said to
match the elements of targetElements if:
1. They have the same number of elements.
2. For all indices of the subsequence, the element in the subsequence at a given index is
equivalent to the element in targetElements at the same index.
Where a subsequence match is found, the elements from replacementElements are placed in
the new collection instead.
Unless specifically refined, this message is defined to answer an instance of the same class as the
receiver.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.

Refinement: <SortedCollection>
Since the receiver maintains its elements in sorted order, the positions of elements of
replacementElements will depend on the receiver's sort block.

Parameters
targetElements <sequencedReadableCollection> uncaptured
replacementElements<sequencedReadableCollection> unspecified

Return Values
<SortedCollection> new

Errors
If any of the elements in replacementElements does not conform to any element type
restrictions of instances of the receiver's class.
If the elements of replacementElements cannot be sorted using receiver's sort block.

NCITS J20 DRAFT December, 1997 216
of ANSI Smalltalk Standard revision 1.9

5.7.17.6 Message Refinement: copyReplaceFrom: start to: stop with: replacementElements

Synopsis
Answer a new collection, containing the same elements as the receiver, but with the elements in
the receiver between start and stop inclusive replaced by the elements in
replacementElements.

Definition: <sequenceReadableCollection>
This message can be used to insert, append, or replace. The size of replacementElements (as
defined by #size) need not be the same as the number of elements being replaced. There are
three cases:
1. If stop = start - 1 , and start is less than or equal to the size of the receiver, then the
replacementElements are inserted between the elements at index stop and start. None of
the receiver's elements are replaced.
2. If stop = the size of the receiver and start = stop + 1, then the operation is an append, and
the replacementElements are placed at the end of the new collection.
3. Otherwise, the operation is a replacement, and the receiver's elements in the given range are
replaced by the elements from replacementElements.
In all cases, the resulting collection consists of the receiver's elements from indices 1 to start - 1
in their original order, followed by the elements of replacementElements, followed by the
remainder of the receiver's elements from index stop + 1 in their original order. The size of the
result is the receiver's size - (stop - start + 1) + the replacementElements size.
The parameters start and stop must be positive.
Unless specifically refined, this message is defined to answer an instance of the same class as the
receiver's class.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.

Refinement: <SortedCollection>
Since the receiver maintains its elements in sorted order, the positions of elements of
replacementElements will depend on the receiver's sort block.

Parameters
start <integer> uncaptured
stop <integer> uncaptured
replacementElements<sequencedReadableCollection> unspecified

Return Values
<SortedCollection> new

Errors
The elements in replacementElements are not suitable for storage in instances of the receiver's
class.
start > receiver's size + 1
start < 1
stop > receiver's size
stop < start - 1
If the elements of replacementElements cannot be sorted using receiver's sort block.

5.7.17.7 Message Refinement: copyReplaceFrom: start to: stop withObject:
replacementElement

Synopsis

NCITS J20 DRAFT December, 1997 217
of ANSI Smalltalk Standard revision 1.9

Answer a new collection conforming to the same protocols as the receiver, in which the elements of
the receiver between start and stop inclusive have been replaced with replacementElement.

Definition: <sequenceReadableCollection>
This message can be used to insert, append, or replace. There are three cases:
1. If stop = start - 1 , and start is less than or equal to the size of the receiver, then
replacementElement is inserted between the elements at index stop and start. None of the
receiver's elements are replaced.
2. If stop = the size of the receiver and start = stop + 1, then the operation is an append, and
replacementElement is placed at the end of the new collection.
3. Otherwise, the operation is a replacement, and each of the receiver's elements in the given
range is replaced by replacementElement.
The parameters start and stop must be non-negative.
Unless specifically refined, this message is defined to answer an instance of the same class as the
receiver's class.
Collections that by definition enforce an ordering on their elements are permitted to refine this
message to reorder the result.

Refinement: <SortedCollection>
Since the receiver maintains its elements in sorted order, the position(s) occupied by
replacementElement will depend on the receiver's sort block.

Parameters
start <integer> uncaptured
stop <integer> uncaptured
replacementElement <Object> captured

Return Values
<SortedCollection> new

Errors
The replacementElement is not suitable for storage in instances of the receiver's class.
start > receiver's size + 1
start < 1
stop > receiver's size
stop < start - 1
If replacementElement cannot be sorted using receiver's sort block.

5.7.17.8 Message Refinement: copyReplacing: targetElement withObject:
replacementElement

Synopsis
Answer a new collection conforming to the same protocols as the receiver, in which any
occurrences of targetElement are replaced by replacementElement.

Definition: <sequenceReadableCollection>
A new collection is created and initialized with the same elements as the receiver in the same
order, except that any objects in the receiver which are equivalent to targetElement are
replaced in the new collection by replacementElement.
Unless specifically refined, this message is defined to answer an instance of the same class as the
receiver.
Collections that enforce an ordering on their elements are permitted to refine this message to
reorder the result.

NCITS J20 DRAFT December, 1997 218
of ANSI Smalltalk Standard revision 1.9

Refinement: <SortedCollection>
Since the receiver maintains its elements in sorted order, the position occupied by
replacementElement will depend on the receiver's sort block.

Parameters
targetElement <Object> uncaptured
replacementElement <Object> captured

Return Values
<SortedCollection> new

Errors
If the replacementElement is inappropriate for storage in instances of the receiver's class.
If replacementElement cannot be sorted using receiver's sort block.

5.7.17.9 Message Refinement: reverse

Synopsis
Answer a collection with the elements of the receiver arranged in reverse order.

Definition: <sequenceReadableCollection>
Answer a collection conforming to the same protocols as the receiver, but with its elements
arranged in reverse order.
This operation is equivalent to:
1. Create a new collection which conforms to the same protocols as the receiver;
2. Traverse the elements of the receiver in the order specified by the #reverseDo: message,
adding each element of the receiver to the new collection;
3. Answer the new collection.

Refinement: <SortedCollection>
Answer a <sequencedReadableCollection>.

Return Values
<sequencedReadableCollection> new

Errors
none

5.7.17.10 Message: sortBlock

Synopsis
Answer the receiver's sort block.

Definition: <SortedCollection>
Answer the receiver's sort block. The sort block is defined by the #sortBlock: message.

Return Values
<dyadicValuable> state

Errors
none

5.7.17.11 Message: sortBlock: discriminator

Synopsis
Set the receiver's sort block to discriminator.

Definition: <SortedCollection>

NCITS J20 DRAFT December, 1997 219
of ANSI Smalltalk Standard revision 1.9

This message defines the sort block used to specify the receiver's ordering criteria. The sortBlock
is a 2-parameter <block>, which when evaluated with any two elements in the receiver, answers
true if the first parameter should be ordered before the second parameter, and false otherwise. The
sort block must obey the following properties:
1. Given the same 2 parameters, the sort block must answer the same result.
2. The sort block must obey transitivity. For example, if a is before b, and b is before c, then a must
be before c.
The receiver's sort block is set to discriminator, and the elements are re-sorted.

Parameters
discriminator<dyadicValuable> captured

Return Values
<SortedCollection> receiver

Errors
If the elements of the receiver cannot be sorted using the discriminator.

5.7.18 Protocol: <OrderedCollection>

Conforms To
<extensibleCollection> <sequencedContractibleCollection> <sequencedCollection>

Description
Represents an ordered, variable sized collection of objects. Elements may be added, removed or
inserted, and can be accessed using external integer keys.

Messages
add:
add:after:
add:afterIndex:
add:before:
add:beforeIndex:
addAll:after:
addAll:afterIndex:
addAll:before:
addAll:beforeIndex:
addAllFirst:
addAllLast:
addFirst:
addLast:

5.7.18.1 Message Refinement: add: newElement

Synopsis
Add newElement to the receiver's elements.

NCITS J20 DRAFT December, 1997 220
of ANSI Smalltalk Standard revision 1.9

Definition: <extensibleCollection>
This message adds a newElement to the receiver. Unless specifically refined, the position of the
newElement in the element traversal order is unspecified.
Conformant protocols may place restrictions on the type of objects that are valid elements. Unless
otherwise specified, any object is acceptable.

Refinement: <OrderedCollection>
The newElement is added to the end of the receiver's elements so that it becomes the last
element in the traversal order. This message is equivalent to #addLast: for the receiver with
newElement as the parameter.

Parameters
newElement <Object> captured

Return Values
UNSPECIFIED

Errors
none

5.7.18.2 Message: add: newElement after: target

Synopsis
Add newElement to the receiver immediately following the first element which is equivalent to
target.

Definition: <OrderedCollection>
Add newElement to the receiver immediately following the first element which is equivalent to
target. An element immediately follows another if its index is one greater than that of the other.
The order used to determine which of the receiver's elements is the first to equal target is the
traversal order defined by #do: for the receiver.
If the receiver does not include target, the operation fails.

Parameters
newElement <Object> captured
target <Object> uncaptured

Return Values
<Object> state

Errors
If there is no element in the receiver which is equivalent to target.

5.7.18.3 Message: add: newElement afterIndex: index

Synopsis
Add newElement to the receiver immediately following the element at position index.

Definition: <OrderedCollection>
Add newElement to the receiver immediately following the element at position index.
newElement is inserted at position index + 1. If index is equal to 0, newElement becomes the
first element of the receiver.

Parameters
newElement <Object> captured
index <integer> uncaptured

Return Values

NCITS J20 DRAFT December, 1997 221
of ANSI Smalltalk Standard revision 1.9

<Object> state
Errors

If index < 0.
If index > receiver's size.

5.7.18.4 Message: add: newElement before: target

Synopsis
Add newElement to the receiver immediately before the first element which is equivalent to
target.

Definition: <OrderedCollection>
Add newElement to the receiver immediately before the first element which is equivalent to
target. An element immediately precedes another if its index is one less than that of the other.
The order used to determine which of the receiver's elements is the first to equal target in the
traversal order defined by #do: for the receiver.
If the receiver does not include target, the operation fails.

Parameters
newElement <Object> captured
target <Object> uncaptured

Return Values
<Object> state

Errors
If there is no element in the receiver which is equivalent to target.
If the element which is equal to target is the last element in the receiver.

5.7.18.5 Message: add: newElement beforeIndex: index

Synopsis
Add newElement to the receiver immediately before the element at position index.

Definition: <OrderedCollection>
Add newElement to the receiver immediately before the element at position index in the receiver.
If index equals the receiver's size plus 1 newElement will be inserted at the end of the receiver.
The parameter index must be a positive integer less than or equal to the receiver's size plus 1.

Parameters
newElement <Object> captured
index <integer> uncaptured

Return Values
<Object> state

Errors
If index <=0.
If index > receiver's size + 1.

5.7.18.6 Message: addAll: newElements after: target

Synopsis
Add each element of newElements to the receiver immediately after the first element in the
receiver which is equivalent to target. Answer newElements.

NCITS J20 DRAFT December, 1997 222
of ANSI Smalltalk Standard revision 1.9

Definition: <OrderedCollection>
Add the elements of newElements to the receiver in the traversal order defined by #do: for
newElements. The new elements are inserted in the receiver immediately after the first element in
the receiver which is equivalent to target.
An element immediately follows another if its index is one greater than that of the other. The order
used to determine which of the receiver's elements is the first to equal target is the traversal
order defined by #do: for the receiver.
If the receiver does not include target, the operation fails.

Parameters
newElements <collection> unspecified
target <Object> uncaptured

Return Values
UNSPECIFIED

Errors
If there is no element in the receiver which is equivalent to target.

5.7.18.7 Message: addAll: newElements afterIndex: index

Synopsis
Insert the elements of newElements in the receiver immediately after the element at position
index. Answer newElements.

Definition: <OrderedCollection>
Add the elements of newElements to the receiver in the traversal order defined by #do: for
newElements. The new elements are inserted in the receiver immediately after the element in the
receiver at position index. If index is equal to 0, newElements are inserted at the beginning of
the receiver.
The parameter index must be a non-negative integer less than or equal to the receiver's size.

Parameters
newElements <collection> unspecified
index <integer> uncaptured

Return Values
UNSPECIFIED

Errors
If index < 0.
If index > receiver's size.

5.7.18.8 Message: addAll: newElements before: target

Synopsis
Add each element of newElements to the receiver immediately before the first element in the
receiver which is equivalent to target. Answer newElements.

Definition: <OrderedCollection>
Add the elements of newElements to the receiver in the traversal order defined by #do: for
newElements. The new elements are inserted in the receiver immediately before the first element
in the receiver which is equivalent to target.

NCITS J20 DRAFT December, 1997 223
of ANSI Smalltalk Standard revision 1.9

An element immediately follows another if its index is one greater than that of the other. The order
used to determine which of the receiver's elements is the first to equal target is the traversal
order defined by #do: for the receiver.
If the receiver does not include target, the operation fails.

Parameters
newElements <collection> unspecified
target <Object> uncaptured

Return Values
UNSPECIFIED

Errors:
If there is no element in the receiver which is equivalent to target.

5.7.18.9 Message: addAll: newElements beforeIndex: index

Synopsis
Insert the elements of newElements in the receiver immediately before the element at position
index. Answer newElements.

Definition: <OrderedCollection>
Add the elements of newElements to the receiver in the traversal order defined by #do: for
newElements. The new elements are inserted in the receiver immediately before the element in
the receiver at position index. If index equals the receiver's size plus 1 newElements will be
inserted at the end of the receiver.
The parameter index must be a positive integer less than or equal to the receiver's size plus 1.

Parameters
newElements <collection> unspecified
index <integer> uncaptured

Return Values
UNSPECIFIED

Errors
If index <=0.
If index > receiver's size + 1.

5.7.18.10 Message: addAllFirst: newElements

Synopsis
Add each element of newElements to the beginning of the receiver's elements. Answer
newElements.

Definition: <OrderedCollection>
This message is used to iteratively add each element of a given collection to the beginning of the
receiver's elements.
The operation is equivalent to adding each successive element of newElements to the receiver
using the #addFirst: message with the element as the parameter, where the newElements are
traversed in the order specified by the #reverseDo: message for newElements.

Parameters
newElements <sequencedCollection> unspecified

Return Values
UNSPECIFIED

NCITS J20 DRAFT December, 1997 224
of ANSI Smalltalk Standard revision 1.9

Errors
none

5.7.18.11 Message: addAllLast: newElements

Synopsis
Add each element of newElements to the end of the receiver's elements. Answer newElements.

Definition: <OrderedCollection>
This message is used to iteratively add each element of a given collection to the end of the
receiver's elements.
The operation is equivalent to adding each successive element of newElements to the receiver
using the #addLast: message with the element as the parameter, where the newElements are
traversed in the order specified by the #do: message for newElements.

Parameters
UNSPECIFIED

Return Values
<sequencedCollection> parameter

Errors
none

5.7.18.12 Message: addFirst: newElement

Synopsis
Add newElement to the beginning of the receiver's elements. Answer newElement.

Definition: <OrderedCollection>
The newElement is added to the beginning of the receiver's elements so that it becomes the first
element in the traversal order.

Parameters
newElement <Object> captured

Return Values
UNSPECIFIED

Errors
none

5.7.18.13 Message: addLast: newElement

Synopsis
Add newElement to the end of the receiver's elements. Answer newElement.

Definition: <OrderedCollection>
The newElement is added to the end of the receiver's elements so that it becomes the last
element in the traversal order.

Parameters
newElement <Object> captured

Return Values
UNSPECIFIED

Errors
none

NCITS J20 DRAFT December, 1997 225
of ANSI Smalltalk Standard revision 1.9

5.7.19 Protocol: <Interval factory>

Conforms To
<Object>

Description
Represents protocol for creating a collection whose elements are numbers which form an
arithmetic progression.

Standard Globals
Interval Conforms to the protocol <Interval factory>. Its language element type is

unspecified. This is a factory and discriminator for collections that
conform to <Interval>.

Messages
from:to:
from:to:by:

5.7.19.1 Message: from: start to: stop

Synopsis
Answer an interval which represents an arithmetic progression from start to stop in increments
of 1.

Definition: <Interval factory>
Answer an interval which represents an arithmetic progression from start to stop, using the
increment 1 to compute each successive element. The elements are numbers which have the
same type as start. Note that stop may not be the last element in the sequence; the last
element is given by the formula

start + ((stop - start) // 1)

The interval answered will be empty (it will answer 0 to the #size message) if start > stop
Parameters

start <number> unspecified
stop <number> unspecified

Return Values
<Interval> unspecified

Errors
none

5.7.19.2 Message: from: start to: stop by: step

Synopsis
Answer an interval which represents an arithmetic progression from start to stop in increments
of step.

Definition: <Interval factory>
Answer an interval which represents an arithmetic progression from start to stop, using the
increment step to compute each successive element. The value of step can be positive or

NCITS J20 DRAFT December, 1997 226
of ANSI Smalltalk Standard revision 1.9

negative, but it must be non-zero. The elements are numbers which have the most general type of
start and step. Note that stop is not necessarily an element in the sequence; the last element
is given by the formula

(((stop - start) // step) * step) + start

The interval answered will be empty (it will answer 0 to the #size message) if:
start < stop and step < 0, or
start > stop and step > 0.

Parameters
start <number> unspecified
stop <number> unspecified
step <number> unspecified

Return Values
<Interval> unspecified

Errors
step = 0

5.7.20 Protocol: <collection factory>

Conforms To
<instantiator>

Description
Provides protocol for creating a collection of objects. A collection can be fixed or variable sized,
ordered or unordered, and its elements may or may not be accessible by external keys.

Messages
new
new:

5.7.20.1 Message Refinement: new

Synopsis
Create a new object.

Definition: <instantiator>
Return a newly created object initialized to a standard initial state.

Refinement: <collection factory>
This message has the same effect as sending the message #new: with the argument 0.

Return Values
<Collection> new

Errors
none

NCITS J20 DRAFT December, 1997 227
of ANSI Smalltalk Standard revision 1.9

5.7.20.2 Message: new: count

Synopsis
Create a new collection. The parameter count constrains the number of elements in the result.

Definition: <collection factory>
Return a new collection that has space for at least count elements.
Conforming protocols may refine this message. In particular, the effect of the parameter count
should be specified in refinements. It can be used to specify the exact number of elements, the
minimum number, or in some cases can even be interpreted as a hint from the programmer, with
no guarantee that the requested number of instance variables will actually be allocated.
Unless otherwise stated the initial values of elements, if any, of the new collection are unspecified.

Parameters
count <integer> unspecified

Return Values
<collection> new

Errors
none

5.7.21 Protocol: <Dictionary factory>

Conforms To
<collection factory>

Description
This protocol defines the behavior of objects that can be used to create objects that conform to the
protocol <Dictionary>.

Standard Globals
Dictionary Conforms to the protocol <Dictionary factory>. Its language element type

is unspecified. This is a factory and discriminator for collections that
conform to <Dictionary>.

Messages
new
new:
withAll:

5.7.21.1 Message Refinement: new

Synopsis
Create a new object.

Definition: <instantiator>
Return a newly created object initialized to a standard initial state.

Refinement: <collection factory>
This message has the same effect as sending the message #new: with the argument 0, and will
return an empty collection.

NCITS J20 DRAFT December, 1997 228
of ANSI Smalltalk Standard revision 1.9

Refinement: <Dictionary factory>
Return a new <Dictionary> that is optimized to store an implementation defined number of
elements. The new collection initially contains no elements.

Return Values
<Dictionary> new

Errors
none

5.7.21.2 Message Refinement: new: count

Synopsis
Create a new collection. The parameter count constrains the number of elements in the result.

Definition: <collection factory>
Return a new collection that has space for at least count elements.
Conforming protocols may refine this message. In particular, the effect of the parameter count
should be specified in refinements. It can be used to specify the exact number of elements, the
minimum number, or in some cases can even be interpreted as a hint from the programmer, with
no guarantee that the requested number of instance variables will actually be allocated.
Unless otherwise stated the initial values of elements of the new instance of the receiver are
unspecified.

Refinement: <Dictionary factory>
The parameter count represents a hint for space allocation. The new collection is to optimized to
contain count elements. The new collection initially contains no elements.
The new collection conforms to the protocol <Dictionary>.

Parameters
count <integer> unspecified

Return Values
<Dictionary> new

Errors
none

5.7.21.3 Message: withAll: newElements

Synopsis
Create a collection containing all the elements of newElements.

Definition: <Dictionary factory>
Return a new collection whose elements are the elements of newElements. The effect is the
same as evaluating Dictionary new addAll: newElements; yourself.

Parameters
newElements <abstractDictionary> unspecified

Return Values
<Dictionary> new

Errors
none

NCITS J20 DRAFT December, 1997 229
of ANSI Smalltalk Standard revision 1.9

5.7.22 Protocol: <IdentityDictionary factory>

Conforms To
<abstractDictionary factory>

Description
This protocol defines the behavior of objects that can be used to create objects that conform to the
protocol <IdentityDictionary>.

Standard Globals
IdentityDictionary Conforms to the protocol <IdentityDictionary factory>. Its language

element type is unspecified. This is a factory and discriminator for
collections that conform to <IdentityDictionary>.

Messages
new
new:
withAll:

5.7.22.1 Message Refinement: new

Synopsis
Create a new object.

Definition: <instantiator>
Return a newly created object initialized to a standard initial state.

Refinement: <collection factory>
This message has the same effect as sending the message #new: with the argument 0, and will
return an empty collection.

Refinement: <IdentityDictionary factory>
Return a new <IdentityDictionary> that is optimized to store an implementation defined number of
elements. The new collection initially contains no elements.

Return Values
<IdentityDictionary> new

Errors
none

5.7.22.2 Message Refinement: new: count

Synopsis
Create a new collection. The parameter count constrains the number of elements in the result.

Definition: <collection factory>
Return a new collection that has space for at least count elements.
Conforming protocols may refine this message. In particular, the effect of the parameter count
should be specified in refinements. It can be used to specify the exact number of elements, the
minimum number, or in some cases can even be interpreted as a hint from the programmer, with
no guarantee that the requested number of instance variables will actually be allocated.

NCITS J20 DRAFT December, 1997 230
of ANSI Smalltalk Standard revision 1.9

Unless otherwise stated the initial values of elements of the new instance of the receiver are
unspecified.

Refinement: <IdentityDictionary factory>
The parameter count represents a hint for space allocation. The new collection is to optimized to
contain count elements. The new collection initially contains no elements.
The new collection conforms to the protocol <IdentityDictionary>.

Parameters
count <integer> unspecified

Return Values
<IdentityDictionary> new

Errors
none

5.7.22.3 Message: withAll: newElements

Synopsis
Create a collection containing all the elements of newElements.

Definition: <IdentityDictionary factory>
Return a new collection whose elements are the elements of newElements. The effect is the
same as evaluating IdentityDictionary new addAll: newElements; yourself.

Parameters
newElements <abstractDictionary> unspecified

Return Values
<IdentityDictionary> new

Errors
none

5.7.23 Protocol: <initializableCollection factory>

Conforms To
<collection factory>

Description
This protocol defines the behavior of objects that can be used to create non-empty collections.

Messages
with:
with:with:
with:with:with
with:with:with:with:
withAll:

5.7.23.1 Message: with: element1
 Message: with: element1 with: element2

NCITS J20 DRAFT December, 1997 231
of ANSI Smalltalk Standard revision 1.9

 Message: with: element1 with: element2 with: element3
 Message: with: element1 with: element2 with: element3 with: element4

Synopsis
Create a collection initially containing the argument elements

Definition: <initializableCollection factory>
Return a new collection containing a number of elements equal to the number of arguments to this
message. The collection contains the arguments as its elements.
Conforming protocols may impose restrictions on the values of the arguments and hence the
element types.

Parameters
element1 <Object> captured
element2 <Object> captured
element3 <Object> captured
element4 <Object> captured

Return Values
<collection> new

Errors
If any of the arguments do not meet the element type constraints of the result object

5.7.23.2 Message: withAll: newElements

Synopsis
Create a collection containing all the elements of newElements.

Definition: <initializableCollection factory>
Return a new collection whose elements are the elements of newElements.
Conforming protocols may impose restrictions on the values of newElements.

Parameters
newElements <collection> unspecified

Return Values
<collection> new

Errors
If any of the elements in newElements do not meet the element type constraints of the result
object

5.7.24 Protocol: <Array factory>

Conforms To
<initializableCollection factory>

Description
This protocol defines the behavior of objects that can be used to create objects that conform to
<Array>. These objects are created with a specified size. If element values are not explicitly
provided they default to nil.

NCITS J20 DRAFT December, 1997 232
of ANSI Smalltalk Standard revision 1.9

Standard Globals
Array Conforms to the protocol <Array factory>. Its language element type is

unspecified. This is a factory and discriminator for collections that
conform to <Array>.

Messages
new
new:
with:
with:with:
with:with:with
with:with:with:with:
withAll:

5.7.24.1 Message Refinement: new

Synopsis
Create a new object.

Definition: <instantiator>
Return a newly created object initialized to a standard initial state.

Refinement: <collection factory>
This message has the same effect as sending the message #new: with the argument 0, and will
return an empty collection.

Refinement: <Array factory>
Create a new <Array> that contains no elements.

Return Values
<Array> new

Errors
none

5.7.24.2 Message Refinement: new: count

Synopsis
Create a new collection. The parameter count constrains the number of elements in the result.

Definition: <collection factory>
Return a new collection that has space for at least count elements.
Conforming protocols may refine this message. In particular, the effect of the parameter count
should be specified in refinements. It can be used to specify the exact number of elements, the
minimum number, or in some cases can even be interpreted as a hint from the programmer, with
no guarantee that the requested number of instance variables will actually be allocated.
Unless otherwise stated the initial values of elements of the new instance of the receiver are
unspecified.

Refinement: <Array factory>
The parameter count specifies the size of the receiver. The initial value of each element of the
new instance of the receiver is nil. The new collections conforms to the protocol <Array>.

Parameters
count <integer> unspecified

Return Values
<Array> new

Errors

NCITS J20 DRAFT December, 1997 233
of ANSI Smalltalk Standard revision 1.9

count<0

5.7.24.3 Message Refinement: with: element1
 Message Refinement: with: element1 with: element2
 Message Refinement: with: element1 with: element2 with: element3
 Message Refinement: with: element1 with: element2 with: element3 with: element4

Synopsis
Create a collection initially containing the argument elements

Definition: <initializableCollection factory>
Return a new collection containing a number of elements equal to the number of arguments to this
message. The collection contains the arguments as its elements.
Conforming protocols may impose restrictions on the values of the arguments and hence the
element types.

Refinement: <Array factory>
The first argument is at index position 1, the second argument is at index position 2, and so on...

Parameters
element1 <Object> captured
element2 <Object> captured
element3 <Object> captured
element4 <Object> captured

Return Values
<Array> new

Errors
If any of the arguments do not meet the element type constraints of the result object

5.7.24.4 Message Refinement: withAll: newElements

Synopsis
Create a collection containing only the elements of newElements.

Definition: <initializableCollection factory>
Return a new collection whose elements are the elements of newElements.
Conforming protocols may impose restrictions on the values of newElements.

Refinement: <Array factory>
If the elements of newElements are ordered then their ordering establishing their index positions
in the new collection.

Parameters
newElements <collection> unspecified

Return Values
<Array> new

Errors
If any of the elements of newElements do not meet the element type constraints of the result
object

NCITS J20 DRAFT December, 1997 234
of ANSI Smalltalk Standard revision 1.9

5.7.25 Protocol: <Bag factory>

Conforms To
<initializableCollection factory>

Description
This protocol defines the behavior of objects that can be used to create objects that conform to the
protocol <Bag>.

Standard Globals
Bag Conforms to the protocol <Bag factory>. Its language element type is

unspecified. This is a factory and discriminator for collections that
conform to <Bag>.

Messages
new
new:
with:
with:with:
with:with:with
with:with:with:with:
withAll:

5.7.25.1 Message Refinement: new

Synopsis
Create a new object.

Definition: <instantiator>
Return a newly created object initialized to a standard initial state.

Refinement: <collection factory>
This message has the same effect as sending the message #new: with the argument 0, and will
return an empty collection.

Refinement: <Bag factory>
Return a new <Bag> that is optimized to store an implementation defined number of elements. The
new collection initially contains no elements.

Return Values
<Bag> new

Errors
none

5.7.25.2 Message Refinement: new: count

Synopsis
Create a new collection. The parameter count constrains the number of elements in the result.

Definition: <collection factory>

NCITS J20 DRAFT December, 1997 235
of ANSI Smalltalk Standard revision 1.9

Return a new collection that has space for at least count elements.
Conforming protocols may refine this message. In particular, the effect of the parameter count
should be specified in refinements. It can be used to specify the exact number of elements, the
minimum number, or in some cases can even be interpreted as a hint from the programmer, with
no guarantee that the requested number of instance variables will actually be allocated.
Unless otherwise stated the initial values of elements of the new instance of the receiver are
unspecified.

Refinement: <Bag factory>
The parameter count represents a hint to the implementation as to the likely number of elements
that may be added to the new collection. The new collection initially contains no elements.
The new collections conforms to the protocol <Bag>.

Parameters
count <integer> unspecified

Return Values
<Bag> new

Errors
none

5.7.25.3 Message Refinement: with: element1
 Message Refinement: with: element1 with: element2
 Message Refinement: with: element1 with: element2 with: element3
 Message Refinement: with: element1 with: element2 with: element3 with: element4

Synopsis
Create a collection initially containing the argument elements

Definition: <initializableCollection factory>
Return a new collection containing a number of elements equal to the number of arguments to this
message. The collection contains the arguments as its elements.
Conforming protocols may impose restrictions on the values of the arguments and hence the
element types.

Refinement: <Bag factory>
The result is undefined if any of the arguments are nil.

Parameters
element1 <Object> captured
element2 <Object> captured
element3 <Object> captured
element4 <Object> captured

Return Values
<Bag> new

Errors
If any of the arguments do not meet the element type constraints of the result object

5.7.25.4 Message Refinement: withAll: newElements

Synopsis
Create a collection containing only the elements of newElements.

Definition: <initializableCollection factory>

NCITS J20 DRAFT December, 1997 236
of ANSI Smalltalk Standard revision 1.9

Return a new collection whose elements are the elements of newElements.
Conforming protocols may impose restrictions on the values of newElements.

Refinement: <Bag factory>
The result is unspecified if newElements contains nil.

Parameters
newElements <collection> unspecified

Return Values
<Bag> new

Errors
If any of the elements of newElements do not meet the element type constraints of the result
object

5.7.26 Protocol: <ByteArray factory>

Conforms To
<initializableCollection factory>

Description
This protocol defines the behavior of objects that can be used to create objects that conform to
<ByteArray>. These objects are created with a specified size. If the element values are not
explicitly provided, they default to 0.

Standard Globals
ByteArray Conforms to the protocol <ByteArray factory>. Its language element type

is unspecified. This is a factory and discriminator for collections that
conform to <ByteArray>.

Messages
new
new
with:
with:with:
with:with:with
with:with:with:with:
withAll:

5.7.26.1 Message Refinement: new

Synopsis
Create a new object.

Definition: <instantiator>
Return a newly created object initialized to a standard initial state.

NCITS J20 DRAFT December, 1997 237
of ANSI Smalltalk Standard revision 1.9

Refinement: <collection factory>
This message has the same effect as sending the message #new: with the argument 0, and will
return an empty collection.

Refinement: <ByteArray factory>
Create a new <ByteArray> that contains no elements.

Return Values
<ByteArray> new

Errors
none

5.7.26.2 Message Refinement: new: count

Synopsis
Create a new collection. The parameter count constrains the number of elements in the result.

Definition: <collection factory>
Return a new collection that has space for at least count elements.
Conforming protocols may refine this message. In particular, the effect of the parameter count
should be specified in refinements. It can be used to specify the exact number of elements, the
minimum number, or in some cases can even be interpreted as a hint from the programmer, with
no guarantee that the requested number of instance variables will actually be allocated.
Unless otherwise stated the initial values of elements of the new instance of the receiver are
unspecified.

Refinement: <ByteArray factory>
The parameter count specifies the size of the receiver. The initial value of each element of the
new instance of the receiver is 0. The new collections conforms to the protocol <ByteArray>.

Parameters
count <integer> unspecified

Return Values
<ByteArray> new

Errors
count<0

5.7.26.3 Message Refinement: with: element1
 Message Refinement: with: element1 with: element2
 Message Refinement: with: element1 with: element2 with: element3
 Message Refinement: with: element1 with: element2 with: element3 with: element4

Synopsis
Create a collection initially containing the argument elements

Definition: <initializableCollection factory>
Return a new collection containing a number of elements equal to the number of arguments to this
message. The collection contains the arguments as its elements.
Conforming protocols may impose restrictions on the values of the arguments and hence the
element types.

Refinement: <ByteArray factory>
The first argument is at index position 1, the second argument is at index position 2, and so on...

Parameters
element1 <integer> captured

NCITS J20 DRAFT December, 1997 238
of ANSI Smalltalk Standard revision 1.9

element2 <integer> captured
element3 <integer> captured
element4 <integer> captured

Return Values
<ByteArray> new

Errors
If any of the arguments do not meet the element type constraints of the result object

5.7.26.4 Message Refinement: withAll: newElements

Synopsis
Create a collection containing only the elements of newElements.

Definition: <initializableCollection factory>
Return a new collection whose elements are the elements of newElements.
Conforming protocols may impose restrictions on the values of newElements.

Refinement: <ByteArray factory>
If the elements of newElements are ordered then their ordering establishing their index positions
in the new collection.

Parameters
newElements <collection> unspecified

Return Values
<ByteArray> new

Errors
If any of the elements of newElements do not meet the element type constraints of the result
object

5.7.27 Protocol: <OrderedCollection factory>

Conforms To
<initializableCollection factory>

Description
This protocol defines the behavior of objects that can be used to create fixed sized ordered
collections of objects which can be accessed externally using integer keys.

Standard Globals
OrderedCollection Conforms to the protocol <OrderedCollection factory>. Its language

element type is unspecified. This is a factory and discriminator for
collections that conform to <OrderedCollection>.

Messages
new
new:

NCITS J20 DRAFT December, 1997 239
of ANSI Smalltalk Standard revision 1.9

with:
with:with:
with:with:with
with:with:with:with:
withAll:

5.7.27.1 Message Refinement: new

Synopsis
Create a new object.

Definition: <instantiator>
Return a newly created object initialized to a standard initial state.

Refinement: <collection factory>
This message has the same effect as sending the message #new: with the argument 0, and will
return an empty collection.

Refinement: <OrderedCollection factory>
Create a new <OrderedCollection> that is optimized to store an implementation defined number of
elements. The new collection initially contains no elements.

Return Values
<OrderedCollection> new

Errors
none

5.7.27.2 Message Refinement: new: count

Synopsis
Create a new collection. The parameter count constrains the number of elements in the result.

Definition: <collection factory>
Return a new collection that has space for at least count elements.
Conforming protocols may refine this message. In particular, the effect of the parameter count
should be specified in refinements. It can be used to specify the exact number of elements, the
minimum number, or in some cases can even be interpreted as a hint from the programmer, with
no guarantee that the requested number of instance variables will actually be allocated.
Unless otherwise stated the initial values of elements of the new instance of the receiver are
unspecified.

Refinement: <OrderedCollection factory>
The parameter count represents a hint for space allocation. The new collection is to optimized to
contain count elements. The new collection initially contains no elements.

Parameters
count <integer> unspecified

Return Values
<OrderedCollection> new

Errors
count<0

NCITS J20 DRAFT December, 1997 240
of ANSI Smalltalk Standard revision 1.9

5.7.27.3 Message Refinement: with: element1
 Message Refinement: with: element1 with: element2
 Message Refinement: with: element1 with: element2 with: element3
 Message Refinement: with: element1 with: element2 with: element3 with: element4

Synopsis
Create a collection initially containing the argument elements

Definition: <initializableCollection factory>
Return a new collection containing a number of elements equal to the number of arguments to this
message. The collection contains the arguments as its elements.
Conforming protocols may impose restrictions on the values of the arguments and hence the
element types.

Refinement: <OrderedCollection factory>
The first argument is at index position 1, the second argument is at index position 2, and so on.

Parameters
element1 <Object> captured
element2 <Object> captured
element3 <Object> captured
element4 <Object> captured

Return Values
<OrderedCollection> new

Errors
If any of the arguments do not meet the element type constraints of the result object

5.7.27.4 Message Refinement: withAll: newElements

Synopsis
Create a collection containing only the elements of newElements.

Definition: <initializableCollection factory>
Return a new collection whose elements are the elements of newElements.
Conforming protocols may impose restrictions on the values of newElements.

Refinement: <OrderedCollection factory>
If the elements of newElements are ordered then their ordering establishing their index positions
in the new collection.

Parameters
newElements <collection> unspecified

Return Values
<OrderedCollection> new

Errors
If any of the elements of newElements do not meet the element type constraints of the result
object

NCITS J20 DRAFT December, 1997 241
of ANSI Smalltalk Standard revision 1.9

5.7.28 Protocol: <Set factory>

Conforms To
<initializableCollection factory>

Description
This protocol defines the behavior of objects that can be used to create objects that conform to the
protocol <Set>.

Standard Globals
Set Conforms to the protocol <Set factory>. Its language element type is

unspecified. This is a factory and discriminator for collections that
conform to <Set>.

Messages
new
new:
with:
with:with:
with:with:with
with:with:with:with:
withAll:

5.7.28.1 Message Refinement: new

Synopsis
Create a new object.

Definition: <instantiator>
Return a newly created object initialized to a standard initial state.

Refinement: <collection factory>
This message has the same effect as sending the message #new: with the argument 0, and will
return an empty collection.

Refinement: <Set factory>
Return a new <Set> that is optimized to store an arbitrary number of elements. The new collection
initially contains no elements.

Return Values
<Set> new

Errors
none

5.7.28.2 Message Refinement: new: count

Synopsis
Create a new collection. The parameter count constrains the number of elements in the result.

Definition: <collection factory>
Return a new collection that has space for at least count elements.
Conforming protocols may refine this message. In particular, the effect of the parameter count
should be specified in refinements. It can be used to specify the exact number of elements, the
minimum number, or in some cases can even be interpreted as a hint from the programmer, with
no guarantee that the requested number of instance variables will actually be allocated.
Unless otherwise stated the initial values of elements of the new instance of the receiver are
unspecified.

Refinement: <Set factory>

NCITS J20 DRAFT December, 1997 242
of ANSI Smalltalk Standard revision 1.9

The parameter count represents a hint for space allocation. The new collection is to optimized to
contain count elements. If the value of count is zero the collection should be optimize to hold an
arbitrary number of elements. The new collection initially contains no elements.
The new collections conforms to the protocol <Set>.

Parameters
count <integer> unspecified

Return Values
<Set> new

Errors
none

5.7.28.3 Message Refinement: with: element1
 Message Refinement: with: element1 with: element2
 Message Refinement: with: element1 with: element2 with: element3
 Message Refinement: with: element1 with: element2 with: element3 with: element4

Synopsis
Create a collection initially containing the argument elements

Definition: <initializableCollection factory>
Return a new collection containing a number of elements equal to the number of arguments to this
message. The collection contains the arguments as its elements.
Conforming protocols may impose restrictions on the values of the arguments and hence the
element types.

Refinement: <Set factory>
The result is undefined if any of the arguments are nil.

Parameters
element1 <Object> captured
element2 <Object> captured
element3 <Object> captured
element4 <Object> captured

Return Values
<Set> new

Errors
If any of the arguments do not meet the element type constraints of the result object

5.7.28.4 Message Refinement: withAll: newElements

Synopsis
Create a collection containing only the elements of newElements.

Definition: <initializableCollection factory>
Return a new collection whose elements are the elements of newElements.
Conforming protocols may impose restrictions on the values of newElements.

Refinement: <Set factory>
The result is unspecified if newElements contains nil.

Parameters
newElements <collection> unspecified

NCITS J20 DRAFT December, 1997 243
of ANSI Smalltalk Standard revision 1.9

Return Values
<Set> new

Errors
If any of the elements of newElements do not meet the element type constraints of the result
object

5.7.29 Protocol: <SortedCollection factory>

Conforms To
<initializableCollection factory>

Description
Represents protocol for creating a variable sized collection of objects whose elements are ordered
based on a sort order specified by a two parameter block called the sort block. Elements may be
added, removed or inserted, and can be accessed using external integer keys.

Standard Globals
SortedCollection Conforms to the protocol <SortedCollection factory>. Its language

element type is unspecified. This is a factory and discriminator for
collections that conform to <SortedCollection>.

Messages
new
new:
sortBlock:
with:
with:with:
with:with:with
with:with:with:with:
withAll:

5.7.29.1 Message Refinement: new

Synopsis
Create a new object.

Definition: <instantiator>
Return a newly created object initialized to a standard initial state.

Refinement: <collection factory>
This message has the same effect as sending the message #new: with the argument 0, and will
return an empty collection.

Refinement: <SortedCollection factory>

NCITS J20 DRAFT December, 1997 244
of ANSI Smalltalk Standard revision 1.9

A sort block is supplied which guarantees that the elements will be sorted in ascending order as
specified by the #< message for the elements. The collection's representation should be optimized
to store an arbitrary number of elements.

Return Values
SortedCollection new

Errors
none

5.7.29.2 Message Refinement: new: count

Synopsis
Create a new collection. The parameter count constrains the number of elements in the result.

Definition: <collection factory>
Return a new collection that has space for at least count elements.
Conforming protocols may refine this message. In particular, the effect of the parameter count
should be specified in refinements. It can be used to specify the exact number of elements, the
minimum number, or in some cases can even be interpreted as a hint from the programmer, with
no guarantee that the requested number of instance variables will actually be allocated.
Unless otherwise stated the initial values of elements of the new instance of the receiver are
unspecified.

Refinement: <SortedCollection factory>
The parameter count represents an estimate of the maximum number of elements in the
collection. The representation may be optimized for this size.
A sort block is supplied which guarantees that the elements will be sorted in ascending order as
specified by the #< message for the elements.

Parameters
count <integer> unspecified

Return Values
<SortedCollection> new

Errors
none

5.7.29.3 Message: sortBlock: sortBlock

Synopsis
Create a new sorted collection with sortBlock as the sort block.

Definition: <SortedCollection factory>
Return a new sorted collection with sortBlock as the sort block. The sortBlock specifies the
ordering criteria for the new collection and is a two-parameter valuable, which when evaluated with
any two elements in the receiver, answers true if the first parameter should be ordered before the
second parameter, and false otherwise. The sort block must obey the following properties:
1. Given the same two parameters, the sort block must answer the same result.
2. The sort block must obey transitivity. For example, if a is before b, and b is before c, then a must
be before c.

Parameters
sortBlock <dyadicValuable> captured

Return Values
<SortedCollection> new

NCITS J20 DRAFT December, 1997 245
of ANSI Smalltalk Standard revision 1.9

Errors
none

5.7.29.4 Message Refinement: with: element1
 Message Refinement: with: element1 with: element2
 Message Refinement: with: element1 with: element2 with: element3
 Message Refinement: with: element1 with: element2 with: element3 with: element4

Synopsis
Create a collection initially containing the argument elements

Definition: <initializableCollection factory>
Return a new collection containing a number of elements equal to the number of arguments to this
message. The collection contains the arguments as its elements.
Conforming protocols may impose restrictions on the values of the arguments and hence the
element types.

Refinement: <SortedCollection factory>
A sort block is supplied which guarantees that the elements will be sorted in ascending order as
specified by the #< message for the elements. The initial elements are ordered according to this
sort block.

Parameters
firstElement <Object> captured
secondElement <Object> captured
thirdElement <Object> captured
fourthElement <Object> captured

Return Values
<SortedCollection> new

Errors
If any of the arguments are not appropriate as parameters to the default sort block.

5.7.29.5 Message Refinement: withAll: newElements

Synopsis
Create a collection containing only the elements of newElements.

Definition: <initializableCollection factory>
Return a new collection whose elements are the elements of newElements.
Conforming protocols may impose restrictions on the values of newElements.

Refinement: <SortedCollection factory>
A sort block is supplied which guarantees that the elements will be sorted in ascending order as
specified by the #< message for the elements. The initial elements are ordered according to this
sort block.

Parameters
newElements <collection> unspecified

Return Values
<SortedCollection> new

Errors
If any element of newElements is not appropriate as a parameter to the default sort block.

NCITS J20 DRAFT December, 1997 246
of ANSI Smalltalk Standard revision 1.9

5.7.30 Protocol: <String factory>

Conforms To
<initializableCollection factory>

Description
This protocol defines the behavior of objects that can be used to create objects that conform to
<String>. These objects are created with a specified size.

Standard Globals
String Conforms to the protocol <String factory>. Its language element type is

unspecified. This is a factory and discriminator for collections that
conform to <String>.

Messages
new
new:
with:
with:with:
with:with:with
with:with:with:with:
withAll:

5.7.30.1 Message Refinement: new

Synopsis
Create a new object.

Definition: <instantiator>
Return a newly created object initialized to a standard initial state.

Refinement: <collection factory>
This message has the same effect as sending the message #new: with the argument 0, and will
return an empty collection.

Refinement: <String factory>
Create a new <String> that contains no elements.

Return Values
<String> new

Errors
none

5.7.30.2 Message Refinement: new: count

Synopsis
Create a new collection. The parameter count constrains the number of elements in the result.

Definition: <collection factory>
Return a new collection that has space for at least count elements.
Conforming protocols may refine this message. In particular, the effect of the parameter count
should be specified in refinements. It can be used to specify the exact number of elements, the

NCITS J20 DRAFT December, 1997 247
of ANSI Smalltalk Standard revision 1.9

minimum number, or in some cases can even be interpreted as a hint from the programmer, with
no guarantee that the requested number of instance variables will actually be allocated.
Unless otherwise stated the initial values of elements of the new instance of the receiver are
unspecified.

Refinement: <String factory>
The parameter count specifies the size of the receiver. The initial value of each element of the
new instance of the receiver is unspecified. The new collections conforms to the protocol <String>.

Parameters
count <Integer> unspecified

Return Values
<String> new

Errors
count<0

5.7.30.3 Message Refinement: with: element1
 Message Refinement: with: element1 with: element2
 Message Refinement: with: element1 with: element2 with: element3
 Message Refinement: with: element1 with: element2 with: element3 with: element4

Synopsis
Create a collection initially containing the argument elements

Definition: <initializableCollection factory>
Return a new collection containing a number of elements equal to the number of arguments to this
message. The collection contains the arguments as its elements.
Conforming protocols may impose restrictions on the values of the arguments and hence the
element types.

Refinement: <String factory>
The first argument is at index position 1, the second argument is at index position 2, and so on.

Parameters
element1 <Character> captured
element2 <Character> captured
element3 <Character> captured
element4 <Character> captured

Return Values
<String> new

Errors
If any of the arguments do not meet the element type constraints of the result object

5.7.30.4 Message Refinement: withAll: newElements

Synopsis
Create a collection containing only the elements of newElements.

Definition: <initializableCollection factory>
Return a new collection whose elements are the elements of newElements.
Conforming protocols may impose restrictions on the values of newElements.

Refinement: <String factory>

NCITS J20 DRAFT December, 1997 248
of ANSI Smalltalk Standard revision 1.9

If the elements of newElements are ordered then their ordering establishing their index positions
in the new collection.

Parameters
newElements <collection> unspecified

Return Values
<String> new

Errors
If any of the elements of newElements do not meet the element type constraints of the result
object

NCITS J20 DRAFT December, 1997 249
of ANSI Smalltalk Standard revision 1.9

5.8 Date and Time Protocols
The standard defines protocols for date and time objects that refer to a specific point in time, and
duration objects that represent a length of time.

<magnitude>

<DateAndTime> <Duration>

<Object>

<DateAndTime factory> <Duration factory>

NCITS J20 DRAFT December, 1997 250
of ANSI Smalltalk Standard revision 1.9

5.8.1 Protocol: <DateAndTime>

Conforms To
<magnitude>

Description
This protocol describes the behavior that is common to date time objects. Date time objects
represent individual points in Coordinated Universal Time (UTC) as represented in an
implementation defined local time.
The exact properties of local times are unspecified. Local times may differ in their offset from UTC.
A given local time may have different offsets from UTC at different points in time.
All dates and times in the UTC local time are in the Gregorian calendar. Date times prior to the
adoption of the Gregorian calendar are given in the retrospective astronomical Gregorian calendar.
The year 1 B.C. is astronomical Gregorian year 0. The year 2 B.C. is astronomical Gregorian year -
1. The year 1 A.D. is astronomical Gregorian year 1. The offset of the UTC local time is zero.

Messages:
+
-
<
=
>
asLocal
asUTC
dayOfMonth
dayOfWeek
dayOfWeekAbbreviation
dayOfWeekName
dayOfYear
hour
hour12
hour24
isLeapYear
meridianAbbreviation
minute
month
monthAbbreviation
monthName
offset
offset:
printString
second
timeZoneAbbreviation
timeZoneName
year

5.8.1.1 Message: + operand

Synopsis
Answer the result of adding operand to the receiver.

Definition: <DateAndTime>
Answer a <DateAndTime> that represents the UTC time that is operand after the receiver and
whose local time is the same as the receiver's. If operand is less than <Duration factory> #zero,
the result is the <DateAndTime> that is that is the absolute value of operand before the receiver.

Parameters

NCITS J20 DRAFT December, 1997 251
of ANSI Smalltalk Standard revision 1.9

operand <Duration> uncaptured
Return Values

<DateAndTime> new
Errors

None

5.8.1.2 Message: - operand

Synopsis
Answer the result of adding operand to the receiver.

Definition: <DateAndTime>
If operand is a <DateAndTime>, answer a <Duration> whose value is the period of time between
the operand and the receiver. If operand is a <DateAndTime> prior to the receiver then the result
is a <Duration> less than <Duration factory> #zero.
If operand is a <Duration>, answer a new <DateAndTime> which represents the UTC time that is
operand before the receiver and whose local time is the same as the receiver's. If operand is a
duration less than <Duration factory> #zero then the result is a <DateAndTime> that is the
absolute value of operand after the receiver.

Parameters
operand <DateAndTime> | <Duration> uncaptured

Return Values
<Duration> unspecified
<DateAndTime> unspecified

Errors
none.

5.8.1.3 Message Refinement: < operand

Synopsis
Answer true if the receiver is less than operand. Answer false otherwise.

Definition: <magnitude>
Answer true if the receiver is less than operand with respect to the ordering defined for them.
Answer false otherwise.
It is erroneous if the receiver and operand are not comparable.
The semantics of the natural ordering must be defined by refinement, which may also restrict the
type of operand.

Refinement: <DateAndTime>
Answer true if the UTC time represented by operand follows the UTC time represented by the
receiver. Answer false otherwise.
If the offsets of the receiver and operand are the same then their order is determined by their
lexical order in the sequence #year, #month, #day, #hour24, #minute, #second. If their
offsets differ then result is the same as if receiver asUTC < operand asUTC were evaluated.

Parameters
operand <DateAndTime> uncaptured

Return Values
<boolean> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 252
of ANSI Smalltalk Standard revision 1.9

5.8.1.4 Message Refinement: = comparand

Synopsis
Object equivalence test.

Definition: <Object>
This message tests whether the receiver and the comparand are equivalent objects at the time the
message is processed. Return true if the receiver is equivalent to comparand. Otherwise return
false.
The meaning of "equivalent" cannot be precisely defined but the intent is that two objects are
considered equivalent if they can be used interchangeably. Conforming protocols may choose to
more precisely define the meaning of "equivalent".
The value of

receiver = comparand

is true if and only if the value of
comparand = receiver

would also be true. If the value of
receiver = comparand

is true then the receiver and comparand must have equivalent hash values. Or more formally:

receiver = comparand
receiver hash = comparand hash

The equivalence of objects need not be temporally invariant. Two independent invocations of #=
with the same receiver and operand objects may not always yield the same results. Note that a
collection that uses #= to discriminate objects may only reliably store objects whose hash values
do not change while the objects are contained in the collection.

Refinement: <DateAndTime>
Answer true if the comparand conforms to <DateAndTime> and if it represents the
same UTC time as the receiver. Answer false otherwise. The local times of the receiver and
operand are ignored.

Parameters
comparand <Object> uncaptured

Return Values
<boolean> unspecified

Errors
none

5.8.1.5 Message Refinement: > operand

Synopsis
Answer true if the receiver is greater than operand. Answer false otherwise.

Definition: <magnitude>
Answer true if the receiver is greater than operand with respect to the natural ordering. Answer
false otherwise.
It is erroneous if the receiver and operand are not comparable.
The semantics of the natural ordering must be defined by refinement, which may also restrict the
type of operand.

NCITS J20 DRAFT December, 1997 253
of ANSI Smalltalk Standard revision 1.9

Refinement: <DateAndTime>
Answer true if the UTC time represented by operand precedes the UTC time represented by the
receiver. Answer false otherwise.
If the offsets of the receiver and operand are the same then their order is determined by their
lexical order in the sequence #year, #month, #day, #hour24, #minute, #second. If their
offsets differ then result is the same as if receiver asUTC > operand asUTC were evaluated.

Parameters
operand <DateAndTime> uncaptured

Return Values
<boolean> unspecified

Errors
none

5.8.1.6 Message: asLocal

Synopsis
Answer a <DateAndTime> that represents the same UTC time as the receiver but in the local time
specified by the implementation.

Definition: <DateAndTime>
Answer a <DateAndTime> that represents the same UTC time as the receiver but in the local time
specified by the implementation.

Return Values
<DateAndTime> unspecified

Errors
None

5.8.1.7 Message: asUTC

Synopsis
Answer a <DateAndTime> that represents the same absolute time as the receiver but in the local
time UTC.

Definition: <DateAndTime>
Answer a <DateAndTime> that represents the same absolute time as the receiver but in the local
time UTC. The exact meaning of UTC local time is specified by the implementation. The UTC local
time must use the Gregorian calendar. <DateAndTimes> representing UTC times prior to the
adoption of the Gregorian calendar must use the retrospective astronomical Gregorian calendar. It
is an invariant that
<DateAndTime> asUTC offset = Duration zero.

Return Values
<DateAndTime> unspecified

Errors
None

5.8.1.8 Message: dayOfMonth

Synopsis
Answer the number of the day in the month in the local time of the receiver which includes the
receiver.

Definition: <DateAndTime>

NCITS J20 DRAFT December, 1997 254
of ANSI Smalltalk Standard revision 1.9

Answer an <integer> between 1 and 31 inclusive representing the number of the day in the month,
in the local time of the receiver, which includes the receiver.

Return Values
<integer> unspecified

Errors
None

5.8.1.9 Message: dayOfWeek

Synopsis
Answer the number of the day in the week, in the local time of the receiver, which includes the
receiver.

Definition: <DateAndTime>
Answer an <integer> between 1 and 7 inclusive representing the number of the day in the week, in
the local time of the receiver, which includes the receiver. Sunday is 1, Monday is 2, and so on.

Return Values
<integer> unspecified

Errors
None

5.8.1.10 Message: dayOfWeekAbbreviation

Synopsis
Answer the abbreviation of the name, in the local time of the receiver, of the day of the week which
includes the receiver.

Definition: <DateAndTime>
Answer an <readableString> which is the abbreviation of the name, in the local time of the
receiver, of the day of the week which includes the receiver.

Return Values
<readableString> unspecified

Errors
None

5.8.1.11 Message: dayOfWeekName

Synopsis
Answer the name, in the local time of the receiver, of the day of the week which includes the
receiver.

Definition: <DateAndTime>
Answer an <readableString> which is the name, in the local time of the receiver, of the day of the
week which includes the receiver.

Return Values
<readableString> unspecified

Errors
None

5.8.1.12 Message: dayOfYear

Synopsis

NCITS J20 DRAFT December, 1997 255
of ANSI Smalltalk Standard revision 1.9

Answer the number of the day in the year, in the local time of the receiver, which includes the
receiver.

Definition: <DateAndTime>
Answer an <integer> between 1 and 366 inclusive representing the number of the day in the year,
in the local time of the receiver, which includes the receiver.

Return Values
<integer> unspecified

Errors
None

5.8.1.13 Message: hour

Synopsis
Answer the number of the hour in the day, in the local time of the receiver, which includes the
receiver.

Definition: <DateAndTime>
Answer an <integer> between 0 and 23 inclusive representing the number of the hour in the day, in
the local time of the receiver, which includes the receiver. It is implementation defined whether a
given local time uses the 12-hour clock or the 24-hour clock, except that the UTC local time must
use the 24-hour clock.

Return Values
<integer> unspecified

Errors
None

5.8.1.14 Message: hour12

Synopsis
Answer the hour in the day in the 12-hour clock of the local time of the receiver.

Definition: <DateAndTime>
Answer an <integer> between 1 and 12 inclusive representing the hour in the day in the 12-hour
clock of the local time of the receiver.

Return Values
<integer> unspecified

Errors
None

5.8.1.15 Message: hour24

Synopsis
Answer the hour in the day in the 24-hour clock of the local time of the receiver.

Definition: <DateAndTime>
Answer an <integer> between 0 and 23 inclusive representing the hour in the day in the 24-hour
clock of the local time of the receiver.

Return Values
<integer> unspecified

Errors
None

NCITS J20 DRAFT December, 1997 256
of ANSI Smalltalk Standard revision 1.9

5.8.1.16 Message: isLeapYear

Synopsis
Test for leap year.

Definition: <DateAndTime>
Answer true if the year, which includes the receiver, in the local time of the receiver is a leap year,
false otherwise.
Two <DateAndTime> objects that are equal can give different results for #isLeapYear. Equality
depends on their UTC time whereas #isLeapYear depends on their local time.

Return Values
<boolean> unspecified

Errors
None

5.8.1.17 Message: meridianAbbreviation

Synopsis
Answer the abbreviation, in the local time of the receiver, of the name of the half of the day, which
includes the receiver.

Definition: <DateAndTime>
Answer a <readableString> that is the abbreviation, in the local time of the receiver, of the name of
the half of the day, which includes the receiver.

Return Values
<readableString> unspecified

Errors
None

5.8.1.18 Message: minute

Synopsis
Answer the minute of the hour in the local time of the receiver.

Definition: <DateAndTime>
Answer an <integer> between 0 and 59 inclusive representing the minute of hour in the local time
of the receiver.

Return Values
<integer> unspecified

Errors
None

5.8.1.19 Message: month

Synopsis
Answer the number of the month in the year, in the local time of the receiver, which includes the
receiver.

Definition: <DateAndTime>
Answer an <integer> between 1 and 12 inclusive representing the number of the month in the year,
in the local time of the receiver, which includes the receiver.

Return Values
<integer> unspecified

NCITS J20 DRAFT December, 1997 257
of ANSI Smalltalk Standard revision 1.9

Errors
None

5.8.1.20 Message: monthAbbreviation

Synopsis
Answer the abbreviation of the name of the month, in the local time of the receiver, which includes
the receiver.

Definition: <DateAndTime>
Answer a <readableString> that is the abbreviation of the name of the month, in the local time of
the receiver, which includes the receiver.

Return Values
<readableString> unspecified

Errors
None

5.8.1.21 Message: monthName

Synopsis
Answer the name of the month, in the local time of the receiver, which includes the receiver.

Definition: <DateAndTime>
Answer a <readableString> that is the name of the month, in the local time of the receiver, which
includes the receiver.

Return Values
<readableString> unspecified

Errors
None

5.8.1.22 Message: offset

Synopsis
Answer the difference between the local time of the receiver and UTC at the time of the receiver.

Definition: <DateAndTime>
Answer a <Duration> representing the difference between the local time of the receiver and UTC at
the time of the receiver.

Return Values
<Duration> unspecified

Errors
None

5.8.1.23 Message: offset: offset

Synopsis
Answer a <DateAndTime> equivalent to the receiver but with its local time being offset from UTC
by offset.

Definition: <DateAndTime>
Answer a <DateAndTime> equivalent to the receiver but with its local time being offset from UTC
by offset. The impact of this on any other local time property is unspecified.
Implementations may define a limit to the range of offset, but it must be at least
-12:00:00 to 12:00:00 inclusive.

NCITS J20 DRAFT December, 1997 258
of ANSI Smalltalk Standard revision 1.9

It is an invariant that if x is a <Duration> in range then
 (<DateAndTime> offset: x) offset = x

Parameters
offset <Duration> unspecified

Return Values
<DateAndTime> unspecified

Errors
offset out of range

5.8.1.24 Message Refinement: printString

Synopsis
Return a string that describes the receiver.

Definition: <Object>
A string consisting of a sequence of characters that describe the receiver are returned as the
result.
The exact sequence of characters that describe an object are implementation defined.

Refinement: <DateAndTime>
The returned string will represent the UTC time of the receiver offset from UTC by the offset of the
receiver. All dates are in the astronomical Gregorian calendar. The result will be formatted as
-YYYY-MM-DDThh:mm:ss.s+ZZ:zz:z where

- is the <Character> $- if the year is less than 0 otherwise it is the <Character> that is
returned from the message #space sent to the standard global Character,

YYYY is the year left zero filled to four places,
- is the <Character> $-,
MM is the month of the year left zero filled to two places,
- is the <Character> $-,
DD is the day of the month left zero filled to two places,
T is the <Character> $T,
hh is the hour in the 24-hour clock left zero filled to two places,
: is the <Character> $:,
mm is the minute left zero filled to two places,
: is the <Character> $:,
ss is the second left zero filled to two places,
. is the <Character> $. and is present only if the fraction of a second is non-zero,
s is the fraction of a second and is present only if non-zero,
+ is the <Character> $+ if the offset is greater than or equal to <Duration factory> #zero

and the <Character> $- if it is less,
ZZ is the hours of the offset left zero filled to two places, and
: is the <Character> $:,
zz is the minutes of the offset left zero filled to two places,
: is the <Character> $: and is present only if the seconds of the offset is non-zero,
z is the seconds of the offset including any fractional part and is present only if non-

zero.

NCITS J20 DRAFT December, 1997 259
of ANSI Smalltalk Standard revision 1.9

This format is based on ISO 8601 sections 5.3.3 and 5.4.1.

Example: 8:33:14.321 PM EST January 5, 1200 B.C.
 '-1199-01-05T20:33:14.321-05:00'
Example: 12 midnight UTC January 1, 2001 A.D.
 ' 2001-01-01T00:00:00+00:00'

Return Values
<readableString> unspecified

Errors
none

5.8.1.25 Message: second

Synopsis
Answer the second of the minute of the local time of the receiver.

Definition: <DateAndTime>
Answer a <number> greater than or equal to 0 and strictly less than 60 representing the second of
the minute of the local time of the receiver.

Return Values
<number> unspecified

Errors
None

5.8.1.26 Message: timeZoneAbbreviation

Synopsis
Answer the abbreviation of the name, in the local time of the receiver, of the time zone of the
receiver.

Definition: <DateAndTime>
Answer a <readableString> that is the abbreviation of the name, in the local time of the receiver, of
the time zone of the receiver.

Return Values
<readableString> unspecified

Errors
None

5.8.1.27 Message: timeZoneName

Synopsis
Answer the name in the local time of the receiver of the time zone of the receiver.

Definition: <DateAndTime>
Answer a <readableString> that is the name in the local time of the receiver of the time zone of the
receiver.

Return Values
<readableString> unspecified

Errors
None

NCITS J20 DRAFT December, 1997 260
of ANSI Smalltalk Standard revision 1.9

5.8.1.28 Message: year

Synopsis
Answer the number of the year in the local time of the receiver which includes the receiver.

Definition: <DateAndTime>
Answer an<integer> the number of the year which includes the receiver.

Return Values
<integer> unspecified

Errors
None

5.8.2 Protocol: <Duration>

Conforms To
<magnitude>

Description
Represents a length of time.

Messages:
*
+
-
/
<
=
>
asSeconds
abs
days
hours
minutes
negated
negative
positive
printString
seconds

5.8.2.1 Message: * operand

Synopsis
Answer the result of multiplying the receiver by operand.

Definition: <Duration>
Answer a <Duration> that is the result of multiplying the receiver by operand.

Parameters
operand <number> unspecified

Return Values
<Duration> new

NCITS J20 DRAFT December, 1997 261
of ANSI Smalltalk Standard revision 1.9

Errors
None

5.8.2.2 Message: + operand

Synopsis
Answer the result of adding operand to the receiver.

Definition: <Duration>
Answer a <Duration> whose value is the result of adding the receiver and operand.

Parameters
operand <Duration> unspecified

Return Values
<Duration> new

Errors
None

5.8.2.3 Message: - operand

Synopsis
Answer the result of subtracting the operand from the receiver.

Definition: <Duration>
Answer a <Duration> whose value is the result of subtracting operand from the receiver.

Parameters
operand <Duration> unspecified

Return Values
<Duration> new

Errors
None

5.8.2.4 Message: / operand

Synopsis
Answer the result of dividing the receiver by operand.

Definition: <Duration>
If operand is a <number> answer a new <Duration> whose value is the result of dividing the
receiver by operand. If operand equals zero the ZeroDivide exception is signaled.

If operand is a <Duration> answer a <number> whose value is the result of dividing the receiver
by operand. If operand is <Duration factory> #zero the ZeroDivide exception is signaled.

Parameters
operand <number> | <Duration> unspecified

Return Values
<Duration> unspecified
<number> unspecified

Errors
none

NCITS J20 DRAFT December, 1997 262
of ANSI Smalltalk Standard revision 1.9

5.8.2.5 Message Refinement: < operand

Synopsis
Answer true if the receiver is less than operand. Answer false otherwise.

Definition: <magnitude>
Answer true if the receiver is less than operand with respect to the ordering defined for them.
Answer false otherwise.
It is erroneous if the receiver and operand are not comparable.
The semantics of the natural ordering must be defined by refinement, which may also restrict the
type of operand.

Refinement: <Duration>
Answer true if operand represents a <Duration> that is larger than the receiver. Answer false
otherwise.

Parameters
operand <Duration> unspecified

Return Values
<boolean> unspecified

Errors
none

5.8.2.6 Message Refinement: = comparand

Synopsis
Object equivalence test.

Definition: <Object>
This message tests whether the receiver and the comparand are equivalent objects at the time the
message is processed. Return true if the receiver is equivalent to comparand. Otherwise return
false.
The meaning of "equivalent" cannot be precisely defined but the intent is that two objects are
considered equivalent if they can be used interchangeably. Conforming protocols may choose to
more precisely define the meaning of "equivalent".
The value of

receiver = comparand

is true if and only if the value of
comparand = receiver

would also be true. If the value of
receiver = comparand

is true then the receiver and comparand must have equivalent hash values. Or more formally:

receiver = comparand
receiver hash = comparand hash

The equivalence of objects need not be temporally invariant. Two independent invocations of #=
with the same receiver and operand objects may not always yield the same results. Note that a
collection that uses #= to discriminate objects may only reliably store objects whose hash values
do not change while the objects are contained in the collection.

Refinement: <Duration>

NCITS J20 DRAFT December, 1997 263
of ANSI Smalltalk Standard revision 1.9

Answer true if the comparand is a <Duration> representing the same length of time as the
receiver. Answer false otherwise.

Parameters
comparand <Object> uncaptured

Return Values
<boolean> unspecified

Errors
none

5.8.2.7 Message Refinement: > operand

Synopsis
Answer true if the receiver is greater than operand. Answer false otherwise.

Definition: <magnitude>
Answer true if the receiver is greater than operand with respect to the natural ordering. Answer
false otherwise.
It is erroneous if the receiver and operand are not comparable.
The semantics of the natural ordering must be defined by refinement, which may also restrict the
type of operand.

Refinement: <Duration>
Answer true if operand represents a <Duration> which is smaller than the receiver. Answer false
otherwise.

Parameters
operand <Duration> unspecified

Return Values
<boolean> unspecified

Errors
none

5.8.2.8 Message: asSeconds

Synopsis
Answer the total number of seconds in the length of time represented by the receiver.

Definition: <Duration>
Answer the total number of seconds in the length of time represented by the receiver including any
fractional part of a second. If the receiver is less than <Duration factory> #zero then the result will
be less than 0.

Return Values
<number> unspecified

Errors
None

5.8.2.9 Message: abs

Synopsis
Answer the absolute value of the receiver.

Definition: <Duration>

NCITS J20 DRAFT December, 1997 264
of ANSI Smalltalk Standard revision 1.9

If the receiver is greater than or equal to <Duration Factory> #zero answer a <Duration> which is
equal to the receiver. Otherwise answer a <Duration> which has the same magnitude as the
receiver but the opposite sign.

Return Values
<Duration> unspecified

Errors
None

5.8.2.10 Message: days

Synopsis
Answer the number of complete days in the receiver.

Definition: <Duration>
Answer the number of complete days in the receiver. If the receiver is less than <Duration factory>
#zero then the result will be less than or equal to 0.

Return Values
<integer> unspecified

Errors
None

5.8.2.11 Message: hours

Synopsis
Answer the number of complete hours in the receiver.

Definition: <Duration>
Answer an <integer> between -23 and 23 inclusive that represents the number of complete hours
in the receiver, after the number of complete days has been removed. If the receiver is less than
<Duration factory> #zero then the result will be less than or equal to 0.

Return Values
<integer> unspecified

Errors
None

5.8.2.12 Message: minutes

Synopsis
Answer the number of complete minutes in the receiver.

Definition: <time>
Answer an <integer> between -59 and 59 inclusive that represents the number of complete
minutes in the receiver, after the number of complete days and hours have been removed. If the
receiver is less than <Duration factory> #zero then the result will be less than or equal to 0.

Return Values
<integer> unspecified

Errors
None

5.8.2.13 Message: negated

Synopsis
Answer the negation of the receiver.

NCITS J20 DRAFT December, 1997 265
of ANSI Smalltalk Standard revision 1.9

Definition: <Duration>
Answer a <Duration> which is of the same magnitude but opposite sign as the receiver.

Return Values
<Duration> unspecified

Errors
None

5.8.2.14 Message: negative

Synopsis
Answer true if the receiver is less than <Duration factory> #zero.

Definition: <Duration>
Answer true if the receiver is less than <Duration factory> #zero, false otherwise.

Return Values
<boolean> unspecified

Errors
None

5.8.2.15 Message: positive

Synopsis
Answer true if the receiver is greater than or equal to <Duration factory> #zero.

Definition: <Duration>
Answer true if the receiver is greater than or equal to the <Duration factory> #zero, false
otherwise.

Return Values
<boolean> unspecified

Errors
None

5.8.2.16 Message Refinement: printString

Synopsis
Return a string that describes the receiver.

Definition: <Object>
A string consisting of a sequence of characters that describe the receiver are returned as the
result.
The exact sequence of characters that describe an object is implementation defined.

Refinement: <Duration>
Answer a description of the receiver that is formatted as
[-]D:HH:MM:SS[.S] where

 - is a minus sign if the receiver represents a length of time going from the future into
the past,

D is the number of complete days with leading zeros to fill one place,
HH is the number of complete hours with leading zeros to fill two places,
MM is the number of complete minutes with leading zeros to fill two places,
SS is. the number of complete seconds with leading zeros to fill two places, and
.S is the fractional part of the number of seconds, if any.

NCITS J20 DRAFT December, 1997 266
of ANSI Smalltalk Standard revision 1.9

Return Values
<readableString> unspecified

Errors
None

5.8.2.17 Message: seconds

Synopsis
Answer the number of seconds in the receiver.

Definition: <Duration>
Answer a <number> strictly greater than -60 and strictly less than 60 that represents the number of
seconds in the receiver, after the complete days, hours, and minutes have been removed. If the
receiver is less than <Duration factory> #zero then the result will be less than or equal to 0.

Return Values
<number> unspecified

Errors
None

5.8.3 Protocol: <Duration factory>

Conforms To
<Object>

Description
Represents protocol for creating a particular length of time.

Standard Globals
Duration Conforms to the protocol <Duration factory>. Its language element type

is unspecified.
Messages:

days:hours:minutes:seconds:
seconds:
zero

5.8.3.1 Message: days: days hours: hours minutes: minutes seconds: seconds

 Synopsis
Answer a <Duration> of the number of days, hours, minutes, and seconds.

Definition: <Duration factory>
Answer a <Duration> of the number of days, hours, minutes, and seconds. If any of the operands
are negative, the result is smaller by that number of days, hours, minutes, or seconds as
appropriate.

Parameters
days <integer> unspecified
hours <integer> unspecified

NCITS J20 DRAFT December, 1997 267
of ANSI Smalltalk Standard revision 1.9

minutes <integer> unspecified
seconds <number> unspecified

Return Values
<Duration> new

5.8.3.2 Message: seconds: seconds

Synopsis
Answer a <Duration> which is seconds in length

Definition: <Duration factory>
If seconds is negative, answer a <Duration> that is abs (seconds) less than <Duration factory>
#zero.

Parameters
seconds <number> unspecified

Return Values
<Duration> new

5.8.3.3 Message: zero

Synopsis
Answer a <Duration> of zero length.

Definition: <Duration factory>
Answer a <Duration> representing a length of no time.

Return Values
<Duration> unspecified

5.8.4 Protocol: <DateAndTime factory>

Conforms To
<Object>

Description
Represents protocol for creating an abstraction for a particular day of the year.

Standard Globals
DateTime Conforms to the protocol <DateAndTime factory>. Its language element

type is unspecified.
Messages:

clockPrecision
year:month:day:hour:minute:second:
year:month:day:hour:minute:second:offset:
year:day:hour:minute:second:
year:day:hour:minute:second:offset:
now

NCITS J20 DRAFT December, 1997 268
of ANSI Smalltalk Standard revision 1.9

5.8.4.1 Message: clockPrecision

Synopsis
Answer a <Duration> such that after that period of time passes, #now is guaranteed to give a
different result.

Definition: <DateAndTime factory>
Answer a <Duration> such that after that period of time passes, #now is guaranteed to give a
different result. Ideally implementations should answer the least such duration.

Return Values:
<Duration> unspecified

Errors
None

5.8.4.2 Message: year: year month: month day: dayOfMonth hour: hour minute: minute
second: second

Synopsis
Answer a <DateAndTime> which is the second second of the minute minute of the hour hour of
the day dayOfMonth of the month month of the year year of the astronomical Gregorian calendar
in local time.

Definition: <DateAndTime factory>
Answer the least <DateAndTime> which is the second second of the minute minute of the hour
hour of the day dayOfMonth of the month month of the year year of the astronomical Gregorian
calendar in the local time specified by the implementation. The second must be a <number>
greater than or equal to 0 and strictly less than 60. The minute must be an <integer> between 0
and 59 inclusive. The hour must be an <integer> between 0 and 23 inclusive. The day must be an
<integer> between 1 and 31 inclusive. The month must be an <integer> between 1 and 12
inclusive. An implementation may not impose any limits on the year other than those imposed on
<integer> constants.

It is possible that the time specified does not exist in the local time defined by the implementation. If
there is a time change such that the local time is set forward and the time specified is in the
interregnum, then that time does not exist in the local time. For example if at 02:00 in California on
April 26, 1997 there is a time change that sets local time forward one hour, then the local time
02:30 in California does not exist. Conversely if there is a time change that sets the locale time
back there are times which are ambiguous. For example if instead of setting the local time forward
from 02:00 to 03:00 it is set back to 01:00 the the local time 01:30 in California is ambiguious. The
result is the least <DateAndTime> that conforms to the given parameters.

Parameters
year <integer> unspecified
month <integer> unspecified
dayOfMonth <integer> unspecified
hour <integer> unspecified
minute <integer> unspecified
second <number> unspecified

Return Values
<DateAndTime> new

Errors
month is not between 1 and 12 inclusive.

NCITS J20 DRAFT December, 1997 269
of ANSI Smalltalk Standard revision 1.9

dayOfMonth greater than the number of days in the month month of year year of the
astronomical Gregorian calendar.
hour is not between 0 and 23 inclusive.
minute is not between 0 and 59 inclusive.
second is not greater than or equal to 0 and strictly less than 60.
the time specified does not exist.

5.8.4.3 Message: year: year month: month day: dayOfMonth hour: hour minute: minute
second: second offset: offset

Synopsis
Answer a <DateAndTime> which is the second second of the minute minute of the hour hour of
the day dayOfMonth of the month month of the year year of the astronomical Gregorian calendar
offset from UTC by offset.

Definition: <DateAndTime factory>
Answer the least <DateAndTime> which is the second second of the minute minute of the hour
hour of the day dayOfMonth of the month month of the year year of the astronomical Gregorian
calendar offset from UTC by offset. The second must be a <number> greater than or equal to 0
and strictly less than 60. The minute must be an <integer> between 0 and 59 inclusive. The hour
must be an <integer> between 0 and 23 inclusive. The day must be an <integer> between 1 and
31 inclusive. The month must be an <integer> between 1 and 12 inclusive. An implementation may
not impose any limits on the year other than those imposed on <integer> constants.

It is possible that the time specified does not exist in the local time defined by the implementation. If
there is a time change such that the local time is set forward and the time specified is in the
interregnum, then that time does not exist in the local time. For example if at 02:00 in California on
April 26, 1997 there is a time change that sets local time forward one hour, then the local time
02:30 in California does not exist. Conversely if there is a time change that sets the locale time
back there are times which are ambiguous. For example if instead of setting the local time forward
from 02:00 to 03:00 it is set back to 01:00 the the local time 01:30 in California is ambiguious. The
result is the least <DateAndTime> that conforms to the given parameters.

Parameters
year <integer> unspecified
month <integer> unspecified
dayOfMonth <integer> unspecified
hour <integer> unspecified
minute <integer> unspecified
second <number> unspecified
offset <Duration> unspecified

Return Values
<DateAndTime> new

Errors
month is not between 1 and 12 inclusive.
dayOfMonth greater than the number of days in the month month of year year of the
astronomical Gregorian calendar.
hour is not between 0 and 23 inclusive.
minute is not between 0 and 59 inclusive.
second is not greater than or equal to 0 and strictly less than 60.

NCITS J20 DRAFT December, 1997 270
of ANSI Smalltalk Standard revision 1.9

5.8.4.4 Message: year: year day: dayOfYear hour: hour minute: minute second: second

Synopsis
Answer a <DateAndTime> which is the second second of the minute minute of the hour hour of
the day dayOfYear of the year year of the astronomical Gregorian calendar in local time.

Definition: <DateAndTime factory>
Answer the least <DateAndTime> which is the second second of the minute minute of the hour
hour of the day dayOfYear of the year year of the astronomical Gregorian calendar in the local
time specified by the implementation. The second must be a <number> greater than or equal to 0
and strictly less than 60. The minute must be an <integer> between 0 and 59 inclusive. The hour
must be an <integer> between 0 and 23 inclusive. The day must be an <integer> between 1 and
366 inclusive. An implementation may not impose any limits on the year other than those imposed
on <integer> constants.

It is possible that the time specified does not exist in the local time specified by the implementation.
If there is a time change such that the local time is set forward and the time specified is in the
interregnum, then that time does not exist in the local time. For example if at 02:00 in California on
April 26, 1997 there is a time change that sets local time forward one hour, then the local time
02:30 in California does not exist. Conversely if there is a time change that sets the locale time
back there are times which are ambiguous. For example if instead of setting the local time forward
from 02:00 to 03:00 it is set back to 01:00 the the local time 01:30 in California is ambiguious. The
result is the least <DateAndTime> that conforms to the given parameters.

It is worth noting that the year 1 B.C. is year 0 in the astronomical Gregorian calendar. Similarly the
year 2 B.C. is year -1 in the astronomical Gregorian calendar and so on. The year 1 A.D. is year 1
in the astronomical Gregorian calendar.

Parameters
year <integer> unspecified
dayOfYear <integer> unspecified
hour <integer> unspecified
minute <integer> unspecified
second <number> unspecified

Return Values
<DateAndTime> new

Errors
month is not between 1 and 12 inclusive.
dayOfYear greater than the number of days in the year year of the astronomical Gregorian
calendar.
hour is not between 0 and 23 inclusive.
minute is not between 0 and 59 inclusive.
second is not greater than or equal to 0 and strictly less than 60.
the time specified does not exist.

5.8.4.5 Message: year: year day: dayOfYear hour: hour minute: minute second: second
offset: offset

Synopsis
Answer a <DateAndTime> which is the second second of the minute minute of the hour hour of
the day dayOfYear of the year year of the astronomical Gregorian calendar offset from UTC by
offset.

NCITS J20 DRAFT December, 1997 271
of ANSI Smalltalk Standard revision 1.9

Definition: <DateAndTime factory>
Answer the least <DateAndTime> which is the second second of the minute minute of the hour
hour of the day dayOfYear of the year year of the astronomical Gregorian calendar in the local
time of the locale locale. The second must be a <number> greater than or equal to 0 and strictly
less than 60. The minute must be an <integer> between 0 and 59 inclusive. The hour must be an
<integer> between 0 and 23 inclusive. The day must be an <integer> between 1 and 366 inclusive.
An implementation may not impose any limits on the year other than those imposed on <integer>
constants.

It is possible that the time specified does not exist in the local time defined by the implementation. If
there is a time change such that the local time is set forward and the time specified is in the
interregnum, then that time does not exist in the local time. For example if at 02:00 in California on
April 26, 1997 there is a time change that sets local time forward one hour, then the local time
02:30 in California does not exist. Conversely if there is a time change that sets the locale time
back there are times which are ambiguous. For example if instead of setting the local time forward
from 02:00 to 03:00 it is set back to 01:00 the the local time 01:30 in California is ambiguious. The
result is the least <DateAndTime> that conforms to the given parameters.

Parameters
year <integer> unspecified
dayOfYear <integer> unspecified
hour <integer> unspecified
minute <integer> unspecified
second <number> unspecified
offset <Duration> unspecified

Return Values
<DateAndTime> new

Errors
month is not between 1 and 12 inclusive.
dayOfYear greater than the number of days in the year year of the astronomical Gregorian
calendar.
hour is not between 0 and 23 inclusive.
minute is not between 0 and 59 inclusive.
second is not greater than or equal to 0 and strictly less than the number of seconds in the minute
specified.

5.8.4.6 Message: now

Synopsis
Answer a <DateAndTime> representing the current date and time.

Definition: <DateAndTime factory>
Answer a <DateAndTime> representing the current date and time in the local time specified by the
implementation.

Return Values
<DateAndTime> unspecified

Errors
None

NCITS J20 DRAFT December, 1997 272
of ANSI Smalltalk Standard revision 1.9

NCITS J20 DRAFT December, 1997 273
of ANSI Smalltalk Standard revision 1.9

5.9 Stream Protocols

This section includes protocols that define the fundamental behavior of various kinds of streams.
Streams produce or consume a sequence of values. Some stream classes will build sequenceable
collections or report the values of a sequenceable collection. Other types of streams may operate
on files, positive integers, random numbers, and so forth.

There are seven protocols that describe stream behavior. <sequencedStream> describes a stream
on a sequence of objects and allows for positioning of the stream.<gettableStream> allows for
reading from a stream. <puttableStream> allows for writing to a stream. <collectionStream>
provides for the association of a stream with a collection. <ReadStream> reads a sequence of
objects from a preexisting collection and can peek at objects prior to reading them. The objects
written to a <WriteStream> are accumulated so they can be independently accessed as a
collection; <ReadWriteStream> can read, peek, and write within a collection of objects.

The protocol <Transcript> defines the behavior of the object that is the value of the global named
Transcript. Transcript is a stream that may be used to log textual message generated by a
Smalltalk program.

There are three factory protocols that specify the behavior of three global stream factories,
ReadStream, WriteStream, and ReadWriteStream, used to create various types of streams.

The graph below shows the conformance relationships between the protocols defined in this
section.

<gettableStream> <collectionStream> <puttableStream>

<ReadStream> <WriteStream>

<ReadWriteStream>

<ReadStream factory> <WriteStream factory><ReadWriteStream factory>

<Transcript>

<sequencedStream>

NCITS J20 DRAFT December, 1997 274
of ANSI Smalltalk Standard revision 1.9

5.9.1 Protocol: <sequencedStream>

Conforms To
<Object>

Description
An object conforming to <sequencedStream> has a finite number of past and future sequence
values. It maintains a position on its sequence values and allows the position to be altered.

Messages
close
contents
isEmpty
position
position:
reset
setToEnd

5.9.1.1 Message: close

Synopsis
Disassociate a stream from its backing store.

Definition: <sequencedStream>
If the receiver is a write-back stream update its stream backing store as if the message #flush was
sent to the receiver. Then eliminate any association between the receiver and its stream backing
store. Any system resources associated with the association should be released. The effect of
sending any message to the receiver subsequent to this message is undefined.

Return Value
UNSPECIFIED

Errors
none

5.9.1.2 Message: contents

Synopsis
Returns a collection containing the complete contents of the stream.

Definition: <sequencedStream>
Returns a collection that contains the receiver's past and future sequence values, in order. The
size of the collection is the sum of the sizes of the past and future sequence values.

Return Value
<sequencedReadableCollection> unspecified

Errors
none

5.9.1.3 Message: isEmpty

Synopsis
Returns a Boolean indicating whether there are any sequence values in the receiver.

Definition: <sequencedStream>

NCITS J20 DRAFT December, 1997 275
of ANSI Smalltalk Standard revision 1.9

Returns true if both the set of past and future sequence values of the receiver are empty.
Otherwise returns false.

Return Value
<boolean> unspecified

Errors
none

5.9.1.4 Message: position

Synopsis
Returns the current position of the stream.

Definition: <sequencedStream>
Returns the number of sequence values in the receiver's past sequence values.

Return Value
<integer> unspecified

Errors
none

5.9.1.5 Message: position: amount

Synopsis
Sets the current position in a stream of values.

Definition: <sequencedStream>
If the number of sequence values in the receiver's past sequence values is smaller than amount,
move objects in sequence from the front of the receiver's future sequence values to the back of th
receiver's past sequence values until the number of sequence values in the receiver's past
sequence values is equal to amount.
If the number of sequence values in the receiver's past sequence values is greater than amount,
move objects in sequence from the back of the receiver's past sequence values to the front of th
receiver's future sequence values until the number of sequence values in the receiver's past
sequence values is equal to amount.
If the number of sequence values in the receiver's past sequence values is equal to amount no
action is taken.

Parameters
amount <integer> unspecified

Return Value
UNSPECIFIED

Errors
If amount is negative.
If the receiver has any sequence values and amount is greater than or equal to the total number of
sequence values of the receiver.

5.9.1.6 Message: reset

Synopsis
Resets the position of the receiver to be at the beginning of the stream of values.

Definition: <sequencedStream>
Sets the receiver's future sequence values to be the current past sequence values appended with
the current future sequence values. Make the receiver's past sequence values be empty.

NCITS J20 DRAFT December, 1997 276
of ANSI Smalltalk Standard revision 1.9

Return Value
UNSPECIFIED

Errors
none

5.9.1.7 Message: setToEnd

Synopsis
Set the position of the stream to its end.

Definition: <sequencedStream>
All of the receiver's future sequence values are appended, in sequence, to the receiver's past
sequence values. The receiver then has no future sequence values.

Return Value
UNSPECIFIED

Errors
none

5.9.2 Protocol: <gettableStream>

Conforms To
<Object>

Description
An object conforming to <gettableStream> can read objects from its future sequence values.

Messages
atEnd
do:
next
next:
nextLine
nextMatchFor:
peek
peekFor:
skip:
skipTo:
upTo:

5.9.2.1 Message: atEnd

Synopsis
Returns a Boolean indicating whether the receiver is at the end of its values.

Definition: <gettableStream>
Return true if the receiver has no future sequence values available for reading. Return false
otherwise.

Return Value
<boolean> unspecified

Errors

NCITS J20 DRAFT December, 1997 277
of ANSI Smalltalk Standard revision 1.9

none

5.9.2.2 Message: do: operation

Synopsis
Evaluates the argument with each receiver future sequence value, terminating evaluation when
there are no more future sequence values.

Definition: <gettableStream>
Each member of the receiver’s future sequence values is, in turn, removed from the future
sequence values; appended to the past sequence values; and, passed as the argument to an
evaluation of operand. The argument, operation, is evaluated as if sent the message #value:.
The number of evaluations is equal to the initial size of the receiver’s future sequence values. If
there initially are no future sequence values, operation is not evaluated. The future sequence
values are used as arguments in their sequence order. The result is undefined if any evaluation of
operand changes the receiver’s future sequence values

Parameters
operation <monadicValuable> uncaptured

Return Value
UNSPECIFIED

Errors
none

5.9.2.3 Message: next

Synopsis
Return the next object in the receiver.

Definition: <gettableStream>
The first object is removed from the receiver’s future sequence values and appended to the end of
the receiver's past sequence values. That object is returned as the value of the message. The
returned object must conform to the receiver's sequence value type.
The result is undefined if there the receiver has no future sequence values.

Return Value
<Object> state

Errors
none

5.9.2.4 Message: next: amount

Synopsis
Returns a collection of the next amount objects in the stream.

Definition: <gettableStream>
A number of objects equal to amount are removed from the receiver's future sequence values and
appended, in order, to the end of the receiver's past sequence values. A collection whose elements
consist of those objects, in the same order, is returned. If amount is equal to 0 an empty collection
is returned.
The result is undefined if amount is larger than the number of objects in the receiver's future
sequence values.

Parameters
amount <integer> uncaptured

NCITS J20 DRAFT December, 1997 278
of ANSI Smalltalk Standard revision 1.9

Return Value
<sequencedReadableCollection> new

Errors
amount < 0

5.9.2.5 Message: nextLine

Synopsis
Reads the next line from the stream.

Definition: <gettableStream>
Each object in the receiver's future sequence values up to and including the first occurrence of the
objects that constitute an implementation defined end-of-line sequence is removed from the future
sequence values and appended to the receiver's past sequence values. All of the transfered
objects, except the end-of-line sequence objects, are collected, in order, as the elements of a string
that is the return value. The result is undefined if there are no future sequence values in the
receiver or if the future-sequence values do not include the end-of-line sequence.

Return Value
<readableString> new

Errors
If any of the future sequence values to be returned do not conform to the protocol <Character>.

5.9.2.6 Message: nextMatchFor: anObject

Synopsis
Reads the next object from the stream and returns true if the object is equivalent to the argument
and false if not.

Definition: <gettableStream>
The first object is removed from the receiver's future sequence value and appended to the end of
the receiver's past sequence values. The value that would result from sending #= to the object with
anObject as the argument is returned.
The results are undefined if there are no future sequence values in the receiver.

Parameters
anObject <Object> uncaptured

Return Value
<boolean> unspecified

Errors
none

5.9.2.7 Message: peek

Synopsis
Returns the next object in the receiver's future sequence values without advancing the receiver's
position. Returns nil if the receiver is at end of stream.

Definition: <gettableStream>
Returns the first object in the receiver's future sequence values. The object is not removed from the
future sequence values. The returned object must conform to the receiver's sequence value type.
Returns nil if the receiver has no future sequence values. The return value will also be nil if the first
future sequence object is nil.

Return Value

NCITS J20 DRAFT December, 1997 279
of ANSI Smalltalk Standard revision 1.9

<Object> state
Errors

none

5.9.2.8 Message: peekFor: anObject

Synopsis
Peeks at the next object in the stream and returns true if it matches the argument, and false if not.

Definition: <gettableStream>
Returns the result of sending #= to the first object in the receiver's future sequence values with
anObject as the argument. Returns false if the receiver has no future sequence values.

Parameters
anObject <Object> uncaptured

Return Value
<boolean> unspecified

Errors
none

5.9.2.9 Message: skip: amount

Synopsis
Skips the next amount objects in the receiver's future sequence values.

Definition: <gettableStream>
A number of objects equal to the lesser of amount and the size of the receiver's future sequence
values are removed from the receiver's future sequence values and appended, in order, to the end of
the receiver's past sequence values.
Parameters

amount <integer> uncaptured
Return Value

UNSPECIFIED
Errors

none

5.9.2.10 Message: skipTo: anObject

Synopsis
Sets the stream to read the object just after the next occurrence of the argument and returns true. If
the argument is not found before the end of the stream is encountered, false is returned.

Definition: <gettableStream>
Each object in the receiver's future sequence values up to and including the first occurrence of an
object that is equivalent to anObject is removed from the future sequence values and appended
to the receiver's past sequence values. If an object that is equivalent to anObject is not found in
the receiver's future sequence values, all of the objects in future sequence values are removed
from future sequence values and appended to past sequence values. If an object equivalent to
anObject is not found false is returned. Otherwise return true.

Parameters
anObject <Object> uncaptured

Return Value

NCITS J20 DRAFT December, 1997 280
of ANSI Smalltalk Standard revision 1.9

<boolean> unspecified
Errors

none

5.9.2.11 Message: upTo: anObject

Synopsis:
Returns a collection of all of the objects in the receiver up to, but not including, the next occurrence
of the argument. Sets the stream to read the object just after the next occurrence of the argument.
If the argument is not found and the end of the stream is encountered, an ordered collection of the
objects read is returned.

Definition: <gettableStream>
Each object in the receiver's future sequence values up to and including the first occurrence of an
object that is equivalent to anObject is removed from the future sequence values and appended
to the receiver's past sequence values. A collection, containing, in order, all of the transferred
objects except the object (if any) that is equivalent to anObject is returned. If the receiver's future
sequence values is initially empty, an empty collection is returned.

Parameters
anObject <Object> uncaptured

Return Value
<sequencedReadableCollection> new

Errors
none

5.9.3 Protocol: <collectionStream>

Conforms To
<sequencedStream>

Description
An object conforming to <collectionStream> has a <sequencedReadableCollection> as its stream
backing store.

Messages
contents

5.9.3.1 Message: contents

Synopsis
Returns a collection containing the complete contents of the stream.

Definition: <sequencedStream>
Returns a collection that contains the receiver’s past and future sequence values, in order. The
size of the collection is the sum of the sizes of the past and future sequence values.

Refinement: <collectionStream>
It is unspecified whether or not the returned collection is the same object as the backing store
collection. However, if the returned collection is not the same object as the stream backing store

NCITS J20 DRAFT December, 1997 281
of ANSI Smalltalk Standard revision 1.9

collection then the class of the returned collection is the same class as would be returned if the
message #select: was sent to the backing store collection.

Return Value
<sequencedReadableCollection> unspecified

Errors
none

5.9.4 Protocol: <puttableStream>

Conforms To
<Object>

Description
An object conforming to <puttableStream> allows objects to be added to its past sequence values.

Messages
cr
flush
nextPut:
nextPutAll:
space
tab

5.9.4.1 Message: cr

Synopsis
Writes an end-of-line sequence to the receiver.

Definition: <puttableStream>
A sequence of character objects that constitute the implementation-defined end-of-line sequence is
added to the receiver in the same manner as if the message #nextPutAll: was sent to the
receiver with an argument string whose elements are the sequence of characters.

Return Value
UNSPECIFIED

Errors
It is erroneous if any element of the end-of-line sequence is an object that does not conform to the
receiver's sequence value type.

5.9.4.2 Message: flush

Synopsis:
Update a stream's backing store.

Definition: <puttableStream>
Upon return, if the receiver is a write-back stream, the state of the stream backing store must be
consistent with the current state of the receiver.
If the receiver is not a write-back stream, the effect of this message is unspecified.

Return Value
UNSPECIFIED

NCITS J20 DRAFT December, 1997 282
of ANSI Smalltalk Standard revision 1.9

Errors
none

5.9.4.3 Message: nextPut: anObject

Synopsis
Writes the argument to the stream.

Definition: <puttableStream>
Appends anObject to the receiver's past sequence values. If the receiver's future sequence
values is not empty, removes its first object.

Parameters
anObject <Object> captured

Return Value
UNSPECIFIED

Errors
It is erroneous if anObject is an object that does not conform to the receiver's sequence value
type.

5.9.4.4 Message: nextPutAll: aCollection

Synopsis
Enumerates the argument, adding each element to the receiver

Definition: <puttableStream>
Has the effect of enumerating the aCollection with the message #do: and adding each element
to the receiver with #nextPut:. That is,

aCollection do: [:each | receiver nextPut: each]

Parameters
aCollection <collection> uncaptured

Return Value
UNSPECIFIED

Errors
It is erroneous if any element of aCollection is an object that does not conform to the receiver's
sequence value type.

5.9.4.5 Message: space

Synopsis
Writes a space character to the receiver.

Definition: <puttableStream>
The effect is the same as sending the message #nextPut: to the receiver with an argument that
is the object that is the value returned when the message #space is sent to the standard global
Character.

Return Value
UNSPECIFIED

Errors

NCITS J20 DRAFT December, 1997 283
of ANSI Smalltalk Standard revision 1.9

It is erroneous if the space character is an object that does not conform to the receiver's sequence
value type.

5.9.4.6 Message: tab

Synopsis
Writes a tab character to the receiver.

Definition: <puttableStream>
The effect is the same as sending the message #nextPut: to the receiver with an argument that is
the object that is the value returned when the message #tab is sent to the standard global
Character.
Return Value

UNSPECIFIED
Errors

It is erroneous if the tab character is an object that does not conform to the receiver's sequence
value type.

5.9.5 Protocol: <ReadStream>

Conforms To
<gettableStream> <collectionStream>

Description
An object conforming to <ReadStream> has a positionable sequence of values that can be read.
The sequence values are provided by a sequenced collection that serves as the stream backing
store.

Messages
next:
upTo:

5.9.5.1 Message: next: amount

Synopsis
Returns a collection of the next amount objects in the stream.

Definition: <gettableStream>
A number of objects equal to amount are removed from the receiver's future sequence values and
appended, in order, to the end of the receiver's past sequence values. A collection whose elements
consist of those objects, in the same order, is returned. If amount is equal to 0 an empty collection
is returned.
The result is undefined if amount is larger than the number of objects in the receiver's future
sequence values.

Refinement: <ReadStream>
The result collection will conform to the same protocols as the object that would result if the
message #select: was sent to the object that serves as the stream backing store.

Parameters

NCITS J20 DRAFT December, 1997 284
of ANSI Smalltalk Standard revision 1.9

amount <integer> uncaptured
Return Value

<sequencedReadableCollection> new
Errors

amount < 0

5.9.5.2 Message: upTo: anObject

Synopsis:
Returns a collection of all of the objects in the receiver up to, but not including, the next occurrence
of the argument. Sets the stream to read the object just after the next occurrence of the argument.
If the argument is not found and the end of the stream is encountered, an ordered collection of the
objects read is returned.

Definition: <gettableStream>
Each object in the receiver's future sequence values up to and including the first occurrence of an
object that is equivalent to anObject is removed from the future sequence values and appended
to the receiver's past sequence values. A collection, containing, in order, all of the transferred
objects except the object (if any) that is equivalent to anObject is returned. If the receiver's future
sequence values is initially empty, an empty collection is returned.

Refinement: <ReadStream>
The result collection will conform to the same protocols as the object that would result if the
message #select: was sent to the object that serves as the stream backing store.

Parameters
anObject <Object> uncaptured

Return Value
<sequencedReadableCollection> new

Errors
none

5.9.6 Protocol: <WriteStream>

Conforms To
<puttableStream> <collectionStream>

Description: <WriteStream>
An object conforming to <WriteStream> has a positionable sequence of values to which new
values may be written. The initial sequence values are provided by a collection that serves as the
stream backing store. It is implementation defined whether a <WriteStream> is a write-back
stream. Even if a <WriteStream> is not a write-back stream, its associated collection may be
subject to modification in an unspecified manner as long as it is associated with the stream.

Messages
none

NCITS J20 DRAFT December, 1997 285
of ANSI Smalltalk Standard revision 1.9

5.9.7 Protocol: <ReadWriteStream>

Conforms To
<ReadStream> <WriteStream>

Description
An object conforming to <ReadWriteStream> can read from its future sequence values or write to
its past sequence values. The sequence values are provided by a collection that serves as the
stream backing store. It is implementation defined whether a <ReadWriteStream> is a write-back
stream. Even if a <ReadWriteStream> is not a write-back stream, its associated collection may be
subject to modification in an unspecified manner as long as it is associated with the stream.

Messages
none

5.9.8 Protocol: <Transcript>

Conforms To
<puttableStream>

Description
An object conforming to <Transcript> is a <puttableStream> for logging status messages from
Smalltalk programs. The sequence value type of <Transcript> is <Character>. There may be an
implementation defined stream backing store that receives characters written to the stream in an
implementatiuon defined manner.

Standard Globals
Transcript Conforms to the protocol <Transcript>. Its language element type is

unspecified. This is a <Transcript> that is always available to output
textual messages in an implementtion defined manner.

Messages
none

5.9.9 Protocol: <ReadStream factory>

Conforms To
<Object>

Description
<ReadStream factory> provides for the creation of objects conforming to the <ReadStream>
protocol whose sequence values are supplied by a collection.

NCITS J20 DRAFT December, 1997 286
of ANSI Smalltalk Standard revision 1.9

Standard Globals
ReadStream Conforms to the protocol <ReadStream factory>. Its language element

type is unspecified. This is a factory for streams that conform to
<ReadStream>.

Messages
on:

5.9.9.1 Message: on: aCollection

Synopsis
Returns a stream that reads from the given collection.

Definition: <ReadStream factory>
Returns an object conforming to <ReadStream> whose future sequence values initially consist of
the elements of aCollection and which initially has no past sequence values. The ordering of
the sequence values is the same as the ordering used by #do: when sent to aCollection. The
stream backing store of the returned object is aCollection.

Parameters
aCollection <sequencedReadableCollection> captured

Return Value
<ReadStream> new

Errors
none

5.9.10 Protocol: <ReadWriteStream factory>

Conforms To
<Object>

Description
<ReadWriteStreamfactory> provides for the creation of objects conforming to the <WriteStream>
protocol whose sequence values are supplied by a collection.

Standard Globals
ReadWriteStream Conforms to the protocol <ReadWriteStream factory>. Its language

element type is unspecified. This is a factory for streams that conform to
<ReadWriteStream>.

Messages
with:

5.9.10.1 Message: with: aCollection

Synopsis
Returns a stream that reads the elements of the given collection and can write new elements.

Definition: <ReadWriteStream factory>
Returns an object conforming to <ReadWriteStream> whose past sequence values initially consist
of the elements of aCollection and which initially has no future sequence values. The ordering
of the sequence values is the same as the ordering used by #do: when sent to aCollection. The
stream backing store of the returned object is aCollection. The sequence value type of the write
stream is the element type of aCollection. Any restrictions on objects that may be elements of
aCollection also apply to the stream's sequence elements.

NCITS J20 DRAFT December, 1997 287
of ANSI Smalltalk Standard revision 1.9

Parameters
aCollection <sequencedCollection> captured

Return Value
<ReadWriteStream> new

Errors
none

5.9.11 Protocol: <WriteStream factory>

Conforms To
<Object>

Description
<WriteStream factory> provides for the creation of objects conforming to the <WriteStream>
protocol whose sequence values are supplied by a collection.

Standard Globals
WriteStream Conforms to the protocol <WriteStream factory >. Its language element

type is unspecified. This is a factory for streams that conform to
<WriteStream>.

Messages
with:

5.9.11.1 Message: with: aCollection

Synopsis
Returns a stream that appends to the given collection.

Definition: <WriteStream factory>
Returns an object conforming to <WriteStream> whose past sequence values initially consist of the
elements of aCollection and which initially has no future sequence values. The ordering of the
sequence values is the same as the ordering used by #do: when sent to aCollection. The
stream backing store of the returned object is aCollection. The sequence value type of the write
stream is the element type of aCollection. Any restrictions on objects that may be elements of
aCollection also apply to the stream’s sequence elements.

Parameters
aCollection <sequencedCollection> captured

Return Value
<WriteStream> new

Errors
none

NCITS J20 DRAFT December, 1997 288
of ANSI Smalltalk Standard revision 1.9

5.10 File Stream Protocols

This section includes protocols that define the behavior of streams that access the contents of files.

The graph below shows the conformance relationships between the protocols defined in this
section (except for <puttableStream>, <gettableStream>, and <sequencedStream>, which are
contained in the section on stream protocols).

<sequencedStream>

<FileStream><gettableStream> <puttableStream>

<FileStream factory>

<readFileStream> <writeFileStream>

NCITS J20 DRAFT December, 1997 289
of ANSI Smalltalk Standard revision 1.9

5.10.1 Protocol: <FileStream>

Conforms To
<sequencedStream>

Description
Provides protocol for streams over external files. The external file serves as the stream backing
store. When objects are read or written from a file stream they must be translated from or two an
external data representation. File streams have an external stream type that is specified when the
stream is created. The external stream type defines the data translation and the sequence value
type for the stream. External stream types are specified using <symbol> objects. The standard
defines the following external stream types:
#’binary’ The external data is treated as sequence of 8-bit bytes. The sequence

value type is <integer> with values restricted to the range 0 to 255.
#’text’ The external data is treated as a sequenced of 8-bit characters encoded

using an implementation defined external character set. The sequence
value type is <Character> restricted to those specific characters that may
be represented in the external character set.

Implementations may define other external stream types.

Rational
The file stream capability specified in the standard was motivated by the desire to support a useful, yet minimal set of
functionality and to take as a guide (i.e. subset) the Posix standard.
There is specification only for the creation and use of readable and writeable file streams. There is not support for read/write
file streams. Nor is there any specification of file or directory manipulation, as these facilities are considered by the
Committee to be too platform-dependent and too implementation-dependent to standardize at this time, and it is felt that
streaming is adequate.
In addition, we only support the most common subset of the Posix file stream creation modes, rather than the full set.
We also considered the tradeoffs of specifying a wide range of creation messages, but decided that one fully-functional
message and one most-typical creation message for each of read and write file streams would be adequate.
Implementations are not prohibited from providing more options.

Messages
contents
externalType
isBinary
isText

5.10.1.1 Message: contents

Synopsis
Returns a collection containing the complete contents of the stream.

Definition: <sequencedStream>
Returns a collection that contains the receiver's past and future sequence values, in order. The
size of the collection is the sum of the sizes of the past and future sequence values.

Refinement: <FileStream>
If the external stream type is #’binary’ the returned collection conforms to <ByteArray>. If the
external stream type is #’text’ the returned collection conforms to <String>.

Return Value
<ByteArray> new

NCITS J20 DRAFT December, 1997 290
of ANSI Smalltalk Standard revision 1.9

<String> new
Errors

None

5.10.1.2 Message: externalType

Synopsis
Returns a symbol that identifies the external stream type of the receiver.

Definition: <FileStream>
Return the symbol that identifies the external stream type of the receiver.

Return Value
<symbol> unspecified

Errors
none

5.10.1.3 Message: isBinary

Synopsis:
Answer wthether the receiver's data is binary.

Definition: <FileStream>
Answer true if the sequence value type conforms to <integer>. Otherwise answer false.

Return Value
<boolean> unspecified

Errors
none

5.10.1.4 Message: isText

Synopsis:
Answer whether the receiver's data is characters.

Definition: <FileStream>
Answer true if the sequence value type conforms to <Character>. Otherwise answer false.

Return Value
<boolean> unspecified

Errors
none

5.10.2 Protocol: <readFileStream>

Conforms To
<FileStream> <gettableStream>

Description
Provides protocol for traversing and reading elements in an external file. The sequence values are
provided by the external file which also serves as the stream backing store.

NCITS J20 DRAFT December, 1997 291
of ANSI Smalltalk Standard revision 1.9

Messages
next:
upTo:

5.10.2.1 Message Refinement: next: amount

Synopsis
Returns a collection of the next amount objects in the stream.

Definition: <gettableStream>
A number of objects equal to amount are removed from the receiver's future sequence values and
appended, in order, to the end of the receiver's past sequence values. A collection whose elements
consist of those objects, in the same order, is returned. If amount is equal to 0 an empty collection
is returned.
The result is undefined if amount is larger than the number of objects in the receiver's future
sequence values.

Refinement: <readFileStream>
The result collection will conform to the same protocols as the object that would result if the
message #contents was sent to the receiver.

Parameters
amount <integer> uncaptured

Return Value
<sequencedReadableCollection> new

Errors
amount < 0

5.10.2.2 Message Refinement: upTo: anObject

Synopsis:
Returns a collection of all of the objects in the receiver up to, but not including, the next occurrence
of the argument. Sets the stream to read the object just after the next occurrence of the argument.
If the argument is not found and the end of the stream is encountered, an ordered collection of the
objects read is returned.

Definition: <gettableStream>
Each object in the receiver's future sequence values up to and including the first occurrence of an
object that is equivalent to anObject is removed from the future sequence values and appended
to the receiver's past sequence values. A collection, containing, in order, all of the transferred
objects except the object (if any) that is equivalent to anObject is returned. If the receiver's future
sequence values is initially empty, an empty collection is returned.

Refinement: <readFileStream>
The result collection will conform to the same protocols as the object that would result if the
message #contents was sent to the receiver.

Parameters
anObject <Object> uncaptured

Return Value
<sequencedReadableCollection> new

Errors
none

NCITS J20 DRAFT December, 1997 292
of ANSI Smalltalk Standard revision 1.9

5.10.3 Protocol: <writeFileStream>

Conforms To
<FileStream> <puttableStream>

Description
Provides protocol for storing elements in an external file. The sequence values are provided by the
external file which also serves as the stream backing store. A <writeFileStream> is a write-back
stream.

Messages
none

5.10.4 Protocol: <FileStream factory>

Conforms To
<Object>

Description
<FileStream factory> provides for the creation of objects conforming to the <readFileStream> or
<writeFileStream> protocols.

Standard Globals
FileStream Conforms to the protocol <FileStream factory>. Its program element type is
unspecified. This is a factory for collections that conform to <readFileStream> and
<writeFileStream>.

Messages
read:
read:type:
write:
write:mode:
write:mode:check:type:

5.10.4.1 Message: read: fileId

Synopsis
Returns a read file stream that reads text from the file with the given name.

Definition: <FileStream factory>
The result is the same as if the message #read:type: was sent to the receiver with fileId as
the first argument and the symbol #’text’ as the second argument.

Parameters

NCITS J20 DRAFT December, 1997 293
of ANSI Smalltalk Standard revision 1.9

aString<String> unspecified
Return Value

<readFileStream> new
Errors

As defined by <FileStream factory> #read:type:

5.10.4.2 Message: read: fileId type: fileType

Synopsis
Returns a read file stream that reads from the file with the given name.

Definition: <FileStream factory>
Locate an external file that is identified by the value of fileID. The syntax of the fileID string is
implementation defined.
Return an object conforming to <readFileStream> whose future sequence values initially consist of
the elements of the external file and which initially has no past sequence values. The ordering of
the sequence values is the same as the ordering within the external file. The external file serves as
the stream backing store of the returned object. The value of fileType determines the external
stream type and sequence value type of the result object.

Parameters
fileId <readableString> unspecified
fileType<symbol> unspecified

Return Value
<readFileStream> new

Errors
It is an error if the file does not exist, or if the user does not have read access to the file.

5.10.4.3 Message: write: fileId

Synopsis
Returns a write file stream that writes text to the file with the given name.

Definition: <FileStream factory>
The result is the same as if the message #write:mode:check:type: was sent to the receiver
with fileId as the first argument, #’create’ as the second argument, false as the third
argument, and the symbol #’text’ as the fourth argument.

Parameters
fileId <readableString> unspecified

Return Value
<writeFileStream> new

Errors
As defined by <FileStream factory> #write:mode:check:type:

5.10.4.4 Message: write: fileId mode: mode

Synopsis
Returns a write file stream that writes text to the file with the given name.

Definition: <FileStream factory>

NCITS J20 DRAFT December, 1997 294
of ANSI Smalltalk Standard revision 1.9

The result is the same as if the message #write:mode:check:type: was sent to the receiver
with fileId as the first argument, mode as the second argument, false as the third argument, and
the symbol #’text’ as the fourth argument.

Parameters
fileId <readableString> unspecified
mode <symbol> unspecified

Return Value
<writeFileStream> new

Errors
As defined by <FileStream factory> #write:mode:check:type:

5.10.4.5 Message: write: fileId mode: mode check: check type: fileType

Synopsis
Returns a write file stream that writes to the file with the given name.

Definition: <FileStream factory>
Depending upon the values of check and mode, either create a new external file or locate an
existing external file that is identified by the value of fileID. The syntax of the fileID string is
implementation defined.
Return an object conforming to <writeFileStream>. The external file serves as the stream backing
store of the returned object. The returned object is a write-back stream. The value of fileType
determines the external stream type and sequence value type of the result object.
Valid values for mode are: #’create’, #’append’, and #’truncate’. The meaning of these
values are:

#’create’ create a new file, with initial position at the beginning
#’append’ use an existing file, with initial position at its end
#’truncate’ use an existing file, initially truncating it.

The value of mode determines the initial state of the past sequence values and future sequence
values of the result object. If mode is #’create’ or #’truncate’ the past sequence values and
future sequence values are both initially empty. If mode is #’append’ the past sequence values
initially consist of the elements of the external file and future sequence values is initially empty. The
ordering of the sequence values is the same as the ordering within the external file.
The check flag determines whether the file specified by fileID must exist or not exist.

If mode = #’create’ and check = false and the file exists, then the existing file is used.
If mode = #’append’ and check = false and the file does not exist, then it is created.
If mode = #’truncate’ and check = false and the file does not exist, then it is created.

This operation is undefined if a value other than #’create’, #’append’ or #’truncate’ is
used as the mode argument.

Parameters
fileID <readableString> unspecified
mode <symbol> unspecified
check <boolean> unspecified
fileType <symbol> unspecified

Return Value
<writeFileStream> new

Errors

NCITS J20 DRAFT December, 1997 295
of ANSI Smalltalk Standard revision 1.9

If mode = #create and check = true and the file exists.
If mode = #append and check = true and the file does not exist.
If mode = #truncate and check = true and the file does not exist.
If the user does not have write permissions for the file.
If the user does not have creation permissions for a file that is to be created.

NCITS J20 DRAFT December, 1997 296
of ANSI Smalltalk Standard revision 1.9

6. Glossary
The Smalltalk standard defines and uses the following terms:

abnormal termination Termination of a block evaluation in any manner that would not have
resulted in the normal return of a result from a #value message if that
message had been used to initiate the evaluation. Abnormal termination
occurs when code in a block executes a return statement or when any
action external to the block permanently and irrevocably terminates
evaluation of the block.

advance To move a stream forward. Reading from a <readableStream> adds the

read object to the stream's past sequence values and removes it from
the stream's future sequence values.

argument An object encapsulated in a message that is required by the receiver to

perform the operation being requested.

array A data structure whose elements are associated with integer indices.

assignment An expression describing a change of a variable's value.

binary message A message with one argument whose selector is made up of one or two

special characters.

bind To cause a variable to refer to an object.

block Certain valuables called blocks have their evaluation rules determined by

the syntax and semantics of the Smalltalk language. For details of how
blocks are evaluated in context, refer to the Block Syntax section of the
specification.

block argument A parameter that must be supplied when certain blocks are evaluated.

cascading A description of several messages to one object in a single expression.

class definition The Smalltalk language construct that defines the representation and

behavior of instance objects and a globally named class object that
implements the class behavior.

class object An object defined by a class definition that responds to the class

messages and which has a global name binding.

closure The result of evaluating a block; the representation of the context of

execution of all enclosing blocks.

comparable Two objects are comparable if there is an ordering defined between

them. While there is no precise way to define which objects have such

NCITS J20 DRAFT December, 1997 297
of ANSI Smalltalk Standard revision 1.9

an ordering, it is generally the case that such objects must both conform
to another common protocol in addition to <magnitude>. For example, all
objects that conform to the protocol <number> are comparable.

context The values of variables defined within a block during a particular

execution of the method represented by that block.

default action The method that is executed in response to an exception if the current

exception environment does not contain an exception handler that
handles the exception.

element An object is an element of a collection if the object will be passed as an

argument to the argument of the message #do:.

element type A set of acceptable objects for elements of a collection. Unless

otherwise specified, the element type of a collection is <Object>.

equivalent Two objects are considered equivalent if the result of sending the

message #= to one of the objects with the other object as the argument
returns true.

evaluation context The stack of suspended method and block activations that represents

the continuation at a point of execution in the program.

exception action The object conforming to the protocol <valuable> that will be evaluated if

its containing exception handler is selected to service an exception.

exception environment An abstract entity that is a LIFO list of exception handlers. An exception

environment may be logically searched starting from the most recently
"pushed" exception handler.

exception handler An abstract entity that associates an exception selector with an

exception action for the duration of a protected block. During the
evaluation of the protected block, occurrence of an exceptional condition
that matches the exception selector will result in the execution of the
exception action. An exception handler is established by sending the
message #on:do: to the protected block with the exception selector as
the first argument and the exception action as the second argument.

exception selector An object conforming to the protocol <exceptionSelector> that is

contained in an exception handler and used to determine whether the
handler should be used to service an exception.

expression A sequence of characters that describes an object.

false The value of the reserved identifier "false".

fragile The implementation of a class's behavior is fragile if it is possible for

method in a subclass by the mere fact of its existence to inadvertently

NCITS J20 DRAFT December, 1997 298
of ANSI Smalltalk Standard revision 1.9

cause methods inherited from the class to malfunction. Implementation
may use underscore prefixed method selectors or other implementation
specific means to implement classes in a non-fragile manner.

future sequence values The sequence values yet to be read by a stream.

general subclass Any class that either directly or indirectly inherits from a superclass is a

general subclass of the superclass.

handle An exception handler is said to handle an exception if its exception

selector will respond with true if asked if it should service the exception.

handler block A block that is specified as an exception action.

handler environment The state of the current exception environment as it existed immediately

before the execution of the #on:do: message that establishes a new
exception handler.

hash value The non-negative integer result of sending the message #hash to an

object.

identical Two objects are considered identical if they are the same object. In other

workds, the result of sending the message #== to one of the objects with
the other object as the argument is true.

identifier A lexical representation for variables and selectors.

identity hash value The non-negative integer result of sending the message

#identityHash to an object.

identity object An object defined such that a=b implies a==b

immutable object An object whose state cannot be modified.

key A key is an object used to selectively access a single element of a

collection. Not all collections support the use of keys to access of their
elements.

key equivalence The operation used to compare keys in a dictionary. Protocols that

refine <abstractDictionary> must define the meaning of this term.

key lookup Lookup of a key in a dictionary using key equivalence.

keyword An identifier with a trailing colon.

keyword message A message with one or more arguments whose selector is made up of

one or more keywords.

NCITS J20 DRAFT December, 1997 299
of ANSI Smalltalk Standard revision 1.9

lexical order Ordering two sequences of values by comparing their elements in order.

The first two elements that differ determine the order.

literal An expression describing a constant, such as a number or string.

local time A system of measuring and describing time. Local times specify the

abbreviations, names, and numberings for various components of a date
time.

message argument An object that specifies additional information for an operation.

message selector The name of the type of operation a message requests of its receiver.

method The executable representation of an operation. It consists of zero or

more parameters and a number of expressions that are evaluated
sequentially.

nil The value of the reserved identifier "nil".

numeric representation The numeric representation of a numeric object is an implementation

dependent representation of a set of numbers conforming to a specific
protocol. A numeric representation may include limits on precision and
range of its values.

past sequence values The sequence values already read, written, or skipped by a stream.

precision The precision of a numeric representation is the number of significant

digits in the representation.

program A description of the data and operations that comprise a computation.

protected block An object conforming to the protocol <valuable> that is the scope over

which an exception handler is active.

pseudo variable name An expression similar to a variable name. However, unlike a variable

name, the value of a pseudo variable name cannot be changed by an
assignment.

range The range of a numeric representation is the set of number between the

upper and lower bounds.

receiver The object to which a message is sent.

resumable An exception for which it is possible to resume execution from the point

at which the exception was signaled.

NCITS J20 DRAFT December, 1997 300
of ANSI Smalltalk Standard revision 1.9

resumption value The value that is returned to the signaler from the exception action of a
resumable exception.

scope The mechanism by which the language restricts the visibility of variables.

A name can be declared to have local scope within a block or method.
Scopes can be nested. A name declared local to a scope represents the
same entity within that scope, and all scopes nested within it.

sequence value A value in a stream.

signaled exception During the signaling of an exception, the object conforming to the

protocol <exceptionDescription> that describes the exception and which
is used to select an exception handler.

signaling environment The state of the current exception environment at the time that an

exception is signaled.

sort block A <dyadicValuable> object used by <SortedCollection> objects to order

their elements. The sort block must return a <boolean> result.

stream backing store An object or external data store which provides or receives the sequence

values of the associated stream.

subexception An exception that is a specialization of another exception. An exception

handler for the more general exception will also serve as an exception
handler for the subexception.

symbol A string whose sequence of characters is guaranteed to be different from

that of any other symbol.

temporally invariant A message is temporally invariant if the repeated application of the

message to identical receivers and arguments will always yield an
equivalent result.

true The value of the reserved identifier "true".

unary message A message without arguments.

unbounded precision A numeric representation has unbounded precision if it can precisely

represent all numbers conforming to its protocol.

value The result of evaluating an object conforming to the protocol <valuable>.

variable name An expression describing the current value of a variable.

white space Characters that serve as token separators; ignored in a program parse.

NCITS J20 DRAFT December, 1997 301
of ANSI Smalltalk Standard revision 1.9

write-back stream A stream that supports the writing of objects and that has a stream
backing store that receives the objects written to the stream. A buffer
may exist between a write-back stream and its stream backing store and
there may be a latency between the time an object is written to the
stream and its appearance in the backing store.

NCITS J20 DRAFT December, 1997 302
of ANSI Smalltalk Standard revision 1.9

7. Index of Protocols

A
abstractDictionary, 165
Array, 211
Array factory, 231

B
Bag, 176
Bag factory, 234
boolean, 62
ByteArray, 211
ByteArray factory, 236

C
Character, 67
Character factory, 71
classDescription, 75
collection, 157
collection factory, 226
collectionStream, 280

D
DateAndTime factory, 267
DateAndTime, 250
Dictionary, 173
Dictionary factory, 227
Duration, 260
Duration factory, 266
dyadicValuable, 86

E
Error, 106
Error class, 105
Exception, 101
Exception class, 99
exceptionBuilder, 92
exceptionDescription, 89
exceptionInstantiator, 98
exceptionSelector, 97
exceptionSet, 113
exceptionSignaler, 90
extensibleCollection, 174

F
failedMessage, 73
FileStream, 289
FileStream factory, 292
Float, 145
floatCharacterization, 151
Fraction, 136
Fraction factory, 155

G
gettableStream, 276

I
IdentityDictionary, 173
IdentityDictionary factory, 229
initializableCollection factory, 230
instantiator, 77
integer, 137
Interval, 193
Interval factory, 225

M
magnitude, 115
MessageNotUnderstood, 111
MessageNotUnderstoodSelector, 110
monadicBlock, 86
monadicValuable, 85

N
nil, 61
niladicBlock, 83
niladicValuable, 81
Notification, 103
Notification class, 102
number, 117

O
Object, 52
Object class, 77
OrderedCollection, 219
OrderedCollection factory, 238

P
puttableStream, 281

R
rational, 135
readableString, 200
readFileStream, 290
ReadStream, 283
ReadStream factory, 285
ReadWriteStream, 285
ReadWriteStream factory, 286

S
scaledDecimal, 144
selector, 74

NCITS J20 DRAFT December, 1997 303
of ANSI Smalltalk Standard revision 1.9

sequencedCollection, 207
sequencedContractibleCollection, 212
sequencedReadableCollection, 180
sequencedStream, 274
Set, 178
Set factory, 241
signaledException, 92
SortedCollection, 213
SortedCollection factory, 243
String, 210
String factory, 246
symbol, 206

T
Transcript, 285

V
valuable, 80

W
Warning, 104
Warning class, 104
writeFileStream, 292
WriteStream, 284
WriteStream factory, 287

Z
ZeroDivide, 109
ZeroDivide factory, 107

NCITS J20 DRAFT December, 1997 304
of ANSI Smalltalk Standard revision 1.9

8. References
[Goldberg83] Goldberg, A. & Robson, D. (1983). Smalltalk-80: The language and its

implementation. Addison-Wesley.

[Kay93] Kay, A.C. (1993). The Early History of Smalltalk. ACM SIGPLAN Notices, v. 28,
n. 3, March.

[Thomson93] Thomson, David G. [1993]. Believable Specifications: Organizing and Describing
Object Interfaces Using Protocol Conformance. Master Thesis, Carleton
University, Ottawa, Ontario.

	Title Page
	Table of Contents
	Goals and Scope
	Conforming Implementations and Programs
	The Smalltalk Language
	Computational Model of Smalltalk Execution
	The Syntax of Smalltalk Programs
	Smalltalk Abstract Program Grammar
	Program DefinitionThe definition of Smalltalk programs consists of a sequence of program element definitions. The program element definitions define all discrete variables, statically created objects and the behaviors of all objects that will take part i
	Name Scopes

	Class Definition
	Instance State Specification
	Class State Specification
	Behavior Specification

	Global Variable Definition
	Pool Definition
	Program Initializer Definition

	Method Grammar
	Functions
	Method Definition
	Initializer Definition
	Blocks
	Statements
	Return statement
	Expressions
	Messages
	Sends To 'super'
	Message Not Understood
	Cascades
	Reserved Messages for Indexable Objects

	Literals
	Numeric Literals
	Character Literals
	String Literals
	Symbol Literals
	Selector Literals
	Array Literals

	Reserved Identifiers

	Lexical Grammar
	Character Categories
	Comments
	Identifiers
	Keywords
	Operators
	Numbers
	Quoted Character
	Quoted Strings
	Hashed String
	Quoted Selector
	Separators

	Implementation Limits

	Smalltalk Interchange Format
	Interchange Format BNF Syntax

	Standard Class Library
	Definitions and Concepts
	Glossary of Terms
	Message Specification
	Behavioral Description
	Parameter Specification
	Return value specification

	Conformance and Refinement
	Conformance
	Object Conformance
	Protocol Conformance
	Message Specification Conformance
	Interface Definition Conformance
	Parameter Aliasing Conformance
	Return Value Aliasing Attribute Conformance
	Behavioral Description Conformance

	Refinement
	Special Protocols

	Protocol Specification Conventions
	Naming
	Message Lists
	Message Definitions
	Protocol Groupings

	Standard Globals
	Fundamental Protocols
	Protocol: <Object>
	Message:	= comparand
	Message:	== comparand
	Message:	~= comparand
	Message:	~~ comparand
	Message:	class
	Message:	copy
	Message:	doesNotUnderstand: message
	Message:	error: signalerText
	Message:	hash
	Message:	identityHash
	Message:	isKindOf: candidateClass
	Message:	isMemberOf: candidateClass
	Message:	isNil
	Message:	notNil
	Message:	perform: selector�	Message:	perform: selector with: argument1�	Message:	perform: selector with: argument1 with: argument2�	Message:	perform: selector with: argument1 with: argument2 with: argument3
	Message:	perform: selector withArguments: arguments
	Message:	printOn: target
	Message:	printString
	Message:	respondsTo: selector
	Message:	yourself

	Protocol: <nil>
	Message Refinement:	printString

	Protocol: <boolean>
	Message:	& operand
	Message:	| operand
	Message:	and: operand
	Message:	eqv: operand
	Message:	ifFalse: operand
	Message:	ifFalse: falseOperand ifTrue: trueOperand
	Message:	ifTrue: operand
	Message:	ifTrue: trueOperand ifFalse: falseOperand
	Message:	not
	Message:	or: operand
	Message Refinement:	printString
	Message:	xor: operand

	Protocol: <Character>
	Message Refinement:	= comparand
	Message:	asLowercase
	Message:	asString
	Message:	asUppercase
	Message:	codePoint
	Message:	isAlphaNumeric
	Message:	isDigit
	Message:	isLetter
	Message:	isLowercase
	Message:	isUppercase

	Protocol: <Character factory>
	Message:	codePoint: integer
	Message:	cr
	Message:	lf
	Message:	space
	Message:	tab

	Protocol: <failedMessage>
	Message:	arguments
	Message:	selector

	Protocol: <selector>
	Protocol: <classDescription>
	Message:	allSubclasses
	Message:	allSuperclasses
	Message:	name
	Message:	subclasses
	Message:	superclass

	Protocol: <instantiator>
	Message:	new

	Protocol: <Object class>
	Message Refinement:	new

	Valuable Protocols
	Protocol: <valuable>
	Message:	argumentCount
	Message:	valueWithArguments: argumentArray

	Protocol: <niladicValuable>
	Message Refinement:	argumentCount
	Message:	value
	Message:	whileFalse
	Message:	whileFalse: iterationBlock
	Message:	whileTrue
	Message:	whileTrue: iterationBlock

	Protocol: <niladicBlock>
	Message:	ensure: terminationBlock
	Message:	ifCurtailed: terminationBlock
	Message:	on: selector do: action

	Protocol: <monadicValuable>
	Message Refinement:	argumentCount
	Message:	value: argument

	Protocol: <monadicBlock>
	Protocol: <dyadicValuable>
	Message Refinement:	argumentCount
	Message:	value: argument1 value: argument2

	Exception Protocols
	Protocol: <exceptionDescription>
	Message:	defaultAction
	Message:	description
	Message:	isResumable
	Message:	messageText
	Message:	tag

	Protocol: <exceptionSignaler>
	Message:	signal
	Message:	signal: signalerText

	Protocol: <exceptionBuilder>
	Message:	messageText: signalerText

	Protocol: <signaledException>
	Message:	isNested
	Message:	outer
	Message:	pass
	Message:	resignalAs: replacementException
	Message:	resume
	Message:	resume: resumptionValue
	Message:	retry
	Message:	retryUsing: alternativeBlock
	Message:	return
	Message:	return: returnValue

	Protocol: <exceptionSelector>
	Message:	, anotherException
	Message:	handles: exception

	Protocol: <exceptionInstantiator>
	Message Refinement:	new
	Message Refinement:	signal

	Protocol: <Exception class>
	Message Refinement:	handles: exception
	Message Refinement:	new
	Message Refinement:	signal

	Protocol: <Exception>
	Protocol: <Notification class>
	Message Refinement:	new

	Protocol: <Notification>
	Message Refinement:	defaultAction
	Message Refinement:	isResumable

	Protocol: <Warning class>
	Message Refinement:	new

	Protocol: <Warning>
	Message Refinement:	defaultAction

	Protocol: <Error class>
	Message Refinement:	new

	Protocol: <Error>
	Message Refinement:	defaultAction
	Message Refinement:	isResumable

	Protocol: <ZeroDivide factory>
	Message:	dividend: argument
	Message Refinement:	signal

	Protocol: <ZeroDivide>
	Message:	dividend
	Message Refinement:	isResumable

	Protocol: <MessageNotUnderstoodSelector>
	Message Refinement:	handles: exception

	Protocol: <MessageNotUnderstood>
	Message:	message
	Message Refinement:	isResumable
	Message:	message
	Message:	receiver

	Protocol: <exceptionSet>
	Message Refinement:	, anotherException

	Numeric Protocols
	Protocol: <magnitude>
	Message:	< operand
	Message:	<= operand
	Message:	> operand
	Message:	>= operand
	Message:	between: min and: max
	Message:	max: operand
	Message:	min: operand

	Protocol: <number>
	Message:	* operand
	Message:	+ operand
	Message:	- operand
	Message: / operand
	Message:	// operand
	Message Refinement:	< operand
	Message Refinement:	= comparand
	Message Refinement:	> operand
	Message:	\\ operand
	Message:	abs
	Message:	asFloat
	Message:	asFloatD
	Message:	asFloatE
	Message:	asFloatQ
	Message:	asFraction
	Message:	asInteger
	Message:	asScaledDecimal: scale
	Message:	ceiling
	Message:	floor
	Message:	fractionPart
	Message:	integerPart
	Message:	negated
	Message:	negative
	Message:	positive
	Message Refinement:	printString
	Message:	quo: operand
	Message:	raisedTo: operand
	Message:	raisedToInteger: operand
	Message:	reciprocal
	Message:	rem: operand
	Message:	rounded
	Message:	roundTo: factor
	Message:	sign
	Message:	sqrt
	Message:	squared
	Message:	strictlyPositive
	Message:	to: stop
	Message:	to: stop by: step
	Message:	to: stop by: step do: operation
	Message:	to: stop do: operation
	Message:	truncated
	Message:	truncateTo: factor

	Protocol: <rational>
	Message:	denominator
	Message:	numerator

	Protocol: <Fraction>
	Message Refinement:	denominator
	Message Refinement:	numerator
	Message Refinement:	printString

	Protocol: <integer>
	Message:	allMask: mask
	Message:	anyMask: mask
	Message Refinement:	asScaledDecimal: scale
	Message:	bitAnd: operand
	Message:	bitAt: index
	Message:	bitAt: index put: value
	Message:	bitOr: operand
	Message:	bitShift: shift
	Message:	bitXor: operand
	Message:	even
	Message:	factorial
	Message:	gcd: operand
	Message:	highBit
	Message:	lcm: operand
	Message:	noMask: mask
	Message:	odd
	Message:	printStringRadix: base
	Message:	printOn: output base: base showRadix: flag

	Protocol: <scaledDecimal>
	Message:	scale

	Protocol: <Float>
	Message Refinement:	= comparand
	Message:	arcCos
	Message:	arcSin
	Message:	arcTan
	Message:	cos
	Message:	degreesToRadians
	Message:	exp
	Message:	floorLog: operand
	Message:	ln
	Message:	log: operand
	Message Refinement:	printString
	Message:	radiansToDegrees
	Message:	sin
	Message:	tan

	Protocol: <floatCharacterization>
	Message:	denormalized
	Message:	e
	Message:	emax
	Message:	emin
	Message:	epsilon
	Message:	fmax
	Message:	fmin
	Message:	fminDenormalized
	Message:	fminNormalized
	Message:	pi
	Message:	precision
	Message:	radix

	Protocol: <Fraction factory>
	Message:	numerator: top denominator: bottom

	Collection Protocols
	Protocol: <collection>
	Message:	allSatisfy: discriminator
	Message:	anySatisfy: discriminator
	Message:	asArray
	Message:	asBag
	Message:	asByteArray
	Message:	asOrderedCollection
	Message:	asSet
	Message:	asSortedCollection
	Message:	asSortedCollection: sortBlock
	Message:	collect: transformer
	Message:	detect: discriminator
	Message:	detect: discriminator ifNone: exceptionHandler
	Message:	do: operation
	Message:	do: operation separatedBy: separator
	Message:	includes: target
	Message:	inject: initialValue into: operation
	Message:	isEmpty
	Message:	notEmpty
	Message:	occurrencesOf: target
	Message:	rehash
	Message:	reject: discriminator
	Message:	select: discriminator
	Message:	size

	Protocol: <abstractDictionary>
	Message:	addAll: dictionary
	Message:	at: key
	Message:	at: key ifAbsent: operation
	Message:	at: key ifAbsentPut: operation
	Message:	at: key put: newElement
	Message Refinement:	collect: transformer
	Message:	includesKey: key
	Message:	keyAtValue: value
	Message:	keyAtValue: value ifAbsent: operation
	Message:	keys
	Message:	keysAndValuesDo: operation
	Message Refinement:	keysDo: operation
	Message Refinement:	reject: discriminator
	Message:	removeAllKeys: keys
	Message:	removeAllKeys: keys ifAbsent: operation
	Message:	removeKey: key
	Message:	removeKey: key ifAbsent: operation
	Message Refinement:	select: discriminator
	Message:	values

	Protocol: <Dictionary>
	Protocol: <IdentityDictionary>
	Protocol: <extensibleCollection>
	Message:	add: newElement
	Message:	addAll: newElements
	Message:	remove: oldElement
	Message:	remove: oldElement ifAbsent: exceptionHandler
	Message:	removeAll: oldElements

	Protocol: <Bag>
	Message Refinement:	add: newElement
	Message:	add: newElement withOccurrences: count
	Message Refinement:	addAll: newElements
	Message Refinement:	collect: transformer

	Protocol: <Set>
	Message Refinement:	add: newElement
	Message Refinement:	addAll: newElements
	Message Refinement:	collect: transformer

	Protocol: <sequencedReadableCollection>
	Message:	, operand
	Message Refinement:	= comparand
	Message:	after: target
	Message:	at: index
	Message:	at: index ifAbsent: exceptionBlock
	Message:	before: target
	Message:	copyFrom: start to: stop
	Message:	copyReplaceAll: targetElements with: replacementElements
	Message:	copyReplaceFrom: start to: stop with: replacementElements
	Message:	copyReplaceFrom: start to: stop withObject: replacementElement
	Message:	copyReplacing: targetElement withObject: replacementElement
	Message:	copyWith: newElement
	Message Refinement:	copyWithout: oldElement
	Message Refinement:	do: operation
	Message:	findFirst: discriminator
	Message:	findLast: discriminator
	Message:	first
	Message:	from: start to: stop do: operation
	Message:	from: start to: stop keysAndValuesDo: operation
	Message:	indexOf: target
	Message:	indexOf: target ifAbsent: exceptionHandler
	Message:	indexOfSubCollection: targetSequence startingAt: start
	Message:	indexOfSubCollection: targetSequence startingAt: start ifAbsent: exceptionHandler
	Message:	keysAndValuesDo: operation
	Message:	last
	Message:	reverse
	Message:	reverseDo: operation
	Message:	with: otherCollection do: operation

	Protocol: <Interval>
	Message Refinement:	, operand
	Message Refinement:	collect: transformer
	Message Refinement:	copyFrom: start to: stop
	Message Refinement:	copyReplaceAll: targetElements with: replacementElements
	Message Refinement:	copyReplaceFrom: start to: stop with: replacementElements
	Message Refinement:	copyReplaceFrom: start to: stop withObject: replacementElement
	Message Refinement:	copyReplacing: targetElement withObject: replacementElement
	Message Refinement:	copyWith: newElement
	Message Refinement:	copyWithout: oldElement
	Message Refinement:	reject: discriminator
	Message Refinement:	reverse
	Message Refinement:	select: discriminator

	Protocol: <readableString>
	Message Refinement:	, operand
	Message Refinement:	< operand
	Message Refinement:	<= operand
	Message Refinement:	> operand
	Message Refinement:	>= operand
	Message:	asLowercase
	Message:	asString
	Message:	asSymbol
	Message:	asUppercase
	Message Refinement:	copyReplaceAll: targetElements with: replacementElements
	Message Refinement:	copyReplaceFrom: start to: stop with: replacementElements
	Message Refinement:	copyReplacing: targetElement withObject: replacementElement
	Message Refinement:	copyWith: newElement
	Message:	sameAs: operand
	Message:	subStrings: separators

	Protocol: <symbol>
	Message Refinement:	asString
	Message Refinement:	asSymbol

	Protocol: <sequencedCollection>
	Message:	at: index put: newElement
	Message:	atAll: indices put: newElement
	Message:	atAllPut: newElement
	Message:	replaceFrom: start to: stop with: replacementElements
	Message:	replaceFrom: start to: stop with: replacementElements startingAt: replacementStart
	Message:	replaceFrom: start to: stop withObject: replacementElement

	Protocol: <String>
	Message Refinement: asString

	Protocol: <Array>
	Protocol: <ByteArray>
	Protocol: <sequencedContractibleCollection>
	Message:	removeAtIndex: index
	Message:	removeFirst
	Message:	removeLast

	Protocol: <SortedCollection>
	Message Refinement:	, operand
	Message Refinement:	add: newElement
	Message Refinement:	asSortedCollection
	Message Refinement:	collect: transformer
	Message Refinement:	copyReplaceAll: targetElements with: replacementElements
	Message Refinement:	copyReplaceFrom: start to: stop with: replacementElements
	Message Refinement:	copyReplaceFrom: start to: stop withObject: replacementElement
	Message Refinement:	copyReplacing: targetElement withObject: replacementElement
	Message Refinement:	reverse
	Message:	sortBlock
	Message:	sortBlock: discriminator

	Protocol: <OrderedCollection>
	Message Refinement:	add: newElement
	Message:	add: newElement after: target
	Message:	add: newElement afterIndex: index
	Message:	add: newElement before: target
	Message:	add: newElement beforeIndex: index
	Message:	addAll: newElements after: target
	Message:	addAll: newElements afterIndex: index
	Message:	addAll: newElements before: target
	Message:	addAll: newElements beforeIndex: index
	Message:	addAllFirst: newElements
	Message:	addAllLast: newElements
	Message:	addFirst: newElement
	Message:	addLast: newElement

	Protocol: <Interval factory>
	Message:	from: start to: stop
	Message:	from: start to: stop by: step

	Protocol: <collection factory>
	Message Refinement:	new
	Message:	new: count

	Protocol: <Dictionary factory>
	Message Refinement: new
	Message Refinement:	new: count
	Message:	withAll: newElements

	Protocol: <IdentityDictionary factory>
	Message Refinement: new
	Message Refinement:	new: count
	Message:	withAll: newElements

	Protocol: <initializableCollection factory>
	Message: with: element1�	Message: with: element1 with: element2�	Message: with: element1 with: element2 with: element3�	Message: with: element1 with: element2 with: element3 with: element4
	Message:	withAll: newElements

	Protocol: <Array factory>
	Message Refinement: new
	Message Refinement:	new: count
	Message Refinement: with: element1�	Message Refinement: with: element1 with: element2�	Message Refinement: with: element1 with: element2 with: element3�	Message Refinement: with: element1 with: element2 with: element3 with: element4
	Message Refinement:	withAll: newElements

	Protocol: <Bag factory>
	Message Refinement:	new
	Message Refinement:	new: count
	Message Refinement: with: element1�	Message Refinement: with: element1 with: element2�	Message Refinement: with: element1 with: element2 with: element3�	Message Refinement: with: element1 with: element2 with: element3 with: element4
	Message Refinement:	withAll: newElements

	Protocol: <ByteArray factory>
	Message Refinement: new
	Message Refinement:	new: count
	Message Refinement: with: element1�	Message Refinement: with: element1 with: element2�	Message Refinement: with: element1 with: element2 with: element3�	Message Refinement: with: element1 with: element2 with: element3 with: element4
	Message Refinement:	withAll: newElements

	Protocol: <OrderedCollection factory>
	Message Refinement: new
	Message Refinement:	new: count
	Message Refinement: with: element1�	Message Refinement: with: element1 with: element2�	Message Refinement: with: element1 with: element2 with: element3�	Message Refinement: with: element1 with: element2 with: element3 with: element4
	Message Refinement:	withAll: newElements

	Protocol: <Set factory>
	Message Refinement: new
	Message Refinement:	new: count
	Message Refinement: with: element1�	Message Refinement: with: element1 with: element2�	Message Refinement: with: element1 with: element2 with: element3�	Message Refinement: with: element1 with: element2 with: element3 with: element4
	Message Refinement:	withAll: newElements

	Protocol: <SortedCollection factory>
	Message Refinement: new
	Message Refinement:	new: count
	Message:	sortBlock: sortBlock
	Message Refinement: with: element1�	Message Refinement: with: element1 with: element2�	Message Refinement: with: element1 with: element2 with: element3�	Message Refinement: with: element1 with: element2 with: element3 with: element4
	Message Refinement:	withAll: newElements

	Protocol: <String factory>
	Message Refinement: new
	Message Refinement:	new: count
	Message Refinement: with: element1�	Message Refinement: with: element1 with: element2�	Message Refinement: with: element1 with: element2 with: element3�	Message Refinement: with: element1 with: element2 with: element3 with: element4
	Message Refinement:	withAll: newElements

	Date and Time Protocols
	Protocol:	<DateAndTime>
	Message:	+ operand
	Message:	 - operand
	Message Refinement:	< operand
	Message Refinement:	 = comparand
	Message Refinement:	 > operand
	Message:	 asLocal
	Message:	 asUTC
	Message:	dayOfMonth
	Message:	dayOfWeek
	Message:	dayOfWeekAbbreviation
	Message:	dayOfWeekName
	Message:	dayOfYear
	Message:	hour
	Message:	hour12
	Message:	hour24
	Message:	isLeapYear
	Message:	meridianAbbreviation
	Message:	minute
	Message:	month
	Message:	monthAbbreviation
	Message:	monthName
	Message:	offset
	Message:	offset: offset
	Message Refinement:	printString
	Message:	second
	Message:	timeZoneAbbreviation
	Message:	timeZoneName
	Message:	year

	Protocol:	<Duration>
	Message:	* operand
	Message:	+ operand
	Message:	- operand
	Message:	/ operand
	Message Refinement:	< operand
	Message Refinement:	= comparand
	Message Refinement:	> operand
	Message:	asSeconds
	Message:	abs
	Message:	days
	Message:	hours
	Message: 	minutes
	Message: 	negated
	Message: 	negative
	Message: 	positive
	Message Refinement:	printString
	Message:	seconds

	Protocol:	<Duration factory>
	Message:	days: days hours: hours minutes: minutes seconds: seconds
	Message: 	seconds: seconds
	Message: 	zero

	Protocol:	<DateAndTime factory>
	Message:	clockPrecision
	Message:	year: year month: month day: dayOfMonth hour: hour minute: minute second: second
	Message:	year: year month: month day: dayOfMonth hour: hour minute: minute second: second offset: offset
	Message:	year: year day: dayOfYear hour: hour minute: minute second: second
	Message:	year: year day: dayOfYear hour: hour minute: minute second: second offset: offset
	Message:	now

	Stream Protocols
	Protocol: <sequencedStream>
	Message:	close
	Message:	contents
	Message:	isEmpty
	Message:	position
	Message:	position: amount
	Message:	reset
	Message:	setToEnd

	Protocol: <gettableStream>
	Message:	atEnd
	Message:	do: operation
	Message:	next
	Message:	next: amount
	Message:	nextLine
	Message:	nextMatchFor: anObject
	Message:	peek
	Message:	peekFor: anObject
	Message:	skip: amount
	Message:	skipTo: anObject
	Message:	upTo: anObject

	Protocol: <collectionStream>
	Message:	contents

	Protocol: <puttableStream>
	Message:	cr
	Message:	flush
	Message:	nextPut: anObject
	Message:	nextPutAll: aCollection
	Message:	space
	Message:	tab

	Protocol: <ReadStream>
	Message:	next: amount
	Message:	upTo: anObject

	Protocol: <WriteStream>
	Protocol: <ReadWriteStream>
	Protocol: <Transcript>
	Protocol: <ReadStream factory>
	Message:	on: aCollection

	Protocol: <ReadWriteStream factory>
	Message:	with: aCollection

	Protocol: <WriteStream factory>
	Message:	with: aCollection

	File Stream Protocols
	Protocol: <FileStream>
	Message:	contents
	Message:	externalType
	Message:	isBinary
	Message:	isText

	Protocol: <readFileStream>
	Message Refinement:	next: amount
	Message Refinement:	upTo: anObject

	Protocol: <writeFileStream>
	Protocol: <FileStream factory>
	Message:	read: fileId
	Message:	read: fileId type: fileType
	Message:	write: fileId
	Message:	write: fileId mode: mode
	Message:	write: fileId mode: mode check: check type: fileType

	Glossary
	Index of Protocols
	References

