

January 1996 1

Table of Contents
January 1996 Vol 5 No 4

Features

A hierarchy that acts like a class 4
Bobby Woolf
An experience report is presented on a simple hierarchy that embodies a
number of powerful O-O technologies. How these techniques are successful
applications of common design patterns and pattern languages is examined.

Taking out the garbage 11
Derek Williams
Some tools and techniques for detecting, diagnosing, treating,
and, most important, avoiding memory size problems caused
by “dangling instances.”

Getting Real 15
The three-tier architecture and server Smalltalk
Jay Almarode
Partitioning Smalltalk applications between clients and the
server (the three-tier architecture) overcomes performance
bottlenecks and allows the implementation of shared business
objects in a server Smalltalk environment.

Managing Objects 17
A case for open development
environments
Jan Steinman and Barbara Yates
The Smalltalk market is maturing, and Smalltalk
vendors envy the relative ease of supporting

shrinkwrap compilers and libraries. A long tradition of access to Smalltalk
source code may be disappearing before our eyes.

Smalltalk Idioms 21
Farewell and a wood pile
by Kent Beck
The author presents a frequently successful problem-solving
technique and a system development approach parable.

Departments
Editors’ Corner 2
Recruitment 26

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, monthly except in Mar–Apr, July–Aug, and Nov–Dec. Published by
SIGS Publications Inc., 71 West 23rd St., 3rd Floor, New York, NY 10010. © Copyright 1996 by SIGS Publications. All rights reserved.
Reproduction of this material by electronic transmission, Xerox or any other method will be treated as a willful violation of the US
Copyright Law and is Flatly prohibited. Material may be reproduced with express permission from the publisher. Second Class Postage
Pending at NY, NY and additional Mailing offices. Canada Post International Publications Mail Product Sales Agreement No. 290386.

Individual Subscription rates 1 year (9 issues): domestic $89; Mexico and Canada $114, Foreign $129; Institutional/Library rates:
domestic $199, Canada & Mexico $224, Foreign $239. To submit articles, please send electronic files on disk to the Editors at 885
Meadowlands Drive #509,Ottawa,Ontario K2C 3N2,Canada,or via Internet to streport@objectpeople.on.ca.Preferred formats for figures
are Mac or DOS EPS,TIF,or GIF formats.Always send a paper copy of your manuscript, including camera-ready copies of your figures (laser
output is fine).

POSTMASTER: Send domestic address changes and subscription orders to: The Smalltalk Report, P.O. Box 5050, Brentwood, TN 37024-
5050. For service on current domestic subscriptions call 1.800.361.1279 or fax 615.370.4845. Email: subscriptions@sigs.com. For foreign
subscription orders and inquiries phone +44(0)1858.435302. PRINTED IN THE UNITED STATES.

Columns

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS Publications Advisory Board
Tom Atwood, Object Design
François Bancilhon, O2 Technology
Grady Booch, Rational
George Bosworth, ParcPlace-Digitalk
Jesse Michael Chonoles, Lockheed Martin ACC
Stuart Frost, SELECT Software
Adele Goldberg, ParcPlace-Digitalk
Thomas Keffer, Rogue Wave Software
R. Jordan Kriendler, IBM Consulting Group
Thomas Love, Consultant
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Cliff Reeves, IBM
Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

The Smalltalk Report
Editorial Board

Jim Anderson, ParcPlace-Digitalk
Adele Goldberg, ParcPlace-Digitalk
Reed Phillips
Mike Taylor, ParcPlace-Digitalk
Dave Thomas, Object Technology International

Columnists
Jay Almarode, GemStone Systems Inc.
Kent Beck, First Class Software
Juanita Ewing, ParcPlace-Digitalk
Bob Hinkle, Consultant
Tim Howard, FH Protocol, Inc.
Ralph E. Johnson, University of Illinois
Alan Knight, The Object People
Mark Lorenz, Hatteras Software, Inc.
Jan Steinman, Bytesmiths
Rebecca Wirfs-Brock, ParcPlace-Digitalk
Barbara Yates, Bytesmiths

SIGS Publications Group, Inc.
Richard P. Friedman, Founder, President, and CEO
Hal Avery, Group Publisher

Editorial/Production
Elizabeth A. Upp, Managing Editor
Elisa Varian, Production Manager
Andrea Cammarata, Art Director
Sue Mycka, Desktop Designer
Margaret Conti, Advertising Production Coordinator
Shannon Smith, Editorial Production Assistant

Circulation
Elayne Glick, Circulation Manager
Lawrence E. Hoffer, Marketing Manager

Advertising/Marketing
Gary Portie, Advertising Manager, East Coast/Canada/Europe
Michael W. Peck, Advertising Representative
Kristine Viksnins,West Coast Exhibit Sales
Sarah Olszewski, East Coast Exhibit Sales

212.242.7447 (v), 212.242.7574 (f)
Diane Fuller & Associates, Sales Representative,West Coast

408.255.2991 (v), 408.255.2992 (f)
Wendy Dinbokowitz, Promotions Manager for Magazines

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Senior Accounting Manager
Bibi Budhram, Accounts Payable

Publishers of JOURNAL OF OBJECT-ORIENTED
PROGRAMMING, OBJECT MAGAZINE, C++ REPORT,
THE SMALLTALK REPORT, THE X JOURNAL, REPORT
ON OBJECT ANALYSIS & DESIGN, CROSS-PLATFORM
STRATEGIES, OBJECT CURRENTS, OBJECT EXPERT (UK),
and OBJEKT SPEKTRUM (GERMANY)

The Smalltalk Report4

W for a client, I developed
a miniframework that incorporated several design
patterns. These patterns combined to make a

rather complex hierarchy of subtypes act like a single class.
Besides providing useful functionality that the client and
their customers needed (which never hurts!), the frame-
work successfully demonstrated the following techniques:

• what I call “how to do a case statement in Smalltalk,”
the Objects from States pattern1

• an example of the Reusability through Self-
Encapsulation pattern language2

• a variation of the Factory Method pattern3

• an example of what I call the “Null Object” pattern,
also known as NoWorker4 and Null Representation5

• limited amounts of visual behavior in domain objects
The framework itself is an example of a case statement
using Self-Encapsulation. In it are a set of Factory Meth-
ods and a Null Object. Even though it is a framework of
domain objects, it still contains some application model
behavior used to display the objects in a view. Not only
does the framework show simple examples of these pat-
terns, but it also shows how to combine individual pat-
terns together to solve more complex problems.

THE PROBLEM
Part of this client’s system consisted of a questionnaire the
user could display so that he could answer it. Analysis
revealed that the domain objects were Questionnaire,
which contained a list of Questions, each of which had
exactly one Answer. Further requirements gathering dis-
covered that there were three different ways a user could
answer a question: most questions needed yes/no
answers; some needed one of a list of possible answers;
others needed freeform text answers. The view could eas-
ily indicate these different ways of answering using check
boxes, combo boxes, and input field widgets, respectively.

Most of the domain code had already been imple-
mented for me. There were already Questionnaire, Question,
and Answer classes, and the container relationships
between the three had been defined. The problem was
the difficulty supporting the three different ways of
answering and the three different kinds of visual widgets
used to input and display answers.

The solution that had been implemented required a
lot of fairly ugly code in the Answer class. The class had

three instance variables: yesOrNo, selection, and
responseText. Each instance only used one of those vari-
ables; the other two were always nil. The displayString
method printed-out each variable’s value as long as it
wasn’t nil; because only one variable was not nil at any
given time, that’s the only one that was printed. What the
implementation did not solve was displaying a particular
Answer as different widgets. When I started on the project,
testing methods like isYesNo, isSelection, and isText were
about to be introduced.

SMALLTALK CASE STATEMENT
Obviously Answer was becoming too complex. The solu-
tion I devised was to expand the Answer class into a hier-
archy of classes:

Answer ()
BooleanAnswer (yesOrNo)
EnumerationAnswer (responseChoices, responseIndex)
TextAnswer (responseText)

This way each question could have the appropriate type
of answer: boolean, symbol, or text. None of the Answer
objects wasted any instance variables. Each class knew
what its instance variables’ types were and how to han-
dle them. This factored the complexity of handling
these different possibilities into separate classes so that
the decisions each class had to make were actually quite
simple.

The reason I call this hierarchy an example of a Small-
talk case statement is that it eliminates the need for test-
ing methods like isYesNo, isSelection, and isText. An ex-
ample of a case statement method would be something
like

Answer>>visualWidget
self isYesNo ifTrue: [“Use a check box.”].
self isSelection ifTrue: [“Use a combo box.”].
self isText ifTrue: [“Use an input field.”].

This is poor object-oriented (O-O) style. Sometimes de-
velopers clamor for Smalltalk to have a case statement,
usually because they’re trying to write code like this.
Although all of us write code like this sometimes, it is best
avoided. Factoring the class into a hierarchy allowed me
to eliminate the testing methods and simplify the code
like this:

A hierarchy that acts
like a class

Bobby Woolf

Answer>>visualWidget
^self subclassResponsibility

BooleanAnswer>>visualWidget
“Use a check box.”

EnumerationAnswer>>visualWidget
“Use a combo box.”

TextAnswer>>visualWidget
“Use an input field.”

This is a case statement via polymorphism and inheri-
tance. Just send the message and whatever implementer
gets run is the correct case. This forces the “testing” to be
encapsulated within the hierarchy where it can easily be
reused. If the results of the testing need to be changed, the
code is easier to maintain because it is so cleanly encapsu-
lated. Finally, the differences between the peer classes are
easy to see; just look at the methods they implement
instead of inheriting.

This case statement framework is also easy to extend to
add new cases. For an example of this, see the “Null
Object” section of this article.

SELF-ENCAPSULATION
A problem this hierarchy introduced is that now each
particular Question instance had to know what kind of
Answer instance it had. To avoid this problem, I wanted
all of the concrete classes to be polymorphically equiva-
lent. This means that they would all have the same com-
mon interface so that I could generally treat any
instance as an Answer without regard to which concrete
subclass it was.

To do this, I defined the common interface in Answer
with messages like response, response:, and displayString. In
Answer, each of these methods returned the subclass-
Responsibility error. Each subclass implemented the mes-
sages appropriately in terms of its state. For example,
here’s how EnumerationAnswer handled the response aspect:

EnumerationAnswer>>response
| index |
index := self responseIndex.
^index == 0

ifTrue: [nil]
ifFalse: [self responseChoices at: index]

EnumerationAnswer>>response: newResponse
self responseIndex:

(self responseChoices
identityIndexOf: newResponse)

This is an example of the Reusability through Self-Encap-
sulation pattern language, albeit an extremely simple ex-
ample. The language shows how to implement an ex-
tensible yet well-encapsulated hierarchy. An abstract
superclass defines the interface the subclasses will follow.
The interface is implemented in terms of a small number
of kernel methods that each subclass must implement
appropriately. As the language suggests, Answer defines

the hierarchy’s interface and leaves the implementation
details to the subclasses.

This could be considered a variation of the Factor a
Superclass pattern.6 That pattern starts with a number of
peer classes and factors their shared variables and behav-
ior into a common superclass so that the subclasses do not
duplicate each other’s variables and behavior. What I did
with Answer was the same process in reverse; I started with
one class and factored it into many subclasses. I use the
superclass to define a common interface rather than
implement common behavior, so my efforts are more rem-
iniscent of Self-Encapsulation than Factor a Superclass.

FACTORY METHOD
Another problem the Answer hierarchy introduced is the
matter of assuring that the right kind of Answer instance gets
assigned to each Question. How does a Question phrased as a
yes/no question get a BooleanAnswer? How does one with a
list of possible answers specify that it needs not only an
EnumerationAnswer but the list of choices as well?

To solve this problem, I introduced the following mes-
sages into Question: useYesNoAnswer, usePossibleAnswers:,
and useTextAnswer. This way, as each Question was created,
the answer details could be specified as well. Here are
some examples:

question1 := (Question text: ‘Do chickens have lips?’)
useYesNoAnswer.

question2 := (Question text: ‘Are you lazy?’)
usePossibleAnswers:

#(#always #sometimes #never).
question3 := (Question text: ‘How old are you?’)

useTextAnswer.

I wanted to hide the complexity of the Answer hierarchy
and maintain the illusion that it was still just one class.
This way the one class could actually manage the other
classes and their use. This will also encapsulate this
management within the class. Because this is not a com-
plicated hierarchy, its management is fairly simple.
Answer’s instance creation protocol just has to allow for
creating each kind of answer. Here are the methods that
do this:

Answer class>>yesNoAnswer
^BooleanAnswer new

Answer class>>possibleAnswers: answerList
^EnumerationAnswer new responseChoices: answerList

Answer class>>textAnswer
^TextAnswer new

Question in turn just delegates the Answer creation to that
class:

Question>>useYesNoAnswer
self answer: Answer yesNoAnswer

Question>>usePossibleAnswers: answerList

The Smalltalk Report6

self answer: (Answer possibleAnswers: answerList)

Question>>useTextAnswer
self answer: Answer textAnswer

The three instance creation methods in Answer are exam-
ples of the Factory Method pattern, or at least a variation
thereof. Gamma et al. say that the “Factory Method lets a
class defer instantiation to subclasses.” A classic example
in Smalltalk-80 is the way View defines the method
defaultControllerClass. Each subclass of View subimple-
ments defaultControllerClass to return the class for its con-
troller. Thus defaultControllerClass is a Factory Method.

The Factory Methods in Answer are yesNoAnswer,
possibleAnswers:, and textAnswer. Because they are not
standard protocol that is overridden in subclasses, they
are not standard Factory Method examples. However,
they are a variation on the same theme because they use
message sends to hide the existence of the various Answer
subclasses, as well as their names and interfaces. As far as
a collaborator like Question is concerned, there is only one
Answer class (not a hierarchy) and it is able to act in these
various ways. This encapsulates the hierarchy and simpli-
fies its interface to the rest of the system.

I cannot claim to have invented this technique. In Visu-
alWorks, Filename uses it to determine which of its sub-
classes to use. Similarly, CompositePart uses it to determine
which Wrapper class to use.

Alternate solution: Question hierarchy
When analyzing the requirements and designing a so-
lution, I considered developing a Question hierarchy as well
as an Answer hierarchy. This would have incorporated
Factory Method more directly by using subclassing (as the
pattern suggests). The Question class would have defined
a method like defaultAnswer in terms of defaultAnswerClass.
Then Question subclasses would override defaultAnswerClass
to return the appropriate Answer subclass.

For example:

Question>>defaultAnswer
^self defaultAnswerClass new

Question>>defaultAnswerClass
^Answer

BooleanQuestion>>defaultAnswerClass
^BooleanAnswer

and so forth for EnumerationQuestion>>defaultAnswerClass
and TextQuestion>>defaultAnswerClass. In fact, I did imple-
ment Question>>defaultAnswerClass in preparation for such
a protocol.

This combining of dual hierarchies is an example of
the Bridge pattern, where an abstraction is decoupled
from its implementation by implementing it in two hier-
archies. The two hierarchies can be extended indepen-
dently, and because they are connected by a standard
interface, most any pair of instances from the two hierar-
chies can work together.3

The problem with Question and Answer hierarchies is
that the classes are not decoupled from each other. There
is a one-to-one correspondence between the classes in
the two hierarchies: BooleanQuestion/BooleanAnswer,
EnumerationQuestion/EnumerationAnswer, and TextQues-
tion/TextAnswer. Anytime a new class was added to one
hierarchy, a corresponding class just like it would need to
be added to the other hierarchy, e.g., RangeQuestion would
require SliderAnswer. So these hierarchies are not truly
decoupled; in fact, they require duplicate effort to extend
both hierarchies.

Another problem with the Question hierarchy is that
subclasses would not have behaved differently from their
superclass. All Questions were essentially the same, even
though they expected different types of answers.
Hopefully, those that claimed to need a yes/no answer
were phrased as a yes/no question, but there was no way
to enforce this in BooleanQuestion.

In the end, although an Answer hierarchy looked prom-
ising, a similar Question hierarchy not only wasn’t helpful,
but was in fact counterproductive. The Question subclass-
es would not have introduced any helpful behavior but
would have required duplicate effort. Thus a Question
hierarchy was not necessary.

Tangent topic: SelectionState class?
Kent Beck recently wrote an excellent column, “Clean
code: Pipe dream or state of mind?”7 In it, he describes
how he factored out a State Object using two classes,
SingleSelectionState and GroupSelectionState, a terrific solu-
tion to the problem he was facing. He might have taken the
solution one step further by using the Factory Method
variation described here. Using it, he would introduce an
abstract class, SelectionState.

The SelectionState class would define the interface for all
SelectionState instances (SingleSelectionState, Group-
SelectionState, and eventually DelegationSelectionState). It
would also serve as the hierarchy’s interface to the rest of
the system (collaborators such as SelectionTool). Then
methods like SelectionTool>>setSelectionState: could be
moved into SelectionState (probably as
SelectionState>>setSelectionState: aFigure). setSelectionState:
is a fairly messy method that must contain a lot of knowl-
edge about the classes in the SelectionState hierarchy.
Notice that when Kent introduced an additional class,
DelegationSelectionState, he had to rewrite this method.
This messiness indicates that the method should be
encapsulated within the hierarchy, which moving it to
SelectionState would do. Also, if setSelectionState: were ever
needed by another collaborator that was not a Selection-
Tool, the method would be available for reuse.

NULL OBJECT
Although requirements gathering discovered fairly early
on that there were three types of answers—yes/no, list of
choices, and freeform text—we discovered later that there
was actually a fourth, hidden case to be considered. Some
“questions” in the questionnaire were actually not ques-

January 1996 7

tions per se, but headings for subsequent questions. Such
a question might be “Check each of the following traits
that describes you:”

Why not Heading?
The problem this introduces is that such a heading is
more of a Heading object than a Question object. Both have
text, but headings don’t have answers the way questions
do. But then how should this be displayed in a view?

The questionnaire was displayed
as a table with two main columns,
question and answer. Every row was
expected to have two aspects that
would be displayed in the two
columns. Thus Heading needed to
have an answer aspect just like
Question, and the heading’s answer
would need to be able to display
itself the way an Answer can.

This caused Heading to work just
like a Question, so I found no need for
a separate Heading class. This solution
may be an example of improperly let-
ting the view define the domain; iterating over the design
might produce a better one. Yet I feel that the solution
described below turned out pretty well and may in fact be
the most graceful way to hide the exceptions to some other-
wise simple and uniform rules.

Perhaps another reason I rolled Heading into the
Question class is that my deadline for completing this sub-
system was rapidly approaching. It’s funny how when I’m
near a deadline, the current design I’ve already imple-
mented can look much better than an alternative that
requires rewriting a lot of code!

A heading’s answer
Modeling the heading as a Question object, it had to have
an Answer, but none of the three Answer subclasses
applied. For this purpose, I developed a fourth Answer
subclass called NullAnswer:

Answer ()
NullAnswer ()

As a subclass of Answer, NullAnswer preserved the Answer
interface, but did so without doing anything. Here are
some examples of the methods it defined:

NullAnswer>>response
^nil

NullAnswer>>displayString
^’n/a’

NullAnswer is an example of what I call the Null Object pat-
tern. I haven’t seen documentation for this pattern pub-
lished anywhere, but it is discussed fairly often. The pat-
tern describes an object that shares the same interface as
others of its type but that reacts to these methods by doing
nothing. The trick is in designing, for each message, what

doing nothing means. Typically it means getters that
return nil or empty collections and display methods that
show the object as null. Setter methods are usually
ignored; they can create a real instance and substitute it
for the Null Object, but this is more the behavior of a
Proxy3 than a Null Object.

The beauty of a Null Object is that it supports an exten-
sive, customized interface and encapsulates the decisions
about how it should “do nothing.” nil is perhaps the most

famous Null Object, but it doesn’t
really count because its interface is
neither extensive nor customized.
Yet programmers often use nil in a
variable that hasn’t been assigned
yet. This leads to copious amounts of
code that constantly check the vari-
able for nil before sending it mes-
sages. This code can be simplified by
assigning the variable a Null Object
of the correct type and then sending
the variable messages with impunity.
Also, rather than each collaborator
deciding what to do when the var-

iable is nil, these decisions are encapsulated within the
Null Object for reuse and consistency across all collabora-
tors.

Adding NullAnswer
The infrastructure to support the new NullAnswer class
was easy to introduce because the hierarchy was well
encapsulated. It consisted of exactly one method:

Answer class>>nullAnswer
^NullAnswer new

Then collaborators, such as Question, just needed to tie
into the expanded interface in a convenient way:

Question>>useNullAnswer
self answer: Answer nullAnswer

Other collaborators could tie in just as easily.

VISUAL CODE IN DOMAIN OBJECTS
One of the distinguishing factors of the different types of
answers is the way they were to be displayed. As described
earlier, a question could be displayed as a check box, a
combo box, or an input field. Also, a null answer would
need to be displayed with a “do nothing” widget.

Much has been written recently about the importance
of separating domain and application behavior, including
by me.8 Basically, domain objects represent core business
behavior, while application objects know how to display
domain objects in useful ways. This is the basic architec-
ture I follow for all of my development, including the
Questionnaire framework.

Questionnaire is the root of the domain framework de-
scribed earlier. In turn, I also implemented a correspond-
ing QuestionnaireUI class to represent Questionnaires.
(Because I was developing in VisualWorks, QuestionnaireUI

The Smalltalk Report8

CLASS-LIKE HIERARCHY

A Null Object supports
an extensive, customized

interface while
encapsulating how to

“do nothing.”

was a subclass of ApplicationModel.) QuestionnaireUI was
essentially a glorified table sort of widget where each row
displayed a question. The table had two main columns, the
question text and the question answer.

Why not AnswerUI?
The strength and limitation of this simple design are that
there were no application models for the Questions and
their Answers. I did not want these application models
because the QuestionnaireUI itself was just a table, practi-
cally a TableView or a DataSetView (in VisualWorks). Just as
those classes don’t contain separate “RowView” and
“CellView” classes, I didn’t want QuestionnaireUI to contain
numerous QuestionUI objects. Those would do nothing
more than contain QuestionTextUI and AnswerUI objects,
each of which would do little except to contain a single
view such as InputFieldView or ComboBoxView. This seemed
to me like an explosion of custom classes and do-practi-
cally-nothing objects, a complication I wanted to avoid.
Once again, avoiding these classes appears to be the most
graceful way to hide complicated exceptions to otherwise
simple, uniform rules.

Had there been an AnswerUI class, it could have made
the decision as to what kind of widget to use to display
each kind of Answer (its domain model). Actually, this
might have necessitated the need for a separate AnswerUI
subclass for each Answer subclass. Then the AnswerUI hier-
archy would have been tightly bound to the Answer hier-
archy and duplicate effort would have been required to
extend both in tandem. In any event, I did not have any
AnswerUI class available. All I had was a cell in a table that
was supposed to display an answer and an Answer domain
object that contained the data for that cell.

How to display an Answer
Because the Questions and Answers did not have their own
application model counterparts, there was no obvious
place to put the code that decided how to display the dif-
ferent types of Answers. The way I solved this problem was
to have the cell ask the domain object what widget should
be used to display it. The domain object would return the
widget and the table would display that widget in the cor-
responding cell.

This necessitated introducing the message visualWidget
into the Answer hierarchy (as shown earlier). Each subclass
would return an instance of the widget appropriate for
itself. Thus visualWidget is another example of the Factory
Method pattern, a more accurate example, since subclass-
es override the superimplementer.

Adding an application layer method like visualWidget
into a domain layer object like Answer is certainly unusu-
al, but not necessarily wrong. It was, after all, a single
method, not a whole suite of behaviors that could easily
become indistinguishable and inseparable from the
domain behavior. Furthermore, its behavior is likely to be
appropriate for any application layer that might be built
on this domain, so there is little need to be able to swap
one application object in for another.

Finally, I was still able to distinguish the application
code from the domain code in this domain class using
ENVY (ENVY/Developer, Object Technology Internation-
al, Inc.). I defined the Answer hierarchy in the Domain
application. Then I extended each of the hierarchy’s class-
es in the UI application to add the visualWidget method.
This not only clarified which Answer methods were for UI
behavior, but it also meant that a developer could easily
unload all UI code from the image—even that which the
domain classes contained—by unloading the UI
application.

CONCLUSION
One simple class in one minor part of a system turned out
to employ a number of powerful O-O techniques. Answer
was conceptually an uncomplicated little class that
turned out to have multiple personalities. As the code to
support those personalities grew, the need to expand the
class into a hierarchy became apparent. But because the
complexity of the hierarchy distracted from the simplicity
of the class, the need to hide this complexity became ap-
parent as well. I was able to develop this complex hier-
archy with a simple, single class–like interface by using
and combining the following techniques:

• Smalltalk Case Statement: This is what led to the
hierarchy. Each case was represented as a separate
class.

• Self-Encapsulation: This is what led to the abstract
superclass. It defined the public interface that all
subclasses would support so that various instances
could be treated polymorphically.

• Factory Method: This hid the concrete subclasses so that
they were never referenced from outside the hierarchy.
The hierarchy’s collaborators interfaced with the ab-
stract superclass, telling it what behavior was expected
from a new instance and trusting the superclass to
return an appropriate instance.

• Null Object: This substituted as the answer for a
question that did not need an answer. It supported the
abstract superclass’s interface and thus could be used
just like any other concrete subclass. And it encap-
sulated the “do nothing” code so that all questions
without answers would behave the same.

• Visual Code in Domain Objects: This acted as the
application object for a domain object whose display was
so simple that it did not need a separate application
object. ENVY extensions demonstrated that separate
objects are not the only way to separate independent
layers of code.

I hope this successfully illustrates these techniques and
shows how they may be used to solve real-world prob-
lems. I feel it is important not only that we document
these techniques as reusable design patterns and pattern
languages, but also that we show how they can be applied
in practice to help develop better-quality software. I hope
this experience report will prove useful to you. Please feel
free to contact me at woolf@acm.org if you have any
(tastefully phrased) questions or comments. `

`

January 1996 9

References
1. Beck, K. Death to case statements, part 2, T S

R 3(4), 1994.
2. Auer, K. Reusability through self-encapsulation, Coplien, J.O.

and D.C. Schmidt, Eds., P L P

D, Addison-Wesley, Reading, MA, 1995.
3. Gamma, E., R. Helm, R. Johnson, and J. Vlissides. D

P: E R O-O S,
Addison-Wesley, Reading, MA, 1995.

4. Hendley, G. The NoWorker pattern, available from the author at
ghendley@ksccary.com

5. Carlini, G. Type and implementation, available from the author
at giuliano@filenet.com

6. Beck, K. Inheritance: The rest of the story, T S

R 3(1), 1993.
7. Beck, K. Clean code: Pipe dream or state of mind? T

S R 4(8):20–22, 1995.
8. Woolf, B. Making MVC code more reusable, T S

R 4(4):15–18, 1995.

Bobby Woolf is a Member of Technical Staff at Knowledge Systems
Corp. in Cary, North Carolina. He is actively engaged in the patterns
movement that is seeking to document common software de-
velopment techniques.Comments are welcome at woolf@acm.org.

The Smalltalk Report10

CLASS-LIKE HIERARCHY

January 1996 11

“One person’s trash is another person’s treasure.”

“Memory leak!”: it’s a scary phrase, yet so many
object-oriented programmers use it. In a gen-
eral sense, it means that the memory size of

a running program continually grows so less room is
available to create new objects. The cause is usually
dangling instances: objects that are no longer needed but
are still around, using valuable memory space. For C++,
dangling instances usually mean that the programmer
forgot to explicitly delete objects or failed to follow the
protocols for who is responsible for deleting. For Small-
talk, dangling instances are usually objects that are con-
sidered trash to the programmer but treasure to the
garbage collectors.

Thanks to the garbage collectors in nearly all Smalltalk
implementations, Smalltalk programmers aren’t burdened
with having to explicitly delete objects: they simply create
new objects as needed and let the garbage collectors
remove obsolete objects and reclaim the space. The
garbage collectors deem an object to be obsolete if it is no
longer referenced (directly or transitively) from the “root”
pointers that keep immortal objects around. But some-
times, programming errors can leave unintended, dan-
gling references to an object, causing it to live much longer
than it should.

In this article I introduce some common tools and
techniques for detecting, diagnosing, and treating dan-
gling instances problems. It is slanted toward the
VisualWorks environment and its memory management
architecture, but many of the concepts apply to other
Smalltalk dialects.

DETECTION: DO YOU HAVE MEMORY PROBLEM?
You might have a memory problem if:
1. Your cursor frequently changes to a garbage collection

or compaction cursor.
2. Your development image file grows progressively larg-

er each time you save it, especially if you feel you’ve
done nothing that would cause it to be larger.

3. The memory footprint of your image grows to be much
larger than you think it should be. You might notice
that less space is available to other programs or you
might detect it with your finger on the dynamically
allocated footprint pulse of Smalltalk.

4. You notice heavy thrashing: lots of disk I/O due to the

operating system constantly swapping in and out the
memory allocated for use by Smalltalk.

5. You see a “low space notifier” or “out of memory” error
message.

These types of errors usually mean that memory prob-
lems have gotten out of hand. We’ll look at some steps you
can take to avoid getting to this point, but first let’s see
how each of these can occur. To understand these effects,
it helps to know a little about how your Smalltalk virtual
machine (a.k.a. object engine) manages memory.

The Smalltalk object engine divides the memory it uses
to store objects into a number of separate regions or
spaces. It does this to get the optimum benefit from dif-
ferent garbage collection schemes. For example, newly
created objects that are less than 1 KB in size are stored
into the Eden subspace in NewSpace. NewSpace is managed
by the scavenger garbage collector, which uses a two-
space copying algorithm. The scavenger runs as a back-
ground process, alternately copying surviving objects
between Eden and the two SurvivorSpaces. The two-space
algorithm works especially well for NewSpace, since most
new Smalltalk objects live very short lives and can be eas-
ily discarded simply by not copying them forward.

Objects that survive NewSpace are tenured into
OldSpace, which is managed by an incremental mark-and-
sweep garbage collector. OldSpace is unique in that it
dynamically grows as needed to accommodate the “ma-
ture” objects in the system. All other spaces are fixed in
size when the memory policy is installed (typically at
image startup).

You can control the balance between collecting gar-
bage and thus reclaiming space and growing the size of
OldSpace by changing memory policy parameters. When
a request is made to allocate a new object and there sim-
ply isn’t room for it, we say a low space condition has
occurred. It is then up to the memory policy to decide
what to do: to try to reclaim space by aggressively collect-
ing garbage and compacting objects or to simply ask for
more memory from the operating system. You can set a
cap at which reclamation will be favored over growth and
even limit the total memory size of the image.

Much of the partitioning of objects into spaces is done
“under the covers” and not directly visible to your
Smalltalk code. For example, you cannot find out which
space a given object resides in or find all the objects in a
particular space. But the parameters that control the

Taking out the garbage

Derek Williams

memory management behaviors are available to your
Smalltalk code and you can modify them. For example,
you can set the space sizes based on your application
needs, check various garbage collection statistics, check
on the current size of OldSpace, explicitly invoke a garbage
collector, etc. There’s a lot more that can be said about how
the garbage collectors work and how to tailor and tune the
memory policy for your needs—that’s not the purpose of
this article. But you can start learning by reading the class
comments and documentation methods in the classes
ObjectMemory and MemoryPolicy or reading the Memory
Management chapter in the VW U’ G.1

You should also read Kent Beck’s article on garbage collec-
tion in the February 1995 issue of this publication. It
explains how the garbage collection algorithms work in
detail and covers the Visual Smalltalk environment.

Although we’re not going to delve further into the object
engine’s memory management work, we can use our basic
knowledge of how it operates to help detect dangling
instance problems. Let’s review those five “warning signs”
and look at how each could occur.

Frequent cursor changes
The MemoryPolicy (through services in ObjectMemory) dis-
plays special cursors to show you when incremental
garbage collection and compaction activities are occur-
ring. Since these activities are typically in response to low
space conditions, they provide a visual clue to the state of
memory. Frequent collection or compaction cursors are
often early indicators that you are running out of space.
Figure 1 shows what these cursors look like.

Large image file size
Most Smalltalk applications are coded and unit tested
using development images that are frequently saved to
disk and then packaged into runtime images for further
testing and deployment. Usually the runtime images are
delivered to users who load, use, and exit them as needed,
but never save them again.

Some memory leaks can go undetected in runtime
images because the user starts at square one each time he
or she reloads the image. Since each image save writes all
the objects to disk, dangling instances have a way of stack-
ing up in a development environment. During develop-
ment, it’s a good idea to occasionally look at the size of your
image file. If it grows larger than you would expect, you
have an early indicator of a potential memory problem.

Large memory footprint
You don’t have to wait until you save your image to a
file to determine its size. Sending ObjectMemory

dynamicallyAllocatedFootprint will answer the total number
of bytes of memory your image is currently using. You
can send this message as often as you like (such as be-
fore and after testing an application scenario) to gather
measurements.

There are other services on the ObjectMemory class to give
you a view of the current sizes and state of memory. For
example, since only OldSpace will grow in size, you may only
be interested in oldBytes, rather than the total size.

Thrashing by the operating system
Recall that the image will grow in size until it reaches the
limit you set or until the operating system refuses to give
more memory to Smalltalk. You should set a cap so that
Smalltalk is a good citizen and leaves plenty of room for
other programs to run. If you don’t and the image grows
too large, switching back and forth between Smalltalk and
other programs can lead to heavy swapping.

When running under MS Windows, you should be aware
that Windows will often politely let Smalltalk have so much
memory that it doesn’t keep enough space for a good
working set of its own. When this happens, even a basic op-
eration like opening a new window can cause swapping.

Because thrashing is never a good thing, and because the
object engine never gives space back to the operating sys-
tem until you exit, you should choose your cap carefully.
If you would like to start favoring reclamation over growth
at x bytes and you never want your image to be larger than
y bytes, you can set a fixed value with something like:

ObjectMemory installMemoryPolicy:
(MemoryPolicy new

setDefaults;
growthRegimeUpperBound: x;
memoryUpperBound: y;
yourself).

Or you can get information about available or installed
memory from the operating system and use this as a basis
for setting a cap or controlling your own custom memory
policy. Also, the Runtime Packager tool has a window you
can use to set memory sizes when you build a runtime
image.

Low space notifier
If things are really bad, i.e., you’ve run out of room for new
objects, garbage collections do not reclaim enough space,
and the image cannot grow any more, you may see a low
space notifier.

The MemoryPolicy has no direct way of communicating
with the user to report that space is running dangerously
low. So, it invokes the low space notifier via the user in-
terrupt signal when it needs to say “Emergency: No
SpaceLeft” or “Space warning.”

The user interrupt signal is the same mechanism used
to invoke the emergency evaluator when Ctrl+Shift+C is
pressed. If you’ve tried to disable the emergency evaluator
for a runtime image or change the way it displays, you
should make sure that you’re not masking the low space

The Smalltalk Report12

Quick Garbage Collect Compact Memory Full, Compacting

Finish Incremental GC Garbage Collect

Figure 1. Cursors indicating you are running out of space.

TAKING OUT THE GARBAGE

notifier. I’ve seen cases where low space con-
ditions were simply reported as “user inter-
rupts” and the end user had no idea what
was happening.

DIAGNOSIS: FINDING THE CAUSE
So, based on the warning signs described
above, you think you have a memory prob-
lem—now what? We want to find exactly
which objects are not being cleaned up and
why.

A quick scan of instance counts can help
you find the dangling instances and narrow
the set of classes to examine for potential
problems. A code snippet like the one in Listing 1 can help.

You’re now inspecting a dictionary that shows you
counts for all classes having greater than 200 instances
floating around. Choosing 200 as a cutoff is arbitrary—
substitute whatever works for the situation or create your
own list of classes to check. If you want to narrow the
search, you can replace Object with another parent class.
Once you have the inspector, you’ll probably want to look
further, e.g., you may want to sort by class name:

self associations asSortedCollection:
[:a :b | a key name < b key name]

or by number of instances:

self associations asSortedCollection:
[:a :b | a value > b value].

Once you’ve targeted a class that appears to have more
instances than it should, send allInstances or
allInstancesWeakly: and inspect the result.

This is a rather brute-force approach to tracking down
runaway instances, but it’s often all you need. You can
wait until runaway instances start to get out of hand,
interrupt your code if necessary, and run this snippet. For
example, if you see 1,000 instances of your Scooter class
and you were expecting only two or three, you have a
good place to start.

If you can run through an application scenario to con-
sistently create the problem or if you don’t know whether
or not you have a problem, then check at regular intervals.
Periodic measurements taken with the code snippet in
Listing 1 and displaying the value of ObjectMemory
dynamicallyAllocatedFootprint can tell a lot.

It’s a good idea to include some lightweight memory
diagnostics like the above even in a runtime image you
deliver to customers. For example, you might add a win-
dow somewhat off the beaten path to display footprint
sizes or instance counts on demand. These snippets add
very little to the size of a runtime image, and you may just
find that your customers can create memory problems
you never expected (e.g., by leaving an image running
steadily for several weeks at a time).

The AllocationProfiler in Advanced Tools can show you
which new objects a particular block of code allocates by

tracking calls to methods that create new objects. Since it
shows you only memory allocation and not reclamation,
be prepared to look through the complete picture
(remember, most new objects die quickly). But it is an
easy tool to use and gives detailed information. To use it,
simply send AllocationProfiler profile: and pass it a block to
measure. You can learn more about the AllocationProfiler
by reading the ADVANCED TOOLS USER’S GUIDE.2

Finally, I’ve implemented some of the above tech-
niques in the Memory Diagnostics tool, which you can
get from the University of Illinois Smalltalk archives
(http://st-www.cs.uiuc.edu/).

TREATMENT: FINDING AND CLEANING UP REFERENCES
The measurements you took above should tell you at least
two things: (1) what the dangling instances are and (2)
what application scenario creates them. But often you
need to look further: you want to know exactly where the
dangling references are coming from.

You can determine this by inspecting one of the dan-
gling instances and looking at the reference path to it.
There are several ways to follow reference paths:
1. Manually follow the path of references by sending

allOwners or allOwnersWeakly: and inspecting the result.
This will show you the immediate references to your
dangling object. Sending allOwners or allOwnersWeakly:
to each of these references will show you the next level.
You can continue this process until you start to see
objects or methods that point to potential problems.

2. Use the ReferencePathCollector in Advanced Tools. If
you’re inspecting one of your dangling instances, you
can send ReferencePathCollector allReferencePathsTo: self
and inspect the result. Read the comments for class
ReferencePathCollector for more information.

3. Use the PointerFinder tool written by Hans-Martin
Mosner. You can get it from the author’s web page at
http://donald.heeg.de/pub/hmm-goodies/.

The reference path will often provide its own clues to ex-
actly which portion of code caused the dangling instance
and why it is not being cleaned up. Since it helps to know
what to look for, here are some common causes.

1. Unbroken dependencies. In many cases, dangling

January 1996 13

| dict |
“Faster than sending instanceCount to all classes”
ObjectMemory garbageCollect.
dict := IdentityDictionary new.
Object allSubclasses

do: [:ea | ea isMeta
ifFalse: [dict at: ea put: 0]].

ObjectMemory allObjectsDo:
[:ea | | count | (count := dict at: ea class ifAbsent: []) notNil

ifTrue: [dict at: ea class put: count + 1]].
(dict reject: [:ea | ea value < 200]) inspect.

Listing 1.

The Smalltalk Report14

instances are due to one object being referenced as a
dependent of another object that is still in use. The de-
pendent object may no longer be needed, but it isn’t col-
lected because it is still referenced by the “parent”
object. Usually this is caused by a failure to send
removeDependent: or one of the related methods.
Keeping track of all the places where dependencies are
set and broken can sometimes be difficult, given all the
different layers and frameworks that use them (depen-
dency transformers, adapters, value models, etc.) and
all the message variants.

The unbroken dependency problem is much easier
to create if you add dependents to an object that does
not track them in an instance variable (e.g., it does not
override Object>>myDependents). In this case, the depen-
dency connection is kept in the global DependentsFields
dictionary. With “local” dependents, a failure to break
dependencies will be cleaned up when the parent is no
longer referenced. But when the dependencies are
tracked in the DependentsFields dictionary, you have a
new pair of references that will keep parent and depen-
dent around. So, inspecting DependentsFields is often
a good way to look for problems.

2. Overlooked object references. Dependency connec-
tions certainly aren’t the only common ways that objects
reference each other. Indeed, object connections are at
the very heart of object design—those associations and
aggregations we like so much. You may need to clean up
some of your own object references through a release,
finalization, or similar protocol. For example, you can
use the release event for ApplicationModel classes to “nil
out” or otherwise clean up references to objects refer-
enced by instance variables.

It’s easy to forget about object caches held onto by
class variables and class instance variables. While such
caches are nice for boosting performance, don’t forget
about them. You may want to implement and send
class-side “uninitialize” methods to clear out caches
when necessary. If you’re using ENVY, you may find
yourself doing this as part of removing methods to un-
load an application.

3. Failure to copy. So many collection operations answer
copies that we sometimes take it for granted and
assume we always have either a shallow copy of a col-
lection or a deep copy of the collection and its con-
tents. This assumption can be dangerous and can not
only indirectly be a source of dangling references, but
also lead to other errors such as one client of a collec-

tion modifying its contents and affecting others. This
is, by the way, why a method answering a literal string
that is coded in it is generally a bad idea.

How you manage references and copies really depends on
what you are trying to do, so it’s hard to give general rules.
But if you suspect a problem caused by a reference to a
shared object rather than a copy, you can use the identity
comparison (==) or compare object identifiers to see if the
references really are to the same object. To see the object
identifier, send asOop to the object and print or inspect
the result.

Finally, now that you’ve found the dangling instances
and cleaned up the cause, what do you do with all those
“zombies” floating around?

It’s best to start with a clean image and load your code
into it. But if you’re fond of your current image and want
to keep it, you’ll need to do your own clean up. When
cleaning up an image, track back to the root cause and
correct it. For example, you may have to remove depen-
dency connections from an inspector on DependentsFields.

I often hear the suggestion to use become: String new to
“morph” a dangling object so that it loses its instance vari-
able links. Using become: should always be a last result
and done with great care. And you should keep in mind
how your Smalltalk implements it—whether it swaps
pointers or copies state.

CONCLUSION
Now that you have the fear of runaway memory prob-
lems, take comfort: it’s usually a rare occurrence. The
garbage collectors do an amazing job of managing mem-
ory efficiently and the class libraries are tolerant of poten-
tial errors. Only rarely do I have to pull out this bag of
tricks to help someone diagnose a memory problem. But
by using some of these techniques, you’ll have the diag-
nostics to easily watch for problems and, when you find
one, the tools to track it down and fix it.

References
1. ParcPlace Systems. VW U’ G, Sunnyvale, CA,

1994.
2. ParcPlace Systems. A T U’ G, Sunnyvale,

CA, 1994.

Derek Williams has been developing vertical client/server appli-
cations for 11 years and using Smalltalk for the past 4 years. He
can be reached at derek_wi@hboc.com.

`
`

continued on page 32

January 1996 15

I , I have described the features that
make up multi-user Smalltalk. These features include
support for transactions, concurrency control and

locking, versioning and instance migration, and security.
These are but a few of the features required for a Smalltalk
system to function as a server. In addition to these fea-
tures, a server Smalltalk system must also provide persis-
tence of objects, fault tolerance, and scalability. This col-
umn is the first of two that describe how multi-user
Smalltalk fits in the emerging 3-tier architecture, and how
partitioning Smalltalk applications between clients and
the server overcomes performance bottlenecks and
allows the implementation of shared business objects in a
server Smalltalk environment.

There are three kinds of objects that exist in a typical
application: presentation, application, and business ob-
jects. Presentation objects are the widgets, forms, and
windows that present information to the end user.
Application objects are the objects responsible for the
sequencing of tasks and the management of how busi-
ness objects are used by the end user to achieve a specif-
ic task. Business objects are general-purpose objects that
model the processes and basic concepts of the business.
Business objects are a hot topic these days, as companies
undergo business process reengineering to better model
the basic functions of the company. (See Rymer1 for a
detailed discussion of business objects.) There is even a
Business Object Management Special Interest Group that
was founded by the OMG.

When Smalltalk is used as the implementation lan-
guage on the client machine only, the objects that imple-
ment the application and business logic, as well as the
objects that implement the presentation logic, must all
reside in the Smalltalk image on the client machine.
Typically, when the application starts up, it connects to
either a relational or object database and transfers the
object state needed to run the application to the client
machine. If the database is relational, the tabular data in
the database must be mapped to objects in the image.

The application may take advantage of the query capabil-
ity of the database to selectively choose which objects are
manifested in the client. However, to execute any busi-
ness logic, the objects must be present in the client
Smalltalk image. This is how Smalltalk is used in a pure
client/server architecture.

The pure client/server architecture works well on a
small scale, but has a number of drawbacks that hinder its
ability to implement enterprise-wide, shared business
objects. In this architecture, the server does not have the
ability to execute complex business logic. The database
may provide some query capability or stored procedures,
but does not provide an object model or a computation-
ally complete language like Smalltalk. Consequently, to
execute any complex business or application logic, much
data must be transferred to the client Smalltalk to be
turned into objects that can execute behavior. As the
number of client workstations increases, the network
becomes overloaded. As applications execute more com-
plex business logic, requiring more objects to be trans-
ferred to the client, the client machines need more mem-
ory and processing power. Increasing network bandwidth
and CPU/memory capability for thousands of client
workstations can become an expensive proposition.

There are business drawbacks to the pure client/server
architecture as well. Transferring sensitive data to the
client machine to execute application behavior can pose
a security risk. Client machines are inherently insecure,
and none of the client Smalltalk systems currently imple-
ment security features in the virtual machine. When the
business logic is duplicated across thousands of clients,
maintenance is expensive, and this discourages frequent
updates to the application. The logic and algorithms
implemented within business objects are a strategic asset
to the company and should be a shared resource under
centralized control. For example, consider the algorithm
by which a portfolio management application distributes
a customer’s funds among stocks with different risks. The
better that the application can evaluate market condi-
tions and risk, the better the rate of return. The applica-
tion’s risk assessment algorithm needs to be shared by
multiple clients, may need to be updated frequently
based upon new strategies, and needs to be protected by
theft from competitors.

Getting Real

Jay Almarode

Using Smalltalk since 1986, Jay Almarode has built CASE tools,
interfaces to relational databases, multi-user classes, and query
subsystems. He is currently a Senior Software Engineer at
GemStone Systems Inc., and can be reached at almarode@slc.com.

The three-tier architecture
and server Smalltalk

To overcome the drawbacks of the client/server archi-
tecture, the 3-tier model has emerged. The 3-tier architec-
ture is an evolution of the client/server architecture that
defines a middle tier, called an application server,
between multiple client workstations and the data server
(a relational or legacy database). For a more complete
description of the 3-tier architecture, see Lozinski.2 The
middle tier is where shared business objects are imple-
mented in multi-user Smalltalk. This architecture reduces
the amount of data transmitted to the client, because
business logic can be executed in Smalltalk on the middle
tier rather than transmitted to the client for execution.
With this architecture, only a single, high-bandwidth con-
nection from each legacy relational database to the appli-
cation server is needed, and the rela-
tional-to-object mapping is per-
formed in one place, and only when
needed. The Smalltalk objects on the
middle tier can be thought of as an
objectified view of the legacy data,
ready for each client when needed.
This allows for easier integration of
legacy data, live data feeds, or other
external data sources into Smalltalk
applications because each client
only sees objects in the application
server. Clients do not have to know where the server
objects came from, and are insulated from changes to the
source of these objects.

Having the shared Smalltalk business objects in the
middle tier also provides a central point of control for
updating business logic, defining security policy, and pro-
viding fault tolerance of important objects. In the previ-
ous example, the risk assessment algorithm of the portfo-
lio management application should be implemented as
functionality provided by a business object. This business
object is available to clients through a message interface,
but the implementation of the business object is located
on the server. The methods that implement the algorithm
can be updated in one place, and new implementations
can be made available to clients immediately (after ade-
quate testing, of course). The server Smalltalk objects de-
fine security policy so that only certain clients, say, those
who have paid to use this service, are allowed to execute
the risk assessment methods. Finally, the server Smalltalk
provides a central repository of objects that can be backed
up to tape for archival purposes or recover from hardware
failure.

Because of the different roles played by client applica-
tions and the application server in the 3-tier model, the
requirements for server Smalltalk are quite different than
those of client Smalltalk systems. Client Smalltalks operate
in a single-user environment. They provide an extensive
GUI and graphics class library, and are integrated with the
windowing environment of the client workstation. The vir-
tual machines of client Smalltalks are tuned for virtual
memory access. A Smalltalk on the server, on the other
hand, operates in a multi-user environment. It must pro-

vide a model of transactions and concurrency control, and
provide a class library designed with multi-user access in
mind. The virtual machine of server Smalltalk is tuned for
disk access, and must be able to handle very large objects
and a very large number of objects. This Smalltalk is tai-
lored to operation on server-class machines to take advan-
tage of shared memory, asynchronous IO, and raw parti-
tions on disk. Server Smalltalk is built with transaction
throughput and client communication as chief considera-
tions. Trying to build a server using a client Smalltalk sys-
tem will not provide the performance or functionality
required for large-scale applications.

By using multi-user Smalltalk as the application server
in a 3-tier architecture, developers can implement shared

business objects with the same lan-
guage used to build client applica-
tions. This enables developers to
move behavior easily from the client
to the server, an activity called appli-
cation partitioning. See Wadhwa3 for
a description of application parti-
tioning issues. With a common
object model on both the client and
the application server, objects do not
need to be transformed from one
form to another. Because the same

code can execute in either the client or the application
server, the developer can initially build the application
entirely on the client, then move portions of it to the serv-
er as needed. This might be done to share objects, opti-
mize performance, enforce security, or backup important
data. In addition, these partitioning decisions are easily
changed as new hardware or software is added to the sys-
tem. Having a common object model and language
between the client and the server makes the repartition-
ing of an application much simpler, since there is little if
any code to rewrite.

When partitioning an application, how does a develop-
er determine where certain objects should reside, i.e., in
the client or in the server? Here are some general rules-of-
thumb to help in this process. The following kinds of
objects belong on the server: business objects, sensitive
objects requiring security, large collections of objects
requiring optimized query capability, objects requiring
shared access, objects requiring fault tolerance, and “gate-
way” objects (i.e., objects that provide a view of raw data
on the data server). The following kinds of objects belong
on the client: window or GUI objects, application-specific
objects, and “view” objects (i.e., objects that provide a view
of a server object). My next column will discuss the imple-
mentation techniques for application partitioning.

References
1. Rymer, J.R. Business objects, D C M,

10(1), 1995.
2. Lozinski, C. T-T C-S A, Berkeley

Productivity Group, 1995.
3. Wadhwa, V. Partitioning apps: What are the issues? UNIX

R, May 1995.

`
`

The Smalltalk Report16

GETTING REAL

Trying to build a server

using a client Smalltalk

system will not provide the

performance or functionality

required for large-scale

applications.

January 1996 17

WARNING: This column contains inflammatory mater-
ial. It is likely to raise the blood pressure of Smalltalk
vendors. If you are an easily inflamed person, and you
don’t care much about what your customers want or
need, press “n” now (and start reading Chapter 11!)

A s wider use and new vendors ap-
pear, the trend is clear: Smalltalk developers need to
be protected from themselves. Those pesky devel-

opers are so demanding—they want to change every-
thing, and then have their changes supported, too! (Exit
cynic mode—we realize open environment technical sup-
port is no easy task.)

One way out of this mess is well-specified interfaces. If
Smalltalk vendors had the technical facilities to draw a
line in the sand and say “pass this, and you’re on your
own,” users and vendors could work together to deter-
mine the appropriate cost for different levels of support.
But the easy way out is to simply remove access to the
source code, without even specifying a system program-
ming interface (SPI).

Everybody is talking about “application programmer
interfaces” (APIs) these days, but they are forgetting that
not everybody is an “application programmer.” The
beauty of Smalltalk is that it works both as a systems
language and an applications language. With persistent
rumors that the new regime at ParcPlace-Digitalk is
considering “protecting developers from themselves,”
we’ve decided to publish some of our favorite Smalltalk
system programming examples. Most of these examples
will only work with VisualWorks today. Tomorrow, they
may not work with VisualWorks either.

COMPILER MACROS
New users of Smalltalk often react with a sense of wonder
when they discover that all control constructs are actual-
ly implemented in the language. One of those new users
was a project leader at one of our clients.

“You know what I really miss about C,” he said, “is the
‘question-colon’ operator.” Upon closer questioning, we
discovered that what he really wanted was a quick and
simple way of dealing with uninitialized variables.

“Okay, let’s implement it!” we replied. “Hmmm…it
needs to be simple…don’t want a bunch of parentheses
everywhere…sounds like a binary message to me.”

Object
? block

“If I am not nil, answer myself, otherwise answer
the value of <block>.

UndefinedObject
? block

“If I am not nil, answer myself, otherwise answer
the value of <block>.

^block value

This allows you to easily protect against unwanted nils,
therefore making your system more robust. For example,
you might have a method that prompts the user for a String,
but you want a reasonable default:

Dialog request: message ? [‘Type something, will ya?
We’re paying for this stuff!’]

This avoids having to use a conditional assignment to a
temporary variable, and is also quite easy to read. Also, it
doesn’t involve any “systems” programming, yet. On the
other hand, a message send is involved, which costs a bit
more time than ifTrue:ifFalse: does.

“But why should it cost more?” our client asked. It did-
n’t take more than a few minutes of rummaging around
the compiler to come up with the answer: it needn’t
cost more. Add the method in Listing 1 to MessageNode,
keeping in mind the warnings we gave about base modi-
fications in the July issue.1 (We put this and similar ex-
tensions in a separate ENVY application called
CompilationBytesmiths). Evaluate

(MessageNode classPool at: #MacroSelectors)
at: #? put: #transformIfNil

(Using ENVY, we put this expression, and other simi-
lar ones below, in CompilationBytesmiths class>>loaded,

Jan Steinman and Barbara Yates are cofounders of Bytesmiths,
a technical services company that has been helping companies
adopt Smalltalk since 1987. Between them, they have over
20 years Smalltalk experience. They can be reached at
Barbara.Bytesmiths@acm.org or Jan.Bytesmiths@acm.org.

Managing Objects

A case for open
development environments

Barbara YatesJan Steinman

The Smalltalk Report18

MANAGING OBJECTS

and also added a removing method to get rid of these
new “macro selectors” when CompilationBytesmiths is
removed).

Now when ? appears in your code with a simple receiv-
er, the compiler “in-lines” it into a test for nil and a condi-
tional branch, the same way it deals with ifTrue: and other
“fake” messages—no message sends involved. Some sim-
ple timings show it to be about 30% faster without the
message sends.

This is kind of cute, but the few microseconds it saves
is hardly going to make or break a project. However, this
basic mechanism can be exploited to strip your code of
debug statements and assertions.

Assertions are like bran cereal—everybody agrees it’s
good for you, but nobody really likes the taste. Smalltalk
assertions typically steal cycles from you even beyond the
development phase where they’re needed. What assertion
writers really want is the C preprocessor, so that when you
hit “#ifdef DEBUG” on your final compile, the assertion
code simply goes away. Well, we’ve got access to the Visu-
alWorks compiler, so let’s do it!

First, establish a predicate for all manner of develop-
ment-only code. We define an ENVY application called
TestingBytesmiths that olds our test management frame-
work; its presence is an ideal development predicate:

Object
isInDevelopment

“Is this a development image? Since this consumes
runtime, avoid using this in performance critical
code.”

^Smalltalk includesKey: #TestingBytesmiths

As the comment indicates, a dictionary look-up is a rather
heavy price to pay to find out you don’t want to print a
Transcript message in a production environment! To fur-
ther encapsulate this, we also have a conditional action:

Object
ifInDevelopment: block

“If this image is in a ‘development’ state (whatever
that means), do <block>, otherwise do nothing. In
either case, answer self. Since this consumes
runtime in either case, avoid using this in
performance
critical code.”

self isInDevelopment ifTrue: [block value]

In fact, the greater encapsulation of the conditional action
is much preferred, as you’ll see shortly—the predicate
method isInDevelopment should be considered private.

MessageNode
transformIfInDevelopment

“If the system is not in development, remove this message. If the system is in development, insert the argument
block’s statements. MacroSelectors associate this action with the selector #ifInDevelopment:.”

“self halt. self ifInDevelopment: [Transcript cr; show: ‘Yup, I’m in development.’]. 27 = 27”

^((self respondsTo: #isInDevelopment) and: [self isInDevelopment])
ifTrue: [receiver := arguments first body]
ifFalse: [receiver := SequenceNode new statements: #()]

Listing 2.

Listing 3.

MessageNode
transformRuntimeNoOp

“If the system is not in development remove this message. If the system is in development, generate the message.
MacroSelectors associate this action with the selectors #debug, #debug:, and #halt.”

^((self respondsTo: #isInDevelopment) and: [self isInDevelopment])
ifFalse: [receiver := SequenceNode new statements: #()]

Message Node
transformIfNil

“If the receiver is nil, evaluate the argument. MacroSelectors associate this action with the selector #?.”

^((arguments first isBlockWithNumArgs: 0) and: [receiver hasEffect not]) ifTrue:
[receiver := self class new

receiver: receiver
selector: #==
arguments: (Array with: (LiteralNode new value: nil)).

self makeIfTrue: arguments first ifFalse: (BlockNode new body: receiver receiver)]

Listing 1.

January 1996 19

Remember the ? example? It pays back the effort it took
to understand it when used as a pattern for stripping out
development-specific code (see Listing 2).

Let the compiler know you’ve defined a new macro.
If you’re using ENVY, remember to put this in your loaded
method, and to remove your macro selector in your
removing method.

(MessageNode classPool at: #MacroSelectors)
at: #ifInDevelopment put:

#transformIfInDevelopment

Now if you do the comment expression in the above meth-

od, and step through the halt, you will see
the following decompiled code in a
“development” image:

self halt.
Transcript cr; show: ‘Yup, I’m in

development.’.
27 = 27

and if you temporarily redefine
Object>>isInDevelopment to answer false,
the decompiled code will look like

self halt.
27 = 27

all without a single “#ifdef”! We also in-
line other conditional development-time
messages using the code in Listing 3. This
works because there is no “ifTrue:” part,
so it returns nil when not in develop-
ment, which tells the sender to generate
the original message send, instead of
generating an in-line bytecode sequence.
We can hear some of the Smalltalk ven-
dors who hide their compiler mumbling
something in the background like “we
can provide ‘hooks’ to do things like
that.” Great—we’re happy they can per-
fectly anticipate all the potential uses one
might make of the compiler! But what
about their compiler bugs? (No, they
don’t have compiler bugs!)

COMPILER BUG FIXES
Some of these are controversial, and some may well be a
minority opinion, but our point is that without compiler
source code, we would not even have a choice about deal-
ing with, shall we say, “undesired compiler behavior.”

Most Smalltalk dialects have block temporary vari-
ables, and using block temporary variables whenever
possible can have an important performance benefit. For
simple cases, we’ve measured a 100% speed penalty when
using method temporaries instead of block temporaries.

Yet the “helpful” VisualWorks compiler always places
undeclared temporaries in the method context. This often
causes what could be a “clean” block to be a “copying”

CompiledMethod
setSpecificationFromSource: source

“Set my comment user field to the comment contained in <source>, my
source code.”

| comments comment args charSet |
comments := Compiler preferredParserClass new

parseMethodComment: source setPattern: [:x |].
comments size > 0 ifFalse: [^self].

comment := TextStream on: (String new: 100).
args := (Compiler preferredParserClass new

parseArgsAndTemps: source
notifying: nil) readStream.

self selector numArgs = 0
ifTrue: [comment emphasis: #bold; nextPutAll: selector]
ifFalse:

[self selector keywords do: [:kw |
comment

emphasis: #bold; nextPutAll: kw; space;
emphasis: #italic; nextPutAll: args next; space]].

comment emphasis: nil.
args := args contents copyFrom: 1 to: self selector numArgs.
charSet :=
‘abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’ asSet.
comments do: [:cmt | | cmtStream |

cmtStream := cmt readStream.
comment cr; tab.
[cmtStream atEnd] whileFalse: [| pair |

pair := cmtStream nextWordAndNonWordDefinedBy: charSet.
(args includes: pair first)

Listing 5.

ifFalse: “No temp declarations yet; have to insert whole line”
[“Added/modified by Bytesmiths, on 7 October 1995: figure out how many tabs to insert.”
tabs := 1.
[(editor text at: endTemps – tabs) == Character tab] whileTrue: [tabs := tabs + 1].
replacement := ‘| ‘, name, ‘ |’,

(tabs = 1
ifTrue: [‘ ‘]
ifFalse: [(String new: tabs withAll: Character tab) at: 1 put: Character cr; yourself])

“*****end addition/modification*****”].
editor selectAt: endTemps.

Listing 4.

The Smalltalk Report20

MANAGING OBJECTS

block instead. But we have the source—let’s fix it! In
InteractiveCompilerErrorHandler>>declareTemp:from: change

endTemps := codeStream homeStream topNode body
sourcePosition first.

to
endTemps := codeStream topNode body sourcePosition

first.

That’s right, simply remove “homeStream.”
Now if you let the compiler declare your temps for you,

it will put them where they usually belong, in the inner-
most scope. (If the variable is used after the block, it will
complain that you’ve redeclared it, thus clueing you that
you really need it in the outer scope, and perhaps clueing
you that you should consider redesigning the method so
that it won’t have a full block!)

The only problem we’ve discovered with this “bugfix”
is that the formatting is a little weird—try further modifying
the above method as shown in Listing 4 (first and last lines
are from the original method), which makes things pretty
again. We desperately needed this for a block editor we
were building for a hypertext system—temps automatical-
ly declared outside the block were simply unacceptable in
this case.

A less controversial change for anyone who has needed
the compiler in a “headless” environment is its insistence
on interacting with someone when syntax errors are
detected. We mentioned in our September column2 that we
found it necessary to implement silentEvaluate:, which al-
ways raises an exception when evaluation fails for any rea-
son, rather than bringing up a syntax error dialog. This
“bugfix” would not have been possible without the compil-
er source code.

COMMENT PULLING
Access to the Smalltalk parser simplifies many tasks, par-
ticularly for tool builders. For example, our SmallDoc
system (partially described in our June3 and September2

1995 columns) pulls method comments out of the
source code and pastes them as styled Text into the little-
used ENVY comment field (Listing 5), where they are
easily accessed for a variety of documentation pur-
poses. This method is conditionally sent from
ClassDescription>>insert:withSource:classified:ifNewAddTo:
so that every “accept” updates the ENVY comment field.

METRICS
Interest in measurement is rapidly increasing, yet no stan-
dard solution exists. The Smalltalk vendors will probably
give developers some sort of metrics capability someday,
but will it be right, and will those early adopters who have
implemented their own metrics be willing to give them up?
Will emerging third-party products be rewarded for their
risk by being stranded without sufficient SPIs?

We’ve implemented some code quality metrics for our
clients that rely on “deep” access to compiler and parser
classes. At the OOPSLA ’95 Smalltalk Testing Workshop

SIGS Publications, Inc., 71 West 23rd Street, 3rd Floor,
New York, NY 10010; 212.242.7447; Fax: 212.242.7574

ARTICLE SUBMISSION

To submit articles for publication, please contact:
John Pugh & Paul White, Editors, 885 Meadowlands Dr.
#509,Ottawa,Ontario,K2C 3N2 Canada; email:
streport@objectpeople.on.ca

PRODUCT REVIEWS AND ANNOUNCEMENTS

To submit product reviews or product announcements,
please contact the Editors at the address above.

CUSTOMER SERVICE

For customer service in the US, please contact PO Box
5050, Brentwood, TN 37024-5050; 800.361.1279; Fax:
615.370.4845; in the UK, please contact Subscriptions
Department, Tower Publishing Services, Tower House,
Sovereign Park, Market Harborough, Leicestershire, LE16
9EF, UK; +44.(0)1858.435302; Fax: +44.(0)1858.434958

SIGS BOOKS

For information on any SIGS book, contact: Don Jackson,
Director of Books, SIGS Books, Inc., 71 West 23rd Street,
New York, NY 10010; 212.242.7447; Fax: 212.242.7574;
email: donald_jackson@sigs.com

SIGS CONFERENCES

For information on all SIGS Conferences, please contact:
SIGS Conferences,71 West 23rd Street, 3rd Floor, New
York, NY 10010; 212.242.7515; Fax: 212.242.7578; email:
info@sigs.com

BACK ISSUES

To order back issues, please contact: Back Issue Order
Department, SIGS Publications, 71 West 23rd Street, 3rd
Floor, New York, NY 10010; 212.242.7447; Fax:
212.242.7574

REPRINTS

For information on ordering reprints, please contact:
Reprint Management Services, 505 East Airport Road,
Box 5363, Lancaster, PA 17601; 717.560.2001; Fax:
717.560.2063

ADVERTISING

For advertising information, please contact: Advertising
Department, SIGS Publications, 212.242.7447; Fax:
212.242.7574

SIGS HOME PAGE

To access the SIGS Home Page on the
World Wide Web: http://www.sigs.com.

INFO@SIGS

continued on page 32

The Smalltalk Report32

we hosted, John Brant presented a code quality tool he is
working on at University of Illinois, Urbana-Champaign
that goes far beyond what we have done. He expects to
make it widely available when completed, but if the sys-
tem-level classes he exploits become “protected,” such a
thing might not be possible. Emerging coverage tools that
do bytecode manipulation might also be threatened.

CONCLUSION
As Smalltalk enters mainstream management information
system shops, Smalltalk vendors claim there is a need to
“protect developers from themselves.” They propose to do
this by removing source code and by supplying “hooks” to
anticipated “APIs.” This flies in the face of conventional
wisdom about reuse. Reuse often involves modifications
and extensions; it usually is discovered, harvested, reengi-
neered, and sought out, but it is rarely anticipated.

We feel this argument is a thinly disguised way of re-
ducing support costs, which is better addressed by clearly

defining SPIs in such a way that both system and applica-
tion programmers know when they’ve overstepped their
limits (and their support contracts!)

The power of Smalltalk comes from many different
aspects and trying to be more like Visual Basic, Pow-
erBuilder, or Hot Java by reducing access to “dangerous”
(i.e., “hard to support”) system features in the name of
making things “safe” for application programmers is like-
ly to have a detrimental effect.

If you want to do some of the things in this column, but
your Smalltalk dialect doesn’t have the proper hooks, let
your vendor know you need the full source to discover what
you need to reuse. If your Smalltalk vendor currently gives
you all the source you need, call them and thank them,
then tell them you expect the situation will not change if
they don’t want you running off to Hot Java!

References
1. Steinman, J and B. Yates. A case for open development environ-

ments, T S R 4(9):26–27, 31, 1995.
2. Steinman, J. and B. Yates. Managing project documents, T

S R 5(1):23–30, 1995.
3. Steinman, J. and B. Yates. Managing project documents, T

S R 4(8):25–28, 1995.

`
`

MANAGING OBJECTS continued from page 20

January 1996 21

IT’S THE OBJECTS, STUPID
S me awhile to see the obvious. Some-
times even longer than that. Three or four times in the
last month I’ve been confronted by problems I had a
hard time solving. In each case, the answer became clear
when I asked myself the simple question, “How can I
make an object to solve this problem for me?” You think
I’d have figured it out by now: got a problem? make an
object for it.

Here’s an example: I had to write an editor for a tree
structure. There were several ways of viewing and editing
the tree. On the left was a hierarchical list. On the top right
was a text editor on the currently selected node of the tree.
On the bottom right was a list of text editors on the sub-
nodes of the currently selected node (see Fig. 1).

Figure 2 shows the domain objects that live behind this
view. How is the editor going to work? Let’s say I have an
editor on the value 5 (Fig. 3). How are we going to write
the code to parse and install a new function? The first part
is simple enough:

FunctionEditor>>parse: aString
| new |
new := FunctionParse parse: aString.

But now we’re stuck. If we just say:

function := new

then the “right” instance variable of the BinaryFunction
(which the editor knows nothing about) won’t be updated.

“Make an object for it,” that’s the ticket. The object is an
EditingWrapper. When you go to edit a function, you first
wrap every node in the function tree, as shown in Figure 4.
Now the editor looks like Figure 5. And we can write the
parsing method like this:

FunctionEditor>>parse: aString
| new |
new := FunctionParse parse: aString.
function function: new

If we parsed the string “@years”, the resulting picture
would look like Figure 6. When the BinaryFunction un-
wraps its children, the right function will be in place.

As I said, several times in the last month I’ve faced
baffling problems that became easy when I asked myself
the question, “How could I make an object to solve this
problem for me?” Sometimes it was a method that just
didn’t want to be simplified, so I created an object just for
that method. Sometimes it was a question of adding
features to an object for a particular purpose without clut-
tering the object (as in the editing example). I recommend
that the next time you run into a problem that just doesn’t
seem like it has a simple solution, try making an object for
it. It won’t always work, but when it does it’s sweet.

THE PARABLE OF THE WOOD PILE
The following is really about software. Really.

I live in the redwood forest. Fall in the forest has its own
set of smells, distinct and different from the smells of
every other season. Crushed dry ferns have a sharp, dusty

Smalltalk Idioms

Kent Beck

Kent Beck has been discovering Smalltalk idioms for ten years at
Tektronix, Apple Computer, and MasPar Computer. He is the
founder of First Class Software, which develops and distributes
developer tools for Smalltalk. He can be reached at First Class
Software, P.O. Box 226, Boulder Creek,CA 95006-0226, 408.338.4649
(voice),408.338.3666 (fax), or by email at 70761,1216 (Compuserve).

Farewell and a wood pile

Figure 1.

Figure 2.

My driveway is long and narrow, so when the truck
delivers the wood it makes a long pile, maybe 25 feet long
and eight or nine feet wide. The end of the pile is right at
the top of the cliff, so the first hour or so is easy—turn,
pick up a stick, turn, throw. Once I get settled into a
rhythm, I probably throw a stick every five seconds.

This year we had a dinner party to attend, and I didn’t
want to have to walk over pile of firewood all dressed up,
so I wanted to at least get a path cleared quickly. Once I
got the sticks close to the top of the cliff thrown, I noticed
that my progress slowed down. Instead of “turn, grab,
turn, throw” I was doing “walk, grab, walk, throw,” where
I was having to walk a few steps to get to the front of the
pile. It may not seem like much, but it slowed down my
throwing rate by half. The more progress I made, the fur-
ther I had to walk, the slower I went, the further my goal
of walking to the car without scuffing my shiny shoes
receded.

I’m an engineer at heart, and repetitive manual labor
leaves me plenty of time to think, so I wasn’t about to let
this state of affairs continue without at least trying to
bring my productivity back up. I discovered I could throw
light sticks down with one hand. On every trip to the front
of the wood pile I began picking up two sticks, a heavy
one in my left hand and a light one in my right. I’d throw
the light one one handed first, then heave the heavy one
with both. This let me amortize my walking over two
sticks. The pace picked up.

Pretty soon, though, I noticed I was still going slow. The
front of the pile kept receding as I worked, so my time
spent walking kept increasing. What I really needed was a
way to get back to working like I had worked at first, just
turning and throwing with no walking at all.

You’ve probably guessed the solution. I went to the pile
and tossed sticks the 10 or 15 feet to the top of the cliff. I
tossed 30–40 sticks, walked over, threw them down the
hill, then walked back. This way my walking was amor-
tized over so many sticks it didn’t even count. I had to
handle each stick twice, so my productivity was half of
what it was at the beginning, but I could sustain the pace
through the rest of the pile. No matter how far back the
front of the pile got, it was always easy to quickly toss a lit-
tle stack to the top of the cliff.

My wife and I made it to our party—shoes, suit, and
dress unscathed.

When an experienced team starts a project in Small-
talk, the first few months go smoothly. The first cut at the
domain model slides right in and away you go. Pretty
soon, though, the team starts to bog down. Decisions they
made without complete information begin to take their
toll. The easy progress of the early days is soon but a fond
memory. New functionality, rather than sliding in, has to
be shoved in with a pile driver. Quality and predictability
go out the window, because the team doesn’t know if the
next feature will fit with what’s there, in which case all will
be well, or it won’t fit, in which case who knows how long
it will take to shoehorn it in.

I have seen two unproductive reactions to this situa-

The Smalltalk Report22

SMALLTALK IDIOMS

Figure 5.

Figure 6.

Figure 4.

Figure 3.

smell. Rotting bay nuts are like psychedelic bay leaves.
When we get our wood delivered, the smells of freshly
split oak and madrone add to the mix.

My house is down by the creek, maybe 25 feet below
the level of the driveway. There is a sheer cliff off to one
side and stone steps directly in front of the house. When
we get our customary two cords of wood delivered (for
you city folk, that’s a pretty damn big pile of wood, takes
most of a 2-ton truck to carry it), the easiest way to get it
down near the house is to throw it over the cliff, one stick
at a time, then go down later and stack it.

Wood chucking time has become something of a ritual
for me. The smells of the fall forest, the filtered fall light
through the surrounding redwoods, the ache of my gen-
erally-desk-bound body, the knowledge that I’m keeping
my family warm for the rest of the winter, all combine for
a satisfying couple of days.

tion and one reasonable one. The first are the teams that
keep walking back and forth to the wood pile, no matter
how far it recedes. I call this “Smalltalk is more rope.”
These teams ignore the increasing risk and decreasing
productivity, but Smalltalk is forgiving enough that they
can keep their application sort of running while they add
new features. Throw in enough nil checks and isKindOf’s
and you can make almost anything work. The result is dis-
aster deferred. Eventually the team is asked to do some-
thing that just can’t be shoved into the system.

The shell-shocked veterans of “more rope” failures
often turn the other way. Ignoring the sticks right there
in front of them, they try to toss the whole pile close
before they start throwing down the hill. They insist on
creating the frameworks first. The application is divided
into strict layers and developers are only allowed to work
on their own layer. The layers don’t precisely fit, because
they are developed in isolation, but developers have no
choice but to carry on as best they can. The result is again
disaster deferred. The system gets big, because layers pro-
vide services no one needs and because there is no
view of the whole system that would allow large-scale
simplifications.

The sustainable solution is to find a balance between
moving the pile and tossing the logs. Toss some, move
some, toss some, move some, starting with tossing. (Jeff
McKenna had a great article about this years ago, and
Ward Cunningham has a pattern language called Checks
about the same idea: http://c2.com/ppr). Take advantage
of the quick wins to give you concrete information from
which to generalize. Make it run, make it right, make it
run, make it right.

FAREWELL
This is my last column, at least this go around, for T

S R. It’s been quite a ride, programming in
Smalltalk and trying to write about it. When I started,
when T S R started, we were the wild-
eyed purveyors of what many people saw as a crazy lan-
guage. Since then, Smalltalk has become the language of

choice for many kinds of applications. Recently the Small-
talk market has been thrown into turmoil by the merger of
ParcPlace and Digitalk and their subsequent disappoint-
ing financial performance.

From that standpoint, it seems like a strange time to
quit. I’d like to go out on a high note, with noble Smalltalk
standing proudly head and shoulders above the crowd.
However, when I saw that I wasn’t putting the thought or
care into these columns that they, that you, deserve, I
knew the time had come.

I’ll still be involved in the Smalltalk world, in fact, more
than ever. You won’t get rid of me that easily! I’ll be unveiling
a one-day Smalltalk patterns course at Smalltalk Solutions
in March. I’m working on a book, T S B

P P: V , C, due out in the first
quarter next year. I’m scrambling to keep up with my prod-
ucts. I’m working on some fascinating contract programs.
To top it off, consulting has picked up since OOPSLA. The
only way you’ll be rid of me is if I drop dead of exhaustion.

Thanks
I’d like to thank all the people who helped me during

the last few years. In particular:
• Rick Friedman, for giving Smalltalkers a forum for our

voices when we were far out in the wilderness.
• John Pugh and Paul White, for all their work making

the Smalltalk Report work well.
• Elizabeth Upp and the production team at SIGS, for

dealing with late submissions, raw ASCII, and requests
for odd graphics.

• Liz St. Pierre, for hassling me in the gentlest possible
way consistent with results.

• Ward Cunningham, for help refining many of my best
column ideas.

• You, T S R readers, for support,
encouragement, email, and ideas. Without you I could
have written all the columns I liked, but no one would
have read them.

So long. I hope I see you Smalltalkin’ down the road. `
`

January 1996 23

The Smalltalk Report2

W
’ fair bit of “globetrotting” over
the past month or so, and two observations
we’ve been claiming (in chorus with others)
for a long time have been very visible. One

is the claim that the adoption of objects is further ahead
in North America than in the rest of the world. This is
not to say that object technology is not in use in quite a
number of places. We know of a number of organiza-
tions “abroad” that have been building sophisticated,
mission-critical systems using Smalltalk for a long time.
And we know that our travels as a training organization
have brought us to roughly 20 countries in just the last
year alone. But individual examples aside, there just
doesn’t appear to be the widespread use of objects, and,
in particular, Smalltalk, outside of the US, and to a less-
er extent Canada.

This begs the obvious ques-
tion of why not, for which there
is probably no right answer and
certainly not a simple one.
Some comments we’ve heard
lately is that the sales force for
the Smalltalk vendors has been
relatively small and has not had
the reach to penetrate large
organizations. This is certainly
changing with IBM now utilizing its full worldwide
sales and marketing force. But also, ParcPlace-Digitalk
has been partnering with a variety of distributors
throughout the world over the past few years, which
has allowed them to make local connections with high-
profile companies. Perhaps a second reason for the rel-
atively smaller market size outside North America is the
very nature of Smalltalk’s class library. As it is written in
a style that is very “English-like,” and to a great extent
American-English, perhaps learning the language is
that much more difficult in countries where this style of
language is not used. Certainly the grammatical style
used with the language and library could be described
as colloquial and would be foreign to most developers
in, say, Asia or Eastern Europe. I doubt there is an easy
way for this issue to be addressed. A third comment,
made to us by a few of our clients, is that the style of
development used in North America differs from that
used elsewhere. Without generalizing too much, we in
North America seem more eager to adopt this new iter-
ative, incremental lifecycle than our counterparts in
other parts of the world, where a more formal lifecycle,
which is documented religiously, is much more the

norm. We know that changing to this more rapid and
free-wheeling development approach has often been
very difficult to accept in US corporations—it must be
even more so in many places elsewhere.

The second observation that has been confirmed is
simply that we have a long, long way to go before those
of us responsible for delivering systems rapidly and
effectively will ever catch up to the demands of busi-
ness. For example, the improvements made by many of
the airlines with respect to their reservation systems is
enormous, but they still don’t meet the demands of the
current airline business. With rapidly changing sched-
ules and new partnerships and alignments between
carriers appearing each month, it is difficult to imagine
how systems will ever keep up. An even better example

was seen on a recent trip to a
major theme park in the US.
Just a quick glance at the variety
in their holiday packages would
bring a tear to the eye of some-
one imagining what their CIO
must go through. They listed
roughly a dozen “new” pack-
ages, each with different pric-
ing, scheduling, and restric-
tions listed, some of which were

intertwined as “packages of packages.” From a con-
sumer point of view it was wonderful, but watching the
poor lady behind the counter spend 90 minutes trying
to figure out how to register us for two of these pack-
ages was heartbreaking. She had the two-inch manual,
which contained the step-by-step instructions, which
had ink written all over it with recent amendments and
corrections to it. The saddest part of course was the 25
minutes it took her to recover from entering an invalid
date in just one field! An “undo” button would have
been very useful for her.

As a final note, we wish to formally offer Kent Beck
our most sincere thanks for the contributions he has
made within these pages over the past five years. As one
of the very first people we contacted after being asked
to act as editors of this publication, it is sad that we
must finally bid him adieu. He has been our most pro-
lific contributor, and I know many of you have benefit-
ed from the ideas and musings in his columns. We
know he’s not disappearing, just taking an extended
sabbatical from writing here, and it is with our deepest
gratitude we say thanks.

Happy New Year everyone!

Editors’ Corner
Paul WhiteJohn Pugh

We in North America seem
more eager to adopt this

new iterative, incremental
lifecycle than our

counterparts in other parts
of the world.

February 1996 1

Table of Contents
February 1996 Vol 5 No 5

Features

The selection channel technique 4
Bobby Woolf
The author documents a technique often used in VisualWorks that
simplifies adapting several value models to a single domain model.
The technique itself demonstrates the ease and flexibility value mod-
els can provide.

Delivering and sharing components 9
using Smalltalk link libraries
Makarand Utpat
Developing a system architecture consisting of components and sub-
systems offers a number of advantages. The construction of Smalltalk
link libraries (SLLs) both facilitates component-oriented software
development and reduces the need to trim “fat” executables.

The Best of comp.lang.smalltalk 13
Principles of OO design: or, everything
I needed to know in life, I learned from Dilbert
Alan Knight
There have been many attempts to define principles of OO design or
coding, but these often lack concrete information or are just plain
boring! Try these interesting (but completely serious) principles of
OO-ness instead.

Managing Objects 15
“Special” team members
Jan Steinman and Barbara Yates
Creative people can be a mixed blessing; their insight
often comes wrapped in a demanding personality.
Through its enhanced productivity, Smalltalk

amplifies both the advantages and disadvantages of team members.
Here are some coping strategies for some of these “special” people.

Getting Real 18
Mechanisms for application partitioning
Jay Almarode
In the three-tier architecture, you need to balance the processing load
between clients and server, and find a way to share business objects.
Application partitioning is the key to handling both these issues.

Departments
Editors’ Corner 2
Recruitment 20

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, monthly except in Mar–Apr, July–Aug, and Nov–Dec. Published by
SIGS Publications Inc., 71 West 23rd St., 3rd Floor, New York, NY 10010. © Copyright 1996 by SIGS Publications. All rights reserved.
Reproduction of this material by electronic transmission, Xerox or any other method will be treated as a willful violation of the US
Copyright Law and is flatly prohibited. Material may be reproduced with express permission from the publisher. Bulk rate U.S. postage
paid Lancaster, PA, permit 161. Canada Post International Publications Mail Product Sales Agreement No. 290386.

Individual Subscription rates 1 year (9 issues): domestic $89; Mexico and Canada $114, Foreign $129; Institutional/Library rates:
domestic $199, Canada & Mexico $224, Foreign $239. To submit articles, please send electronic files on disk to the Editors at 885
Meadowlands Drive #509,Ottawa,Ontario K2C 3N2,Canada,or via Internet to streport@objectpeople.on.ca.Preferred formats for figures
are Mac or DOS EPS,TIF,or GIF formats.Always send a paper copy of your manuscript, including camera-ready copies of your figures (laser
output is fine).

POSTMASTER: Send domestic address changes and subscription orders to: The Smalltalk Report, P.O. Box 5050, Brentwood, TN 37024-
5050. For service on current domestic subscriptions call 1.800.361.1279 or fax 615.370.4845. Email: subscriptions@sigs.com. For foreign
subscription orders and inquiries phone +44(0)1858.435302. PRINTED IN THE UNITED STATES.

Columns

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS Publications Advisory Board
Tom Atwood, Object Design
François Bancilhon, O2 Technology
Grady Booch, Rational
George Bosworth, ParcPlace-Digitalk
Jesse Michael Chonoles, Lockheed Martin ACC
Stuart Frost, SELECT Software
Adele Goldberg, ParcPlace-Digitalk
Thomas Keffer, Rogue Wave Software
R. Jordan Kriendler, IBM Consulting Group
Thomas Love, Consultant
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Cliff Reeves, IBM
Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

The Smalltalk Report
Editorial Board

Jim Anderson, ParcPlace-Digitalk
Adele Goldberg, ParcPlace-Digitalk
Reed Phillips
Mike Taylor, ParcPlace-Digitalk
Dave Thomas, Object Technology International

Columnists
Jay Almarode, GemStone Systems Inc.
Kent Beck, First Class Software
Juanita Ewing, ParcPlace-Digitalk
Bob Hinkle, Consultant
Tim Howard, FH Protocol, Inc.
Ralph E. Johnson, University of Illinois
Alan Knight, The Object People
Mark Lorenz, Hatteras Software, Inc.
Jan Steinman, Bytesmiths
Rebecca Wirfs-Brock, ParcPlace-Digitalk
Barbara Yates, Bytesmiths

SIGS Publications Group, Inc.
Richard P. Friedman, Founder, President, and CEO
Hal Avery, Group Publisher
John McCormick, Editorial Director

Editorial/Production
Elizabeth A. Upp, Managing Editor
Elisa Varian, Production Manager
Andrea Cammarata, Art Director
Kathleen M. Major, Sr. Production Editor
Sue Mycka, Desktop Designer
Margaret Conti, Advertising Production Coordinator
Shannon Smith, Editorial Production Assistant

Circulation
Elayne Glick, Circulation Director
Lawrence E. Hoffer, Marketing Manager

Advertising/Marketing
Gary Portie, Advertising Manager, East Coast/Canada/Europe
Elisa Marcus, Advertising Manager,Central US
Michael W. Peck, Advertising Representative
Kristine Viksnins,West Coast Exhibit Sales
Sarah Olszewski, East Coast Exhibit Sales

212.242.7447 (v), 212.242.7574 (f)
Diane Fuller & Associates, Sales Representative,West Coast

408.255.2991 (v), 408.255.2992 (f)
Wendy Dinbokowitz, Promotions Manager for Magazines

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Senior Accounting Manager
Bibi Budhram, Accounts Payable

Publishers of JOURNAL OF OBJECT-ORIENTED
PROGRAMMING, OBJECT MAGAZINE, C++ REPORT,
THE SMALLTALK REPORT, THE X JOURNAL, REPORT
ON OBJECT ANALYSIS & DESIGN, OBJECT CURRENTS,
OBJECT EXPERT (UK), and OBJEKTSPEKTRUM
(GERMANY)

http://www.macqueen.us/smalltalkReport/ST/ST02/13comp.pdf
http://www.macqueen.us/smalltalkReport/ST/ST02/15manag.pdf

The Smalltalk Report4

I
n “Making MVC more reusable,”1 I talked about how
VisualWorks has improved upon classic model-view
controller (MVC). That article discussed new objects like

value subviews and value models as well as the way
“model” has been split into application model and domain
model. Its third figure shows the objects involved when the
model is split into application and domain models. When I
drew it, I threw in another object that is often involved, the
one that selects which domain model the application
model will use. I labeled this object “SelectionChannel.” In
this article, I’ll explain what a selection channel is.

Selection channel is an extension of what ParcPlace is
calling the “Slam Dunk” architecture.2 Slam Dunk uses
subject channels to greatly simplify
the code needed to connect an
application model to its domain
model. The idea is that once you set
up an application model this way,
you can insert (i.e., slam dunk) a
domain model in there and every-
thing in the application model and
its window will update automati-
cally. Selection channel takes this
idea one step further to specify
where the various domain models
are coming from and who is inserting them into the appli-
cation model.

To understand selection channel, let’s first take a look
at where graphical user interfaces (GUIs) come from. The
easiest way to produce a GUI window in VisualWorks is to
use the Painter to produce a view with a bunch of widgets
on it. Most of the widgets are value subviews, each dis-
playing some value it contains: an Input Field shows
some text, a Check Box shows whether a setting is on or
off, etc. Where do these values come from?

ADAPTING A DOMAIN MODEL
VisualWorks uses a revision of the MVC paradigm that
breaks the model into two parts: the domain model and
the application model. The domain model contains the
information to be displayed, whereas the application
model organizes the information so that it can be dis-
played. In the MVC, the window is the view and the appli-
cation model is its model. This macro MVC system con-
tains a number of MVC micro systems, one for each value
subview, where the subview is the view and its model is a
value model. A value model (an instance of ValueModel) is
a simplified model that has exactly one aspect. Thus the
value model contains a single value, which in this context

is the information a single widget
displays.

A window generated by the
Painter uses an application model
but, by default, does not use a do-
main model. The Painter generates
an application model (a subclass
of ApplicationModel) that is able to
open the window when told to do
so. Since the window contains wid-
gets that require value models, the
application model contains those

value models. By default, the application model initializes
those value models to be holders (instances of
ValueHolder) on default values like empty string, false, zero,
and nil (Fig. 1). All this default initialization is enough
to make the view work: the window will open, the widgets
display their values, and the widgets can be used to
change their values. This, however, is not very useful func-
tionality.

For an application model to really be useful, it should
organize information that is stored in a separate object—
a domain model. The question then is how the applica-
tion model should get the information from the domain
model. Often the first solution people discover is for the
application model to copy the values out of the domain
model and into the application model’s value holders.
This works for displaying the domain model, but if the
user edits the values in the window, the process of putting
the values back into the domain model is difficult and
redundant. It would be easier to associate each value
model with its corresponding value in the domain model.

The type of value model that knows what domain value

The selection channel
technique

Bobby Woolf

ValueHolder ValueHolderValueHolder

name phoneaddress

PersonUI the application model

the holders

the values

Figure 1. An application model with no domain model.

A subject channel
establishes a single point

of access to a subject.

it contains is an adaptor value model. An adaptor value
model (an instance of PluggableAdaptor, AspectAdaptor, etc.)
extracts its value out of an object that contains the value.
The adaptor calls the value’s container its subject (accessi-
ble via ProtocolAdaptor>>subject). Each adaptor knows how
to pull its value out of its subject to show the value to the
user. If the user edits the value, the adaptor knows how to
put the new value back into its subject. An application
model adapts its domain model by using adaptors. The
application model initializes its value models as adaptors
instead of holders, where each adaptor’s subject is the
application model’s domain model. This way the applica-
tion model maps each widget in the window to its corre-
sponding value in the domain model (Fig. 2).

SUBJECT CHANNEL
When an application model is using several adaptors to
adapt its domain model, all the adaptors must have the
same subject. This way all the widgets in the window are
showing different parts of the same domain model. This
presents some difficulty when setting up the adaptors on
a domain model: the code must ensure that all the adap-
tors are connected to the same domain model.
Furthermore, to change to a different domain model, all
the adaptors must be disconnected from the old model
and connected to the new one. This leads to verbose,
repetitive code that is prone to flaws.

The code for connecting and disconnecting a set of
adaptors to a single subject can be virtually eliminated
using a subject channel. A subject channel (accessible via
ProtocolAdaptor>>subjectChannel) establishes a single point
of access to a subject. The subject channel is itself a value
model, typically a holder, whose value will be used as a
subject. When multiple adaptors share the same subject
channel, they are all guaranteed to share the subject. Even
if the subject is replaced with a new one, the subject chan-
nel will automatically cause all the adaptors to disconnect
from their old subject and connect to their new one. This
way the application model does not need any code for con-
necting or disconnecting its adaptors to their subject; the
subject channel feature does this automatically (Fig. 3).

Note that in VisualWorks 2.0, PluggableAdaptor does not
support subject channel because it is not a subclass of
ProtocolAdaptor.

The application model, instead of connecting its adap-
tors to their subject, has to connect them to their subject
channel. First it must set up its domain model for use as a
subject channel. Then it must connect the adaptors to
their subject channel.

There are two ways an application model can set up
the subject channel. One alternative is for the application
model to obtain a value model that contains the domain
model. The other alternative is for the application model
to obtain the domain model and wrap a value model
around it. Either way, once the application model has its
domain model in a value model, it stores the value model.
This value model becomes the application model’s
domain model channel, which means that the value

model is the application model’s single point of access to
its domain model. The application model will go through
its domain model channel to get its domain model. Once
the domain model channel is established, the channel
object (the value model) should never be replaced with
another.

The application model uses its domain model channel
to connect all its adaptors to the same domain model. As
the code in the application model creates its adaptors,
rather than setting each adaptor’s subject to be the do-
main model, it sets each one’s subject channel to be the
domain model channel. This way the subject channels
and the domain model channel are all the same object.
Each adaptor sees this domain model channel as its sub-
ject channel and will connect itself to its subject via the
subject channel. This way, if the domain model is re-
placed with a new one, all the adaptors will attach them-
selves to the new one.

SELECTION CHANNEL
Subject channel does not specify where the subject comes
from, just that it will become available by being inserted
into the subject channel. However, somebody must be
setting the subject channel to contain a new subject.
Selection channel considers not only that the subject is
being replaced with a new one, but what object is making
the replacement and where it’s getting the new subject
from. Whereas a subject channel just specifies how the
subject can be accessed, selection channel also specifies
where new subjects come from (Fig. 4).

The Smalltalk Report

SELECTION CHANNEL TECHNIQUE

AspectAdaptor
#name

AspectAdaptor
#phone

AspectAdaptor
#address

PersonUI

Person

name phoneaddress

the application model

the adaptors

the domain model

the domain values

Figure 2. An application model adapting a domain model using
adaptors.

AspectAdaptor
#name

AspectAdaptor
#phone

AspectAdaptor
#address

PersonUI

Person

name phoneaddress

ValueHolder

the application model

the adaptors

the subject channel

the domain model

the domain values

Figure 3. An application model adapting a domain model via a subject
channel.

Considering how new subjects are obtained is impor-
tant for setting up the subject channel correctly. For two
objects to share the same value using a value model, they
must share the same value model.3 Thus the object
obtaining the new selection and the objects using the
selection must share the same value model. The selecting
object, the one choosing a new subject from a list of pos-
sibilities, must store its selection in a value model. This
selection value model will be shared by the other objects
using the selection.

VisualWorks already includes an object that is per-
fectly suited for use as a selection channel, the selection
in list (an instance of SelectionInList). A selection in list
itself is not a selection channel, but it contains one. In
VisualWorks 1.0 you had to create your own selection
channel on a selection in list using a pluggable adaptor.
VisualWorks 2.0 has an enhanced aspect adaptor and a
new method, SelectionInList>>selectionHolder, which
returns an adaptor that is perfect for use as a selection
channel. Selection channel does not require a selection
in list, but that is the object most commonly used for
this task.

An application model that will use a selection channel
must obtain it from the selection object so that they will
be sharing the same one. When an application model is
establishing its domain model channel, it can either
obtain that channel or obtain the domain model and cre-
ate the channel itself. However, if the domain model
channel is a selection channel, they must be the same
object, so the application model must not create a new
channel. If it does, the application model will not be noti-
fied when the selecting object changes the selection.

CONCLUSION
In a nutshell, here’s what the article said:

• An application model organizes a group of values so
that they can be displayed by the widgets in a window.

• The group of values should be stored in a domain model.
• An application model adapts its domain model using

adaptor value models.
• An application model should use a domain model

channel to set its adaptors’ subject channels; this is a
simple way to force them all to adapt the same
subject/domain model.

• This domain model channel should be a selection
channel from a selecting object such as a selection in
list; this way the window will automatically display the
item selected in the list.

Hopefully this explains what that object labeled
SubjectChannel is all about.

References
1. Woolf, B. Making MVC more reusable, T S R

4(4):15–18, 1995.
2. Robicheaux, M. Visual Slam Dunk tutorial, T PP

I U C, 1994.
3. Woolf, B. Understanding and using the ValueModel framework

in VisualWorks Smalltalk, P L P

D, Coplien, J.O. and D.C. Schmidt, Eds., Addison-Wesley,
Reading, MA, 1995.

Bobby Woolf is a Member of Technical Staff at Knowledge Sys-
tems Corp. in Cary, North Carolina. Comments and questions are
welcome at woolf@acm.org.

`
`

February 1996 7

AspectAdaptor
#name

AspectAdaptor
#phone

AspectAdaptor
#address

PersonUI

Person

name phoneaddress

AspectAdaptor
#selection

SelectionInList

the application model

the adaptors

the selection channel

the domain model

the domain values

Figure 4. An application model adapting a domain model via a selection
channel.

February 1996 9

R frameworks1–4 depicts the advan-
tages of components and frameworks in general.
Developing a system architecture consisting of

components and subsystems is an excellent idea from the
modular design and software maintenance points of
view. In this article, I will show how construction of
Smalltalk link libraries (SLLs) aids in maintaining a devel-
oped application and delivering component-oriented
software. I will describe a way to ship a Smalltalk applica-
tion by creating SLLs. Each SLL can represent a subsystem
or a specific component in your application. The process
of Smalltalk library construction makes a developer real-
ize the framework benefits at the time of delivery.

The code examples described are based on Digitalk
Smalltalk/V Version 3.0.1 for OS/2 PM (Presentation
Manager), but the same concept can be tailored to the
Smalltalk/V Windows environment. This example also
demonstrates how Smalltalk takes advantage of host
operating system features for the application delivery.
Example code can be obtained on the World Wide Web at
http://www.objectpeople.on.ca/software.

SMALLTALK APPLICATION PACKAGING AND
MAINTENANCE
It is a well-known fact that once the learning curve barri-
er is overcome, a Smalltalk developer becomes proficient
in writing Smalltalk programs and the development task
becomes fairly easy. In large projects, a considerable
amount of time may be spent producing and maintaining
a good executable image. Full-time resources may need to
be allocated to perform this task. As the executable image
size begins growing, a Smalltalk developer may hear com-
ments about having a “fat” executable. Everybody expects
a nicely trimmed executable for application delivery.
There is absolutely nothing wrong with this expectation; it
is easier to manage a smaller executable during applica-
tion shipment. However, some momentum gained in
developing Smalltalk applications can be lost in the
process of constructing and delivering a Smalltalk exe-
cutable.

Once development is complete, the organization
begins a testing phase. As a result of code enhancements,

code optimization, bug fixes, etc., code tuning begins as
per feedback and suggestions of users. Often, these
changes are specific to particular subsystem classes
and/or methods, and classes and/or methods in other
subsystems are not affected. Because the Smalltalk image
(which uses v.exe, change.log, and recover.log files) is not
partitioned, there is no way to focus the efforts on partic-
ular subsystem classes or methods to carry out code tun-
ing. Here, SLLs come to the rescue. The organization can
create a Smalltalk image that consists of SLLs for each of
its subsystems and use them as needed, or distribute
them appropriately to clients to satisfy client require-
ments. These SLLs are used either in a development or
runtime environment as per one’s needs. SLLs are very
handy for accelerating the overall application packaging
task and maintaining the Smalltalk application.

A REAL-LIFE EXAMPLE
Assume that an organization has developed a software
framework to satisfy its business needs. Consider a simple
situation where this framework uses a dependency mech-
anism (i.e., the user interface is dependent on a business
model) and is comprised of two subsystems including a
business model subsystem (to contain business state and
business logic) and a user interface subsystem (to display
business model data), etc. In reality, framework imple-
mentations may contain other subsystems such as a rule
model subsystem (to handle business rules), an applica-
tion model subsystem (to handle behavior related to the
application model), a communication model subsystem
(to handle message send/receive), a database subsystem,
etc. Classes in these subsystems collaborate with each
other appropriately per their responsibilities to provide
the behavior specified by the framework.

Also assume that there is a client base of this organiza-
tion that wants to use the framework-level classes (i.e.,
high-level abstract superclasses) from these subsystems to
ensure they comply with the overall organization frame-
work. In addition, they want to utilize both framework-
level and concrete-level classes in an existing business
model subsystem, and customize their user-interface
model differently than the one used by the organization.

Delivering and sharing
components using
Smalltalk link libraries

Makarand Utpat

Until recently, few options were available to handle this
situation. If the organization and its clients were using
just a Smalltalk (without Team/V) environment, then the
only option was for the organization to give its clients the
whole Smalltalk image, containing the base Smalltalk
image, user-interface classes (abstract superclasses), and
business model classes (framework- and concrete-level
classes). If the organization and its clients were using
Smalltalk with Team/V, then clients could access business
model subsystem classes using the individual “package
migration” technique5 or by creating specific tools (visual
or textual) on top of Team/V to handle “migrating a list of
packages.” These approaches are on the verge of obsolete
for a variety of reasons including limitations encountered
during application packaging and maintenance phases;
the Parcplace-Digitalk merger, which is resulting in a new
architecture; and an overall industry shift toward compo-
nentware.

DYNAMIC LINK LIBRARIES AND SLLs
OS/2 provides a powerful way of bundling your applica-
tion program into a coherent unit called a dynamic link
library (DLL). As the name suggests, a DLL provides ser-
vices that are accessed and linked dynamically by differ-
ent application programs. It provides a way for an appli-
cation program to dynamically reference and access func-
tions and resources outside its own executable environ-
ment.6 Such resources might be icons, bitmaps, or point-
ers, etc., whereas functions could be the PM application
programming interface (API) calls for handling window
management, graphics, device driver routines, or access-
ing OS/2 executable programs, etc. Smalltalk/V PM with
the use of SLLs takes this concept one level higher, allow-
ing one to access the services provided by individual sub-
systems. By tapping the power of OS/2’s DLL mechanism
underneath it, Smalltalk/V PM allows one to create SLLs
of classes, methods, and metaclasses that can be shared
by different teams within an organization. Object libraries
were a common means of building DLL files in Digitalk
Smalltlalk previous to Version 3.0.1. SLLs are those object
libraries with a new face.

DELIVERING A SMALLTALK APPLICATION
In Smalltalk/V PM, the Smalltalk image consists of the
executable environment (v.exe file, change.log file, recov-
er.log file), one or more DLL files, and one or more SLLs.
DLLs are divided into base class DLLs and development
class DLLs. Base class DLLs contain classes such as collec-
tions, streams, windows, etc., whereas development class
DLLs contain the Smalltalk compiler, debugger, etc.6 A
Smalltalk programmer uses the development classes to
create a Smalltalk application program. As development
progresses, the code created by the programmer (once
saved) is added into the v.exe file, which begins to grow.
Typically a programmer uses the v.exe file to deliver
the application. This approach works well whether the
design contains a relatively small or large number of
classes. Then, by making appropriate changes in the

#startUpApplication method in the NotificationManager
class, the programmer uses v.exe to start the application.
This standard approach always works.

Another way to deliver a Smalltalk application is filing
out all the classes from one programmer’s image and
installing them on another programmer’s image.

Both approaches are cumbersome from the applica-
tion maintenance point of view. A better way is to build
Smalltalk libraries of classes to provide flexibility in deliv-
ering Smalltalk applications.

DIFFERENT WAYS TO CONSTRUCT SLLs
Before transferring the executable to users, programmers
test their applications to confirm that they meet require-
ments. It might be a good idea to start building SLLs at the
initial application development phase, to ease the future
maintenance task. Such SLLs can be loaded in a develop-
ment or runtime environment. Here, the task of Smalltalk
library construction can be accomplished in a variety of
ways. One could categorize it based on different aspects
such as the existing services, different subsystem frame-
works, or available standalone classes (explained next).
Referring back to our example, assume that a simple busi-
ness model for the organization consists of classes such as
Person, Address, HomeAddress, BusinessAddress, Phone,
HomePhone, BusinessPhone, etc., while the user-interface
model consists of classes such as UserInterfaceModel,
UserInterfaceModelForOrganization, and Person
InformationWindowDialog (to display Person information).
Combined, these different classes could provide a “view”
service that enables one to view information about persons.

Construction based on the service behavior
The organization could treat the aforementioned busi-
ness model and user-interface classes as one entity, and
construct a single Smalltalk library representing a Person
information “view” service, i.e., construct one Smalltalk
library that contains business model subsystem classes
(abstract and concrete) and user-interface subsystem
classes (abstract and concrete) to provide this specific ser-
vice. If the organization needs a “change” service, consist-
ing of additional user-interface classes such as
ChangePersonInformationDialog (to change the Person infor-
mation) and other business objects created to handle
the changes, the organization could then construct
another Smalltalk library representing a “Person informa-
tion change service.” In general, this approach facilitates
development efforts within the organization.

Smalltalk library for view service:

BusinessModel Subsystem (abstract and concrete
classes) and UserInterfaceModel Subsystem Smalltalk
Library (abstract and concrete classes related to view-
ing the person)

Smalltalk library for change service:

BusinessModel Subsystem (abstract and concrete

The Smalltalk Report10

classes) and UserInterfaceModel Subsystem Smalltalk
library (abstract and concrete classes related to chang-
ing the person information)

Construction based on framework implementation
In construction based on framework implementation, the
organization treats the aforementioned business model
classes and user-interface classes as two different entities
and constructs two separate SLLs. Thus, by constructing
two SLLs for business model subsys-
tem classes (abstract and concrete)
and user-interface subsystem classes
(abstract classes), the organization
creates a server environment that
provides services such as knowing
the state of the business objects and
providing user-interface protocols to
display the current state of the busi-
ness objects. The organization and its
client base use this server environment to customize
user-interfaces appropriately. In general, this approach is
best used when the organization has to satisfy client base
requirements.

Server SLLs:
BusinessModel UserInterfaceModel

Subsystem Subsystem
Smalltalk library Smalltalk library

Client SLLs:
UserInterfaceModel Subsystem Smalltalk
library (concrete classes for organization)

UserInterfaceModel Subsystem Smalltalk
library (concrete classes for clients)

Construction based on standalone classes
One can construct a Smalltalk library of standalone class-
es that don’t belong to a particular subsystem but are
required by different subsystems, such as classes for man-
aging application configuration, setting application envi-
ronment, other helper classes, etc. This Smalltalk library
can then be treated as a standalone component in the
application.

CREATING A BUSINESS MODEL SMALLTALK LIBRARY
Assume that the organization follows the second ap-
proach to constructing a Smalltalk library, which results
in their having two DLLs—one for business model classes
and one for user-interface classes.

The typical steps to create a business model Smalltalk
library are described below:
1. Open the Library Builder dialog. Select the package

containing business model subsystem classes. Select
the following menu option: Module —>Build Library.

2. The Library Builder dialog offers two options. Customize
the classes that you would like to add into the library by
clicking on the Customize option or just let create an SLL
for the classes contained within the selected pack-

age/cluster. Also, one can optionally include the source
code for classes not in SLL one is creating.

BINDING SLLs TO A SMALLTALK IMAGE
The Digitalk help manual describes three ways to package
Smalltalk application using SLLs; these approaches let the
developer bind SLLs statically or dynamically.

The first approach is to bind SLLs during startup by
including their names in an autobind ascii file, e.g.,
app.bnd (during development image, it looks for

vdevo.bnd file). This approach per-
mits one to save the image without
binding it with the SLL, thus avoiding
having to bind the SLL to a specific
version of v.exe.
The second approach is to bind the
SLL dynamically. The developer can
then bind and unbind SLLs on
demand, which results in low memo-
ry overhead.

Finally, one can bind SLLs in a hybrid way using a com-
bination of the aforementioned two approaches: binding
some SLLs to the image and binding others dynamically.

ADVANTAGES OF USING SLLs
1. Data sharing—Multiple applications access and share

subsystem SLLs. A server environment is created by
storing different SLLs on the network. All teams within
the organization would then have ready access to it so
that consistent access is maintained. Thus, SLLs make
data sharing a transparent process across multiple
applications.

2. Pluggability—Modular components are created to
enhance reusability. Thus, the maintenance task
becomes flexible. This aids easy replacement and
shipping of appropriate subsystem DLLs.

3. Application of the producer/consumer concept—This
key concept of componentware (producing and con-
suming the components) is easily adopted and applied.
Referring to the example at the beginning of this article,
the organization becomes a producer of SLLs and the
client base becomes a consumer of SLLs.

4. Decreased image size—This conserves hard disk space
and reduces v.exe size, resulting in less overhead.

5. Flexibility of use for the organization and its clients—
Once the business model Smalltalk library is created, it
is ready for distribution to the client base, as well as use
by the organization itself. The client base, which is
uninterested in the user interface Smalltalk library
(containing classes such as UserInterfaceForOrganization,
its subclasses, composite panes used in dialogs, etc.),
can load the business model Smalltalk library in their
development/runtime environment and begin using it
alone.

6. Creation of standalone class libraries—Components
consisting of standalone classes are constructed and
distributed appropriately.

7. Realization of the framework benefits—During the

February 1996 11

The task of Smalltalk
library construction
can be accomplished
in a variety of ways.

design phase, classes (both framework- and concrete-
level) are logically grouped to form a subsystem based
on the intended behavior that a subsystem is supposed
to perform. The correct decision to group a certain
class in a particular subsystem aids the task of building
and maintaining SLLs.

8. Construction simplicity—Previous Digitalk Smalltalk
versions used the concept of object libraries, and
Smalltalk developers spent a lot of time constructing
them. On the other hand, SLLs are constructed simply
and quickly.

9. Platform portability between OS/2 and Win32 operating
systems—SLL uses a unique and system-independent
format.7 Hence, it is easier to
create applications that are port-
able between these two
platforms.

10. Use in runtime and develop-
ment environments—Works
excellently in both runtime and
development Smalltalk
environments.

11. Scripting—During a release
phase, a particular Smalltalk
library may have to be reconstructed many times. By
taking advantage of scripting facilities,7 the task of
constructing SLLs is simplified by creating scripts to
reconstruct SLLs.

DISADVANTAGES OF USING SLLs
1. Difficult to use in a Team/V development environ-

ment—If you load a Smalltalk library in a Team/V
development environment, it loads all the classes in the
“unpackaged” package and not where they belong.
Because most of the source code related to Team/V
classes is hidden, it is difficult to ascertain how to
replicate the “Load/Migrate” action (which loads all
the classes in a particular package/cluster in one’s
Smalltalk image) during Smalltalk library loading so
that classes included in the Smalltalk library will fall into
packages where they belong.

2. Inability to extend existing Smalltalk library envir-

onment—To build a Smalltalk library, Digitalk uses a
few classes (SmalltalkLibrary, SmalltalkLibraryBind,
TeamVLibraryInformation, TeamVInterface, etc.) whose
implementation is hidden to the developers. Because
they cannot access the code associated behind the
methods, they cannot add any enhancements to base
Smalltalk library classes.

CONCLUSION
This article reviewed different approaches to constructing
SLLs and described advantages to facilitate the Smalltalk
application delivery task. It provided shared transparent
access to different teams by conserving hard disk space.

I found that the ability to create
SLLs provides a pluggable
approach that facilitates applica-
tion maintenance tasks. The article
also showed how with this
approach, the momentum gained
in developing Smalltalk applica-
tions is retained while delivering
Smalltalk applications.

Acknowledgment
The author thanks Anne Marie Frederick at Prudential
Insurance Corporation in New Jersey for encouraging him
to write this article.

References
1. Johnson, R. and B. Foote. Designing reusable classes. J

 O O P 1(2):22–35, 1988.
2. Taligent. B O-O F, 1993.
3. Harris, J. Object Insider: Breaking out of the object ghetto,

O M 4(8):12–14, 1995.
4. Johnson, R. How to develop frameworks, T N

OOPSLA’93, 1993.
5. Digitalk Inc. D P R

S/V OS/2, 1993.
6. Petzold, C. P OS/2 P M,

Microsoft Press, 1989.
7. Digitalk Inc. D O H M S/V

 OS/2, 1995.

Makarand Utpat is a Senior Consultant at Envision in St. Louis, MO.

`
`

The Smalltalk Report12

SMALLTALK LINK LIBRARIES

Classes are logically

grouped to form a subsystem

based on the intended

behavior that a subsystem

is supposed to perform.

February 1996 13

E objects and object-oriented
(OO) design are the hottest things since sliced bread
(and, of course, slices of bread are objects). The prob-

lem is that it’s hard to agree on what exactly they are. There
have been many attempts to define principles of OO
design or coding, with varying degrees of success. In my
opinion, most of them suffer from two flaws. First, they
don’t tell me enough about how to code. Reading a defini-
tion of “polymorphism” doesn’t tell
me how to exploit it in my programs.
Second, and more important, is that
they’re dull. Even if the definition of
polymorphism did tell me how to
code, it’s hard to stay awake long
enough to finish reading it.

Therefore, I modestly present
some of my own principles of OO-
ness, which I hope address both of
these flaws. Furthermore, I believe that these principles
relate well to the corporate environments that have seen
so much Smalltalk use recently.

NEVER DO ANY WORK THAT YOU CAN GET SOMEONE
ELSE TO DO FOR YOU
This is always good advice, but it’s particularly applicable
in OO. In fact, I consider it the fundamental principle of
OO. As an object, my responsibilities are very clearly
defined, and so are those of my co-workers. If something
is (or ought to be) one of their responsibilities, then I
shouldn’t be trying to do that work myself.

Let’s look at a concrete example:

total := 0
aPlant billings do: [:each|

(each status == #paid and: [each date > startDate])
ifTrue: [total := total + each amount]].

versus

total := aPlant totalBillingsPaidSince: startDate.

In the first case, we’re asking the plant for all of its billings,
figuring out for ourselves which ones qualify, and com-
puting the total. That’s a lot of work, and almost none of it
is our job. Far better to use the second option, where we
simply ask for something to be done and get a result back.
In real-world terms, the first example is like the following
conversation:

“Excuse me, Smithers. I need to know the total bills
that have been paid so far this quar-
ter. No, don’t trouble yourself. If
you’ll just lend me the key to your fil-
ing cabinet I can go through all the
records myself. I’m not familiar with
your new filing system, but I’m sure I
can figure it out. I’ll try not to make
too much of a mess.”

Smithers actually understands his
filing system, so he can probably do the work faster than
we can, and he’s much less likely to mess everything up. In
attempting to do his job for him, we’re just making things
worse. Things will get worse when he switches over to that
new filing system next week. We’d be far better off acting
like a stereotypical tyrant boss.

“SMITHERS! I need the total bills that have been paid
since the beginning of the quarter. No, I’m not interest-
ed in the petty details of your filing system. I want the
total, and I’ll expect it on my desk within the next half
millisecond.”

Let’s look at a simpler example, which is all too common.

somebody clients add: Client new.

versus

somebody addClient: Client new.

There’s always a temptation to choose the first option,
because it saves writing a couple of methods that do
nothing but add and delete on the other class. But you
know it’s wrong. You’re trying to do somebody’s work for

The Best of comp.lang.smalltalk

Alan Knight

Alan Knight has had great success avoiding responsibility with
The Object People, 885 Meadowlands Dr. East, Ottawa, Ontario,
K2C 3N2. He can be reached at 613.225.8812 or by email as
knight@acm.org.

Principles of OO design:
or, everything I needed to know in life,
I learned from Dilbert*

If you must accept a
responsibility, keep it
as vague as possible.

* Dilbert is a trademark of United Feature Syndicate.

them, and ultimately it’s only going to cause problems.
Writing those extra methods keeps the responsibility
where it belongs and will make the code cleaner in the
long run.

This principle is close to the more conventional idea
of “encapsulation”, but I like to think it makes the idea
somewhat clearer. I often see people who are happily
manipulating the internal state of another object, but
think it’s OK because they’re doing it all through mes-
sages. Encapsulation is not just
about accessing state, it’s about
responsibilities. Responsibility is
about who gets stuck doing the real
work.

AVOID RESPONSIBILITY
If responsibilities are about getting
stuck with work, it’s important to
avoid them. This has some impor-
tant corollaries:

• If you must accept a responsibility, keep it as vague as
possible.

• For any responsibility you accept, try to pass the real
work off to somebody else.

Our first principle tells us to take advantage of other
objects when writing code. We also have to avoid being
taken advantage of. Any time I (as an object) am tempted
to accept a responsibility, I should ask myself, “Is this real-
ly my job?” and “Can’t I get someone else to do this?”

If I do accept a responsibility, it’s important to keep it
as vague as possible. If I’m lucky, this vagueness will help
me avoid doing the work later. Even if I must do the work,
it may allow me to take some shortcuts without anybody
else noticing.

For example, I’ve seen CRCs with responsibilities like:

Maintain a collection of the who-
sits to be framified

This is much too specific. My job isn’t to maintain a
collection, it’s to be able to report, when necessary, which
whosits need framification. That may be implemented by
maintaining a collection, or by asking
one or more other objects for their collection(s), it may
be hard-coded, or computed dynamically as Whosit
allInstances select:. Regardless of which option I choose,
there shouldn’t be any impact on my responsibilities.

My preference for phrasing a responsibility of this
kind is:

Know which ...

but I’m flexible as long as the phrasing is suitably vague.
I’d probably be even happier with

“Be able to report which ...”

Carried to the extreme, it seems this could lead to the sit-
uation where everyone passes information around and
nothing ever gets done. Exactly. Object bureaucracy at it’s
finest.

Seriously, a good OO system can actually approach this
state. Each object will do a seemingly insignificant
amount of work but somehow they add up to something
much larger. You can trace through the system, seeking
the place where a certain calculation happens, only to

realize that the calculation is fin-
ished and you just didn’t notice it
happening.

POSTPONE DECISIONS
The great virtue of software is flexibil-
ity. One way we achieve flexibility is
through late binding. We most often
discuss late binding between a
method name and the method it

invokes, but it’s also important in other contexts. When
faced with a decision, we can gain flexibil-
ity by postponing it. The remaining code just needs to be
made flexible enough to deal with any of the possible
outcomes.

The ideal is when we can avoid making the decision at
all, leaving it up to someone else (the end user, other
objects). For example, consider the question of how to
implement dictionaries. The standard thing to do is use
a hash table. That works well for medium-sized collec-
tions, but it’s a waste of space and effort for very small
collections. For very large collections, it may also be
wasteful, particularly if the number of elements exceeds
the resolution of our hash function. We must make a deci-
sion here, so we’d like to postpone it or pass it off to some-
one else.

Some implementations of the collection classes do pre-
cisely this. The collections transfer much of their behavior
to an implementation collection that actually does the
work. Depending on the size, the nature of that collection
can change. In VisualAge 2.0, small dictionaries were
stored as arrays because the overhead of hashing was
more than the cost of a linear search. Larger dictionaries
could be represented as either normal or bucketed hash
tables. This seems to have disappeared in 3.0, so I suppose
the overhead of this mechanism became more than the
cost of using a single representation. Visual Smalltalk also
has dictionaries that are capable of switching between
normal and bucketed hash tables.

Be careful in applying this principle because it’s possi-
ble to take it too far. Decisions aren’t just sources of prob-
lems, they give us the power to solve problems. Because
we cannot solve all the problems of the world at once, we
make the decision to limit ourselves, and we make
assumptions about the problems we’ll be given. The
problem arises when our decisions were poor, or our
assumptions don’t hold any more. The trick is to make

The Smalltalk Report14

THE BEST OF COMP.LANG.SMALLTALK

Never do any work
that you can

get someone else
to do for you.

continued on page 28

enough decisions to be able to work, but few enough that
our code doesn’t become brittle. That’s one of the things
that makes software difficult.

Passing off decisions to another object is often referred
to as using policy or strategy objects. This is discussed in
D P1 as the Strategy pattern.

Other related ideas are “Open Implementations,” which
can allow important decisions to be postponed so far that
even the end user of the module can control them. I can’t
do justice to this topic here, but there’s a web page avail-
able at http://www.xerox.com/PARC/spl/eca/oi.html

Because web pages change so rapidly, I’ll also mention
that I found it using the search terms open implementa-
tion and Gregor Kiczales (the project leader).

POSTSCRIPT
Although there is a significant element of humor in these
principles, I do take them quite seriously and urge you to
do the same. They illustrate some very important aspects
of OO design and coding. I’ve even come up with enough
of them to fill another column, so the next issue will con-
tinue this theme.

Reference
1. Gamma, E. et al. D P: E R

O-O S, Addison-Wesley, Reading, MA,
1994.

`
`

The Smalltalk Report28

THE BEST OF COMP.LANG.SMALLTALK
continued from page 14

person can cause damage more quickly on a Smalltalk
project than they can on a traditional project, and corpo-
rate cultural checks that normally help such people, such
as peer reviews, management one-on-one meetings, and
performance reviews, are tuned to the slower beat of the
traditional project.

Beginning a Smalltalk project offers the opportunity
for a “behavioral context switch,” in which old patterns
can be broken. By catching behavioral difficulties early,
you can keep them from becoming established patterns.
Once behavioral patterns are established, their impact
on productivity must be carefully monitored and hu-
manely dealt with.

References
1. Kroeger, O. and J.M. Thuesen. T T w, H 16

P T D Y S J, Tilden
Press, New York, 1992. [This book concentrates on applying
Jungian personality type theory in the workplace, and is much
more approachable than defining works on the topic.]

2. Bramson, R.M. C D P, Anchor
Press/Doubleday, Garden City, NY, 1981.

3. Brooks, Jr., FP. T M M-M (20th anniversary
ed.), Addison-Wesley, Reading, MA, 1995. [A wonderful classic.

`
`

MANAGING OBJECTS
continued from page 17

February 1996 15

L’ —’ “” at some time or
other. This can range from mild irritability over a bad
hair day, to active sabotage between competing

groups. These problems are best dealt with before they
develop into a pattern of behavior, but the pace of
Smalltalk development often results in people settling
into behavioral patterns before anyone notices.

We divide special team members into three categories:
1. “Pluses” offer net productivity but can be much more

productive if their unique strengths can be exploited
while reducing the impact of their weaknesses.

2. “Zeros” are a wash and can be tolerated while your
organization finds a place where they can become
pluses.

3. “Minuses” detract from the productivity of others and
can seriously impact a project if not dealt with in some
way.

Keep in mind that we are writing about established be-
havior patterns here. Obviously, new assignments, emo-
tional problems, family crises, etc., make the best of us
“zeros” or even “minuses” from time to time, and a com-
passionate organization will help, or at least tolerate,
these non-chronic productivity losses.

Here are some of the more prevalent behavior patterns
we’ve found in Smalltalk projects and suggestions for
dealing with them.

“THE LONER”
This person is an enigma to management. the Loner is
often a Meyers—Briggs1 “INTP” type, who may be per-
ceived as “not a team player,” and might even be fired if
he wasn’t so damned creative. Like Bramson’s2 “Analyst,”
the Loner will often miss deadlines, not because he isn’t
working, but simply because he is still working!

The big danger on a Smalltalk project is that the Loner

may disappear after having been given an assignment
and come up for air several months later with a beautiful-
ly crafted, complete solution to the wrong problem.
Because Smalltalk is so productive, it may be tempting to
redefine the project around the Loner’s wonderful solu-
tion of the wrong problem, because he may well be far
ahead of the rest of the team, who’ve been busy collabo-
rating all these months!

At worst, a single Loner is a “zero,” but two or more on
a team may quickly destroy a project if not guided by
a skilled architect. Once you’ve discovered a Loner on
your team, there are several techniques you can use to
harvest his creativity without yielding control of the
project:

• Schedule regular peer review, especially at the design
level, before the Loner is able to write reams of code.

• If the Loner is also a Know-It-All (discussed later), call
these peer reviews “educational reviews” to avoid
wounding his fragile ego.

• Assign the Loner a “shadow,” “buddy,” or “stunt-double”
—someone who keeps up-to-date on what the Loner is
doing, in case it is necessary to fill in in an emergency
and provide the communication that the Loner is unable
to provide.

• Limit Loners to well-specified, well-defined tasks. This
is a last resort, because junior people will not break
their Loner habit and senior people will get bored and
possibly become Slackers (discussed later).

“THE LOANER”
While discussing the Loner, we realized we have, on sev-
eral occasions, experienced its pun! For various reasons,
the project is running late and senior management
decides they had better round up nine people so they can
ship this baby in a month.

Almost 20 years ago, Frederick Brooks, Jr.3 noticed that
adding resources to a late project makes it even later.
Loaners often consume more time than they add, and
are, therefore, “minuses,” because they need to be inte-
grated with the team’s procedures and conventions, and
also absorb all the history that has gone into getting to
this point of crisis. This is not so much a reflection on the

Jan Steinman and Barbara Yates are cofounders of Bytesmiths,
a technical services company that has been helping companies
adopt Smalltalk since 1987. Between them, they have over
20 years Smalltalk experience. They can be reached at Bar-
bara.Bytesmiths@acm.org or Jan.Bytesmiths@acm.org, or via
http://www.bytesmiths.com.

Managing Objects

“Special”
team members

Barbara YatesJan Steinman

person as it is on the process that put them in this unfor-
tunate situation.

This problem is amplified by Smalltalk because
Smalltalk is not a language, it is an environment. Not only
must this person learn your project before they can be
useful, they often must learn exotic (to them) concepts,
such as Dictionaries—concepts for which your team has
developed a shared vision.

Even more insidious is the possibility that you might
not be getting quality material to begin with. Think of it—
if asked to loan one of your team members, would you
give your best person, or perhaps someone whom you
haven’t quite been able to find a place for yet?

If your manager insists on doing
you this “favor,” keep the following
in mind:

• Make sure they are doing you a
favor—don’t accept someone
else’s problem when you’re al-
ready in schedule trouble!

• Keep loan lengths on the long
side to better amortize the “in-
terest” cost of borrowing a per-
son—don’t take a Loaner for less
than six months, unless the per-
son has enough history with your project to hit the
ground running.

• Your Loaner must either be Smalltalk-knowledgeable, or
must be able to contribute without ever touching
Smalltalk. Growing Smalltalk talent is too much of an
investment to return when the loan is due!

• Make sure Loaners document their work so others can
pick up where they leave off.

• Assign them a “stunt double,” who will work with them
on a day-to-day basis. (Be aware that too much “time
suckage” from the double may turn a Loaner into a
“minus.”)

“THE COWBOY”
The Cowboy typically learned Smalltalk in relative iso-
lation and is used to being “king of the image”. Cowboys
delight in tricky code, sometimes doing it for sheer intel-
lectual pleasure without the slightest rationale.

The Cowboy’s nemesis is ENVY/Developer, because
he doesn’t like people looking at his tricky code, he can’t
imagine others actually working on his tricky code, and
absolutely hates the constraints imposed by a code
management system—if changing the implementation
of basicNew suits his purpose, he cannot tolerate the
thought of getting the permission of the Library
Supervisor!

Cowboys can be wonderful “pluses” if carefully man-
aged; they can also be “minuses” if they consistently de-
stabilize your environment or if their escapades consume
an entire “stunt-double” resource. To deal with the Cow-
boy, try the following:

• Use and enforce your code management system’s se-
curity features. This includes passwords for all accounts

and no shared accounts, especially privileged accounts
such as ENVY’s Library Supervisor.

• Never, ever let the Cowboy use a privileged account to
work on the base image!

• Find tasks for Cowboys that exploit their curious
nature—some tasks demand tricky code!

• Establish a culture where the only tricky code tolerated
is well documented, complete with the rationale for
being tricky.

• The Cowboy is often a Loner, and some of those coping
strategies, such as extensive peer-review and “stunt-
double” coverage, work well for him also.

“THE SLACKER” OR “ROBINSON
CRUSOE”
The Slacker often knows the best
web sites and is fluent on the latest
Usenet newsgroup gossip. He may
often quickly collapse a window as
you approach his desk and you may
notice his long print jobs that are
totally unrelated to work. When
others are at his desk, they often
seem to be doing the typing or
mousing.

We sometimes call this pattern “Robinson Crusoe” be-
cause it seems that Slackers always expect to have their
work done by Friday, even though they haven’t started it by
Thursday. (And if on Friday they are inconveniently strand-
ed on some desert isle, Slackers are perfectly content to
arrange for other team members to pick up the slack!)

The Slacker never meets a deadline and never works
a full week, but neither does he ever report that he is
behind schedule and, of course, there is always “The
Good Excuse.”

Slackers come in two varieties: Dumb and Lazy, and
Bored. It is difficult to distinguish between them but the
difference is vital:

• A Dumb and Lazy Slacker is in over his head but won’t
admit it and doesn’t really care. He may become a minor
“plus” if given a simpler task.

• A Bored Slacker is in well under his head and may
become a major “plus” if properly inspired.

If you do not raise The Slacker to at least a “zero,” your
project will suffer much more than the mere loss of effective
head count. Sometimes you can do this by the following:

• Give Slackers additional training or mentoring. Put a
hard limit on this “time suckage,” and let Slackers know
it or their mentors will merely end up doing all the work.

• Give Slackers many intermediate deliverables, which
may help determine whether they are Dumb and Lazy
or merely Bored.

• Micromanage the Slackers with daily progress checks,
but recognize that this activity alone may take enough
of your time to keep them a “minus.”

Often, despite your best efforts, a Dumb and Lazy Slacker

The Smalltalk Report16

MANAGING OBJECTS

If asked to loan one of
your team members, would
you give your best person, or
perhaps someone whom you

haven’t quite been able
to find a place for yet?

cannot be raised to a “plus.” This cannot be tolerated and
the person must go. If removing a Dumb and Lazy Slacker
from your project is not possible, you need to minimize
his impact on your team.

• Isolate the Slacker; forbid him to seek help, and forbid
others to help him with his work.

• Perhaps you can turn your Slacker into someone else’s
Loaner? (Nah, we wouldn’t suggest that!)

“THE KNOW-IT-ALL”
This person often actually knows a lot, but the Know-It-
All’s insecurity causes them to “know” more than they
actually do. (In the immortal words of Bo Didley, “It ain’t
what you don’t know; it’s what you know that just ain’t
so!”) We’ve found this often results from taking someone
who has been the “big cheese” on a traditional project and
immersing them in Smalltalk, which is strange, different,
and frightening to someone who has become used to
being an acknowledged expert.

This is the only pattern that Bramson also uses, and he
divides them into two categories: the “Bulldozers” and
“Balloons,” the primary difference being that “Bulldozers”
know what they’re talking about whereas “Balloons” do
not. Of the two, “Bulldozers” are merely obnoxious—
although they may demoralize others with their strong
assertions, they are still strong “pluses,” even in context of
the entire team. We’re more concerned with “Balloons,”
who can lead an entire project astray if they have the ear
of someone important!

Don’t let the insecurity of the Know-It-Alls blind you
to what they can be contributing. To deal with the Know-
It-All try the following:

• Be quick to acknowledge and reward the greatness of
Know-It-Alls when you know they are right—give them
strokes freely when they deserve it and they will be
less likely to seek strokes for false knowledge.

• Ease Know-It-Alls out of their comfort zone—carve
off a bit of the project, such as designing C primi-
tives or RDBMS access, which will allow them to use
their expertise while slowly coming to grips with
Smalltalk.

• A Know-It-All can be responsible about his or her lack
of knowledge when not threatened and may do well
if assigned a junior “buddy” to mentor. The mentoring
can surreptitiously become two-way, especially if the
junior person is farther along the Smalltalk learning
curve, but monitor them carefully to make sure The
Know-It-All is not filling an impressionable mind with
puffery.

CONCLUSION
There are very few truly useless people in this world, but
there are many people who are viewed in light of their
weaknesses, rather than being put to work using their
strengths.

As Smalltalk amplifies this problem, an out-of-place

February 1996 17

continued on page 28

SIGS Publications, Inc., 71 West 23rd Street, 3rd Floor, New
York, NY 10010; 212.242.7447; Fax: 212.242.7574

ARTICLE SUBMISSION

To submit articles for publication, please contact:
John Pugh & Paul White, Editors, 885 Meadowlands Dr.#509,
Ottawa,Ontario,K2C 3N2 Canada;
email: streport@objectpeople.on.ca

PRODUCT REVIEWS AND ANNOUNCEMENTS

To submit product reviews or product announcements,
please contact the Editors at the address above.

CUSTOMER SERVICE

For customer service in the US, please contact PO Box
5050, Brentwood, TN 37024-5050; 800.361.1279;
Fax: 615.370.4845; in the UK, please contact Subscriptions
Department, Tower Publishing Services, Tower House,
Sovereign Park, Market Harborough, Leicestershire, LE16
9EF, UK; +44.(0)1858.435302; Fax: +44.(0)1858.434958

SIGS BOOKS

For information on any SIGS book, contact: Don Jackson,
Director of Books, SIGS Books, Inc., 71 West 23rd Street,
New York, NY 10010; 212.242.7447; Fax: 212.242.7574;
email: donald_jackson@sigs.com

SIGS CONFERENCES

For information on all SIGS Conferences, please contact:
SIGS Conferences,71 West 23rd Street, 3rd Floor, New York,
NY 10010; 212.242.7515; Fax: 212.242.7578;
email: info@sigs.com

BACK ISSUES

To order back issues, please contact: Back Issue Order
Department, SIGS Publications, 71 West 23rd Street, 3rd
Floor, New York, NY 10010; 212.242.7447; Fax: 212.242.7574

REPRINTS

For information on ordering reprints, please contact:
Reprint Management Services, 505 East Airport Road, Box
5363, Lancaster, PA 17601; 717.560.2001; Fax: 717.560.2063

ADVERTISING

For ad information for any SIGS publication, please contact:
East Coast/Europe: Gary Portie
Central US: Elisa Marcus
Recruitment: Michael Peck
Exhibit Sales, West Coast: Kristin Viksnins
Exhibit Sales, East Coast: Sarah Olszewski
212.242.7447; Fax: 212.242.7574
email: sales@sigs.com
West Coast: Diane Fuller
408.255.2991; Fax: 408.255.2992
email: dhfsigs@hooked.net

SIGS HOME PAGE

Access the SIGS Home Page at: http://www.sigs.com.

INFO@SIGS

enough decisions to be able to work, but few enough that
our code doesn’t become brittle. That’s one of the things
that makes software difficult.

Passing off decisions to another object is often referred
to as using policy or strategy objects. This is discussed in
D P1 as the Strategy pattern.

Other related ideas are “Open Implementations,” which
can allow important decisions to be postponed so far that
even the end user of the module can control them. I can’t
do justice to this topic here, but there’s a web page avail-
able at http://www.xerox.com/PARC/spl/eca/oi.html

Because web pages change so rapidly, I’ll also mention
that I found it using the search terms open implementa-
tion and Gregor Kiczales (the project leader).

POSTSCRIPT
Although there is a significant element of humor in these
principles, I do take them quite seriously and urge you to
do the same. They illustrate some very important aspects
of OO design and coding. I’ve even come up with enough
of them to fill another column, so the next issue will con-
tinue this theme.

Reference
1. Gamma, E. et al. D P: E R

O-O S, Addison-Wesley, Reading, MA,
1994.

`
`

The Smalltalk Report28

THE BEST OF COMP.LANG.SMALLTALK
continued from page 14

person can cause damage more quickly on a Smalltalk
project than they can on a traditional project, and corpo-
rate cultural checks that normally help such people, such
as peer reviews, management one-on-one meetings, and
performance reviews, are tuned to the slower beat of the
traditional project.

Beginning a Smalltalk project offers the opportunity
for a “behavioral context switch,” in which old patterns
can be broken. By catching behavioral difficulties early,
you can keep them from becoming established patterns.
Once behavioral patterns are established, their impact
on productivity must be carefully monitored and hu-
manely dealt with.

References
1. Kroeger, O. and J.M. Thuesen. T T w, H 16

P T D Y S J, Tilden
Press, New York, 1992. [This book concentrates on applying
Jungian personality type theory in the workplace, and is much
more approachable than defining works on the topic.]

2. Bramson, R.M. C D P, Anchor
Press/Doubleday, Garden City, NY, 1981.

3. Brooks, Jr., FP. T M M-M (20th anniversary
ed.), Addison-Wesley, Reading, MA, 1995. [A wonderful classic.

`
`

MANAGING OBJECTS
continued from page 17

The Smalltalk Report18

M described the differences between
client Smalltalk systems and server Smalltalk,
and how server Smalltalk fits into the three-tier

architecture that is emerging to meet the performance
and business requirements of enterprise-wide applica-
tions. The key to balancing the processing load between
clients and server, and sharing business objects in such
architectures, is the ability to partition applications.

Application partitioning is the activity in which code
written for the client can be moved to the server (or vice
versa). When both the client and server can execute the
same Smalltalk code, this movement of objects and code
is much simpler and allows the application to be dynam-
ically tuned in the face of changing hardware and soft-
ware. Applications can be developed initially only on the
client, and then portions can be moved to the server to
share objects, enforce security policy, and gain fault toler-
ance of critical data as needed.

When the clients and server speak a different language,
this partitioning should occur earlier in the design, because
partitioning decisions are more difficult and costly to
change later. Unfortunately, performance tuning often
occurs late in the software process so, in many cases, the
decision to repartition an application must balance the
cost of reimplementing large sections of code against the
expected performance gain. Making such changes is dis-
couraged because the cost of repartitioning is higher. Also,
developers must be proficient in two different languages,
one for client development, and one for the server.

When Smalltalk is the language on both the client and
server, what mechanisms are available to partition the
application and to distribute objects and behavior be-
tween the client and server? In GemStone Smalltalk, there
are several mechanisms available so that client ap-
plications can reference and manipulate objects located
on the server. One mechanism is forwarders. A forwarder
is a client object that covers for a server object. A for-
warder does not contain any state of the server object, but
maintains enough information to communicate with the
server object when needed. When a message is sent to a
forwarder, the execution of its behavior actually takes

place on the server. The forwarder knows the identity of
the server object and how to communicate with it.

Forwarders are implemented in such a way that no
special code is required to check for the presence of a for-
warder before sending it a message. Forwarders utilize
Smalltalk’s message-sending mechanism to automatical-
ly forward messages by special handling of the
doesNotUnderstand: error. The Forwarder class does not
inherit from class Object, so forwarders understand very
few messages on the client side. Most messages to a for-
warder are silently trapped by the execution thread on the
client, forwarded to the server for execution, and the
result returned to the client for continuation of its execu-
tion thread. If the message to a forwarder contains argu-
ments, those arguments are transformed automatically
into server objects if needed. This is implemented in such
a way so that application code does not have to be written
any differently, whether the receiver of a message is a for-
warder or some other client object.

There are several ways a programmer can get a for-
warder to a server object. One way is to send the message
beForwarder to a replicate (discussed later). For example, a
newly created client object could be copied to the server
by sending it the message putInGS (thus, making it a rep-
licate), then send the message beForwarder. At that point,
the state of the object is only stored in the server Smalltalk,
and any messages sent to the client object cause execution
in the server. In some cases, a developer may design the
application so that all instances of a particular client class
are intended to be forwarders. Whenever an instance of
such a class is fetched from the server, it should be instan-
tiated as a forwarder. This is specified by implementing the
method instancesAreForwarders in the client class to return
true. Two other ways to specify that certain objects are to
be manifested as forwarders in the client Smalltalk is by a
replication specification (described later) or by a connec-
tor. A connector is a mechanism connecting certain client
objects with certain server objects at the time the client
logs into the server. There are many different kinds of con-
nectors: some that connect classes and some that connect
class variables; there are those that connect class instance
variables; those that connect objects by name; and those
that connect objects by identity. Each type of connectors
allows a developer to specify that the client object is to be
manifested as a forwarder.

Getting Real

Jay Almarode

Using Smalltalk since 1986, Jay Almarode has built CASE tools,
interfaces to relational databases, multi-user classes, and query
subsystems. He is currently a Senior Software Engineer at
GemStone Systems Inc., and can be reached at almarode@slc.com.

Mechanisms for application
partitioning

Another mechanism to manipulate server objects on
the client is with replicates. A replicate is a copy of a server
object that resides on the client. Some or all of the state of
the server object is copied in the replicate, and when a
message is sent to a replicate, the execution of its behavior
takes place on the client. Using replicates requires that a
mapping be defined between classes on the client and
classes on the server. At its simplest, this mapping can
specify that a server class maps to a client class with the
same name. This is the default mapping. You can also spec-
ify more complex mappings as objects are translated
between client and server. This is done by reimplementing
the instVarMap method in the class of the replicate. This
method should return nested arrays, where each sub-array
contains an instance variable name and a specification of
how it should be mapped. This allows a developer to han-
dle reordering, renaming, or omission
of instance variables when an object
moves from one domain to the other.

A key consideration when using
replicates is the amount of synchro-
nization that occurs between the cli-
ent replicate and its corresponding
server object. There are messages
available to the application developer
to explicitly manage keeping the two
objects in sync. However, it is much
easier to let the interface layer that manages replicates be
responsible for keeping the state of client and server objects
in sync. In this way, a replicate always accurately reflects the
state of the server object (based on the current transaction’s
point of view), wherever the object is used in the appli-
cation. This level of synchronization, called full transparen-
cy, is configurable by class. To enable full synchronization
for a class, send it the message makeGSTransparent.

When replicates are used in full transparency mode,
then modifications to replicates are managed automati-
cally. When the application modifies a replicate, it is auto-
matically marked dirty and changes are flushed to the
server at the appropriate time. For example, modifica-
tions to replicates are flushed to the server before any
server behavior is executed or when the transaction is
committed. When other users modify and commit
changes to server objects, those changes are not seen in
the replicate until the current transaction is committed or
aborted. At this time, the replicate is eligible to have its
state updated from the server, a behavior called faulting.
Ordinarily, the replicate will not be faulted until it is next
accessed. However, this default behavior can be overrid-
den by implementing a method called faultPolicy for the
class of the replicate. This method should return #immedi-
ate if the replicate should be faulted immediately when
the next transaction begins. It is also possible to cause
additional application code to be executed before or after
the replicate is faulted by implementing a preFault and
postFault method.

An important consideration when programming with
replicates is how to control the replication of composite

objects (objects with nested subobjects). Some client ap-
plications may only need a portion of the state of the serv-
er object, so why send more to the client than is needed?
When a replicate is being instantiated from a server
object, an application wants to control which instance
variables are retrieved and in what form the objects refer-
enced by those instance variables are created (as for-
warders or replicates). In addition, if the instance variable
is assigned a replicate, the application may also want to
specify how many levels deep to replicate. To exercise this
control, a developer implements the replicationSpec
method for the class of the replicate. This method returns
nested arrays where each subarray contains the name of
an instance variable and a specification of how it is to be
instantiated. The developer has the option to specify
whether the instance variable is to be instantiated as a

replicate, a forwarder, or a stub (dis-
cussed later). If the instance variable
is to be created as a replicate, the
developer can specify a minimum or
maximum number of levels to rep-
licate as well. The following example
shows the implementation of the
replicationSpec method for class
Employee, where the name instance
variable is replicated, the address
instance variable is replicated to at

least level 2, and the department instance variable is creat-
ed as a forwarder.

classmethod: Employee

replicationSpec

“Return nested arrays specifying how Employees are to be
replicated.”

^ super replicationSpec ,
#((name replicate)
(address min 2)
(department forwarder))

In cases where not all of a composite object is copied into
the client, some placeholder object must take the place of
each object that remained on the server. This object, called
a “stub,” maintains information concerning its corre-
sponding object on the server. When a stub is sent a mes-
sage, it has the ability to create a replicate, replace the stub
with the new replicate, and then resend the message to the
replicate. This happens transparently to the end user, so
application code does not have to test for the presence of
a stub object. It is also possible to turn a replicate into a
stub object. This is desirable if you want to free the space
taken up by the replicate and its subobjects. You can do
this by sending the message stubYourself to a replicate.

The mechanisms just described can be utilized in sev-
eral ways to partition and fine-tune an application for
maximum performance in a client/server environment.
Developers can exercise greater control over where exe-
cution of object behavior takes place and how much data
is transferred to the client. `

`

February 1996 19

Modifications to
replicates are flushed to

the server before any server
behavior is executed.

The Smalltalk Report2

H
as Smalltalk passed its prime? Will it remain

relevent as we move to distributed and Web-
based applications? Clearly, if Smalltalk is to
prosper in its second quarter-century, it

must evolve to remain a language of choice for devel-
opers of corporate applications. The good news is that
the Smalltalk vendors are among the first out of the
starting gate with tools for supporting highly distrib-
uted applications and building live Web applications.
Here is a short preview of what’s available in the new
releases from the Smalltalk vendors and what’s in store
for the future. In upcoming issues of T S

R, we will endeavour to
explore both of these areas in
much more detail.

To date, Smalltalk has most
often been used in two-tier
client/server applications in-
volving server-based relational
database management systems.
As the trend toward three-tier
architectures and truly distrib-
uted applications accelerates,
Smalltalk must provide much
enhanced support for distributed
computing. There are many issues to be faced when
developing truly distributed applications. In a
Smalltalk development context, for example, there are
the issues of inspecting, debugging, and garbage col-
lection when objects are distributed across Smalltalk
images. In addition, new tools are required to assist
developers in determining how an application should
be distributed and how such an application should
be tuned for performance.

Both IBM (Distributed Smalltalk) and ParcPlace-
Digitalk (ServerWorks) plan to offer support for distri-
bution between Smalltalk objects residing in different
images and differing operating environments, as well
as access to object request brokers (such as DSOM in
the case of the current release of IBM Distributed
Smalltalk or HP Distributed Smalltalk’s CORBA-com-
pliant ORB) to provide access to non-Smalltalk
objects. IBM shipped its Distributed Smalltalk along
with the 3.0 release of VisualAge for Smalltalk in
November, while ParcPlace-Digitalk will ship the first
release of ServerWorks sometime this year. IBM (for
obvious reasons) and ParcPlace were slow off the

mark in support for OLE; Digitalk and VMark with
their Object Studio product have led the way. Now all
the vendors are promising enhanced support in the
near future.

The excitement generated by Java and similar tech-
nologies has reached fever pitch in the last few months
as organizations seek to realize the potential of
client/server software on the Internet. We can’t count
the number of times we have been asked: “What will
be the impact of Java on the use of Smalltalk?” The
implication in the question is that Java is somehow a
threat to Smalltalk’s very existence! We (and the

Smalltalk vendors, we are sure)
view the WWW as a marvelous
opportunity for Smalltalk to
demonstrate the power of the
marriage between object tech-
nology and the deployment vehi-
cle the Web provides. For people
in organizations with existing
Smalltalk applications who are
accustomed to the development
environment and class libraries
underlying all the Smalltalk
dialects, the move to Web-based

applications should be a fairly smooth transition.
Indeed, it will likely be quite some time before Java-
related technologies provide application development
environments with features equivalent to those of
Smalltalk. Moreover, there are plenty of opportunities
for synergy between Smalltalk-based Web technology
and Java.

Both IBM and ParcPlace-Digitalk have demonstrat-
ed web technology at recent shows. VisualWave from
ParcPlace-Digitalk, based on the VisualWorks
Smalltalk environment, is the first product to ship and
promises developers the opportunity to go beyond the
existing “brochure duplication” and “form-filling”
characteristics of most Web sites to provide highly
interactive applications giving the feel of a reactive
two-way conversation.

The beauty of Smalltalk is that by its very nature it
is highly extensible. While there are many challenges
to overcome, Smalltalk is well-positioned to provide
elegant transparent solutions to the challenges of the
future and, what’s more, to get there ahead of the
crowd. `

`

Editors’ Corner
Paul WhiteJohn Pugh

It will likely be
quite some time before

Java-related technologies
provide application

development environments
with features equivalent

to those of Smalltalk.

March-April 1996 1

Table of Contents
March-April 1996 Vol 5 No 6

Features
A performance challenge 4
Keith Piraino
Don’t assume Smalltalk isn’t fast enough for your whole application.The
performance gap can be narrowed to the point that it need not be a factor
in your technology selection—as this first-person account demonstrates.

A framework for multiple language support 12
William Hollings
Software applications today are sometimes required to support users who
communicate in a variety of languages. The author discusses the multiple
language support framework his team is developing in Visual Smalltalk.

Tactical patterns for the real world— 21
Instantiation patterns
Darrow Kirkpatrick
Creating competitive shrink-wrapped software for Windows led to the
development of these tactical patterns for working with domain models.
This series begins with a family of instantiation patterns.

Sequential key allocation strategies in Smalltalk 24
Dayle Woolston & Chris Kesler
The right approach for generating sequential keys depends on factors such
as system administrative policy, application features, and overall perfor-
mance expectations. A number of strategies are presented and discussed.

Managing Objects 16
The demo trap
Jan Steinman & Barbara Yates
Smalltalk’s legendary productivity is a two-edged
sword—corporate cultures that are used to thinking
“GUI is hard” may assume the project is done upon

seeing the first prototype, or may keep you “churning GUI.”

Getting Real 18
Tuning multi-user Smalltalk
Jay Almarode
Understanding the reading and writing characteristics of your
application and clustering objects that are frequently used together
can help streamline access in multi-user Smalltalk.

The Best of comp.lang.smalltalk 20
More principles of OO design
Alan Knight
Managers don’t do real work, delayed optimization is best, and other
“rules of life” that are equally applicable in the realm of OO
programming and design.

Departments
Editors’ Corner 2
Recruitment 29

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, monthly except in Mar–Apr, July–Aug, and Nov–Dec. Published by
SIGS Publications Inc., 71 West 23rd St., 3rd Floor, New York, NY 10010. © Copyright 1996 by SIGS Publications. All rights reserved.
Reproduction of this material by electronic transmission, Xerox or any other method will be treated as a willful violation of the US
Copyright Law and is flatly prohibited. Material may be reproduced with express permission from the publisher. Bulk rate U.S. postage
paid Lancaster, PA, permit 161. Canada Post International Publications Mail Product Sales Agreement No. 290386.

Individual Subscription rates 1 year (9 issues): domestic $89; Mexico and Canada $114, Foreign $129; Institutional/Library rates:
domestic $199, Canada & Mexico $224, Foreign $239. To submit articles, please send electronic files on disk to the Editors at 885
Meadowlands Drive #509,Ottawa,Ontario K2C 3N2,Canada,or via Internet to streport@objectpeople.on.ca.Preferred formats for figures
are Mac or DOS EPS,TIF,or GIF formats.Always send a paper copy of your manuscript, including camera-ready copies of your figures (laser
output is fine).

POSTMASTER: Send domestic address changes and subscription orders to: The Smalltalk Report, P.O. Box 5050, Brentwood, TN 37024-
5050. For service on current domestic subscriptions call 1.800.361.1279 or fax 615.370.4845. Email: subscriptions@sigs.com. For foreign
subscription orders and inquiries phone +44(0)1858.435302. PRINTED IN THE UNITED STATES.

Columns

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS Publications Advisory Board
Tom Atwood, Object Design
François Bancilhon, O2 Technology
Grady Booch, Rational
George Bosworth, ParcPlace-Digitalk
Jesse Michael Chonoles, Lockheed Martin ACC
Stuart Frost, SELECT Software
Adele Goldberg, ParcPlace-Digitalk
Thomas Keffer, Rogue Wave Software
R. Jordan Kriendler, IBM Consulting Group
Thomas Love, Consultant
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Cliff Reeves, IBM
Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

The Smalltalk Report
Editorial Board

Jim Anderson, ParcPlace-Digitalk
Adele Goldberg, ParcPlace-Digitalk
Reed Phillips
Mike Taylor, ParcPlace-Digitalk
Dave Thomas, Object Technology International

Columnists
Jay Almarode, GemStone Systems Inc.
Kent Beck, First Class Software
Juanita Ewing, ParcPlace-Digitalk
Bob Hinkle, Consultant
Tim Howard, FH Protocol, Inc.
Ralph E. Johnson, University of Illinois
Alan Knight, The Object People
Mark Lorenz, Hatteras Software, Inc.
Jan Steinman, Bytesmiths
Rebecca Wirfs-Brock, ParcPlace-Digitalk
Barbara Yates, Bytesmiths

SIGS Publications Group, Inc.
Richard P. Friedman, Founder, President, and CEO
Hal Avery, Group Publisher
John McCormick, Editorial Director

Editorial/Production
Elizabeth A. Upp, Managing Editor
Elisa Varian, Production Manager
Andrea Cammarata, Art Director
Kathleen M. Major, Sr. Production Editor
Sue Mycka, Desktop Designer
Margaret Conti, Advertising Production Coordinator
Shannon Smith, Editorial Production Assistant

Circulation
Elayne Glick, Circulation Director
Lawrence E. Hoffer, Marketing Manager
Byron Scarlett, Assistant Circulation Manager

Advertising/Marketing
Gary Portie, Advertising Manager, East Coast/Canada/Europe
Elisa Marcus, Advertising Manager,Central US
Michael W. Peck, Advertising Representative
Kristine Viksnins,West Coast Exhibit Sales
Sarah Olszewski, East Coast Exhibit Sales

212.242.7447 (v), 212.242.7574 (f)
Diane Fuller & Associates, Sales Representative,West Coast

408.255.2991 (v), 408.255.2992 (f)
Wendy Dinbokowitz, Promotions Manager for Magazines

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Senior Accounting Manager
Bibi Budhram, Accounts Payable

Publishers of JOURNAL OF OBJECT-ORIENTED
PROGRAMMING, OBJECT MAGAZINE, C++ REPORT,
THE SMALLTALK REPORT, THE X JOURNAL, REPORT
ON OBJECT ANALYSIS & DESIGN, JAVA REPORT,
OBJECT CURRENTS (ONLINE), OBJECT EXPERT (UK),
and OBJEKTSPEKTRUM (GERMANY)

C
ov

er
 il

lu
st

ra
ti

o
n

 b
y

tk
 in

 b
lu

es

http://www.sigs.com The Smalltalk Report4

W began looking into Smalltalk we
had quite a few skeptics. One challenged me to
match the performance of the most time-consum-

ing portion of an existing C-based application. At first, I
resisted—I knew that Smalltalk was not as fast as C but felt
that its’ many other strengths greatly outweighed this
weakness. I did my best to steer this effort toward a more
complex problem that would better demonstrate the
strong modeling capabilities of Smalltalk.

It became clear, however, that performance concerns
would torpedo Smalltalk adoption unless these fears were
met head on. I accepted the performance challenge and
this article describes my experience in trying to meet it.

The problem was reading data from binary files (pro-
prietary structure) and aggregating it into a multi-dimen-
sional symmetrical matrix.* I used VisualWorks 2.0 running
under Microsoft Windows 3.11.

DICTIONARY
I decided to use a Dictionary to represent my matrix. The
keys are the cell coordinates and the values are the cells.
I defined the matrix as follows:

Object subclass: #SymmetricalMatrix
instance variables: ‘dimensionSizes initialCellValue

cellDictionary’

dimensionSizes is a collection with the number of elements
in each dimension. initialCellValue contains the value to
initialize each cell to. cellDictionary is the actual Dictionary
of cells. I added a class method to answer a new instance
and an instance method to create the actual matrix:

SymmetricalMatrix class>>withSizes: aCollection
initializeCellsTo: aValue

^(self new)
dimensionSizes: aCollection copy;
initialCellValue: aValue;
build; yourself

SymmetricalMatrix>>build
self cellDictionary: Dictionary new

For example, “SymmetricalMatrix withSizes: #(2 3 4) initialize

CellsTo: 0” would answer a 2x3x4 matrix where the default
value of all 24 cells is zero.

To access the cells we implement #at:, #at:put:, and
#at:incrementBy. The first two selectors should look famil-
iar. The last is a convenience method to increment the
value of a cell. In all three cases the at: parameter is a col-
lection representing the coordinates of the cell. In our
2x3x4 example “at: #(1 1 1)” will answer the first cell and
“at: #(2 3 4)” will answer the last cell. Here is the imple-
mentation of the #at: method:

at: aCollection
^self cellDictionary at: aCollection

ifAbsent: (self initialCellValue)

Dictionary’s #at:ifAbsent: method is used to answer the cell
at the coordinates or return our initialCellValue if the cell
doesn’t exist yet. From this the #at:put: and #at:incre-
mentBy methods are trivial. The only catch is to make sure
we copy aCollection in #at:put: because if the caller modi-
fies it our dictionary key will change. Here is the code:

at: aCollection put: aValue
self cellDictionary at: (aCollection copy) put: aValue

at: aCollection incrementBy: aValue
self at: aCollection put: (self at: aCollection) + aValue

That’s it. Other than accessor methods the code shown is
a complete implementation of the matrix. It works, but
how fast is it?

The test consisted of creating a three-dimensional ma-
trix and calling #at:incrementBy: over a million times. The
coordinates to use were retrieved from binary files in a
proprietary format.†

The cells were initialized to zero and always increment-
ed by one. If the C program took X amount of time my first
cut in Smalltalk took over 4X (i.e., 4 times slower). A profile
of the code showed that most of the time was spent in
Dictionary code—#at: and #at:put:. Leveraging the Diction-
ary class gave me a solution very quickly but there was no
room for improvement so I turned to another approach.

LINEAR
The C application uses a linear array to implement the
matrix. A 2x3x4 matrix, for example, is represented by

A performance challenge

Keith Piraino

* The current C application can handle up to 6 dimensions. Symmet-
rical meaning that the number of elements in a dimension is con-
stant across all combinations of the other dimensions. If, for exam-
ple, Region and Brand were two of the dimensions in a matrix, the
number of brands can’t change between regions.

† Because I’m not presenting the code to “feed” the matrix, all times
given are after that section of code was already optimized. In reality,
both the matrix and supporting code were optimized simultaneously.

The Smalltalk Report6

an Array with a size of 24. Given the coordinates of the cell
we need to calculate the index in the linear array. One key
optimization here is to pre-compute dimension ranges.
The range is the number of cells we pass when the dimen-
sion index changes. It’s calculated by taking the product
of the inner dimensions. In a 2x3x4 matrix the range of the
first dimension is 12 (3 * 4), the range of the second is
4 and the range of the last is 1. For example, the index of
#(1 1 1) is 1 and the index of #(2 1 1) is 13. The difference
between them is the range for the first dimension: 12.
The code following assumes that cellArray and dimension
Ranges are instance variables containing the Array of
cells and the Array of dimension ranges, respectively.
Initializing these variables is left as an exercise for the
reader.

at: aCollection incrementBy: aValue
| index |
index := self cellIndexFor: aCollection.
self cellArray at: index

put: (self cellArray at: index) + aValue

cellIndexFor: aCollection
| index |
index := 1.
aCollection with: self dimensionRanges do:

[:eachCoordinate :eachRange |
index := index + ((eachCoordinate - 1) * eachRange)].

^index
At 2.5X, the linear matrix was an improvement over the
dictionary approach but it was still pretty far off. As I
would expect, the profiler showed almost all the time
being spent in #cellIndexFor:. Apparently, this calculation
was a lot slower in Smalltalk than in C. Other than caching
dimension ranges, I don’t know of any other optimiza-
tions to this algorithm. I still wanted to meet the challenge
so I moved on yet again.

TREE
To avoid the cost of calculating an index, I decided to
implement a matrix as a tree structure where intermedi-
ate nodes are a kind of index but the actual cells are all in
leaf nodes. Figure 1 shows an Object Explorer picture of a
matrix created via the following code fragment:

matrix := TreeMatrix withSizes: #(2 3 4) initializeCellsTo: 0.
matrix at: #(1 1 2) put: 5.
matrix at: #(2 3 4) incrementBy: 1.

The code to create the initialized tree structure is left as an
exercise for the reader. To access a particular cell, we must
traverse the tree to get to the correct leaf node. The
#leafNodeContaining: method answers the leaf node con-
taining the cell defined by the given coordinates. From
there it’s a simple #at:put: to the Array. Here’s the code:

at: aCollection incrementBy: aValue
| leaf |
leaf := self leafNodeContaining: aCollection.
leaf at: aCollection last

put: (leaf at: aCollection last) + aValue.

leafNodeContaining: aCollection
^(aCollection copyFrom: 1 to: (self numDimensions - 1))

inject: (self rootNode) into: [:node :each | node at: each]

numDimensions
^self dimensionSizes size

The TreeMatrix reduced the time to about 2.1X: only slight-
ly better than the linear approach. Having run out of
ideas, I did what I should have done earlier—looked
closely at the profile results. Most of the time was spent in
#leafNodeContaining:, but not performing the #at: that tra-
verses the tree. There was some overhead in #copyFrom:to:
but most of the time was spent in the #do: loop‡called by
#inject:into:. The overhead of looping was far greater than
what I was actually doing in the loop!

I went back to LinearMatrix and, sure enough, most of
the time was spent in #with:do:. The #with:do: method
creates a Stream to traverse the second collection. That oc-
cupied some time, but again, most of the time was spent
in the #do: loop. I was dead wrong when I assumed that
calculating the cell index, the addition and multiplication
necessary was the problem. With this revelation I could

have returned to optimizing LinearMatrix but I decided to
stick with TreeMatrix because it was slightly faster even
discounting the #do: impact.

LOOP UNROLLING
If the problem is looping, I figured why not eliminate the
loop? The #leafNodeContaining: method can easily be opti-
mized for a particular number of dimensions. One way to
do this would be to create a different subclass for each
number of dimensions and override #leafNodeContaining:
in each. A more manageable approach is to use blocks.
When the matrix is instantiated, a block optimized for
that number of dimensions is assigned to the instance
variable leafAccessorBlock. Given the cell coordinates and
the root node this block goes directly to the leaf node via
a series of #at: messages. Listed next are the one-, two-,
and three-dimensional blocks:

[:coord :root | root]
[:coord :root | root at: (coord at: 1)]
[:coord :root | (root at: (coord at: 1)) at: (coord at: 2)]

Modifying #at:incrementBy: to use the leafAccessorBlock
dramatically reduced the time to about 1.1X. A fresh pro-
file showed that doing “aCollection last” twice to access the
index of the cell in the leaf node was now taking a notice-
able amount of time. I was able to take advantage of the
fact that the position of this last coordinate is known at
the time the matrix is instantiated. After adding an in-
stance variable to cache the number of dimensions in
numDimensions, at:incrementBy: was changed to:

at: aCollection incrementBy: aValue

A PERFORMANCE CHALLENGE

‡ I use the term “loop” somewhat loosely to also include enumerating
the elements of a collection.

| leaf lastCoordinate |
leaf := leafAccessorBlock value: aCollection

value: self rootNode.
lastCoordinate := aCollection at: self numDimensions.
leaf at: lastCoordinate

put: (leaf at: lastCoordinate) + aValue

This brought the time down to 0.9X. Actually, a little faster
than the C code! Success!!

I’m not suggesting that Smalltalk is faster than C in a-
head-to-head comparison. There are mitigating factors§

that prevent me from making that claim even in this case.
The real point is that the performance gap can be narrowed
to the point where it will only rarely be the deciding factor
in technology selection.

To generalize, this idea of “unrolling loops via blocks” is
useful in the following circumstances:

• Looping code takes more time than contents of loop
• Number of iterations varies but the maximum is rela-

tively low
• Contents of loop relatively simple

It’s fine for the problem at hand but the last two con-
straints limit the usefulness of this technique. If the prob-
lem involved 100 iterations with even 5 lines of code in the
loop, this approach becomes completely unwieldy. At this
point I released my findings and declared success.
Although I wasn’t completely satisfied with my solution, I
didn’t have any more time to spend on it.

A BETTER LOOP?
Several months later I returned to this problem. I reviewed
back issues of the Smalltalk Report looking for any perfor-
mance information regarding looping. I found the answer
I was seeking in an article on performance by Alan Knight.1

It turns out that certain kinds of blocks are inlined
and others aren’t. These optimizations are vendor specif-
ic but can have a major impact. In LinearMatrix I used
#with:do: for looping and in TreeMatrix I used #inject:into:.
Neither is inlined and both call #do: which is also not in-
lined. In VisualWorks both #whileTrue: and #to:do: are in-
lined. To take advantage of this, I rewrote #leafNode
Containing: as shown:

leafNodeContaining: aCollection
| node |
[node:= self rootNode

1 to: self numDimensions - 1 do:
[:i | node := node at: (aCollection at: i)].

^node

I tested this and received results similar to unrolling the
loop: 0.8X. The only cautionary note here is to avoid add-

ing parentheses to improve readability. If you change this
code to read “(1 to: self numDimensions -1) do:” it will run
much slower. Why? Because instead of the compiler rec-
ognizing #to:do: and inlining, it instantiates an Interval via
#to: and then sends the Interval the #do: message. I was
actually doing this in some of the code that feeds data to
the matrix. When I removed the parentheses the time was
further reduced to 0.5X (i.e., twice as fast as the C code!!)

Optimizing the loop via #to:do: is better than unrolling it
for two reasons: (a) it is more generally applicable; (b) per-
haps more important, the code is closer to the original
intent and, hence, much more readable. In fact, although
slightly less concise, the #to:do: version may be more easi-
ly understandable than my original version that used
#copyFrom:to: and #inject:into:.

Letting go of code and ideas you’ve invested in isn’t al-
ways easy. More than once I’ve seen developers refuse to
do it. Sometimes they think they’ve gone too far to back
off. This is understandable but usually misguided in light
of long-term maintenance costs and the malleability pos-
sible with newer tools. A less defensible cause of this re-
fusal is emotional attachment. People get excited about
their first idea (which is good) but sometimes become
blind to newer and better ones (which is bad). If you write
something you think is really cool but you’ve since found
a simpler more maintainable approach—file out the cool
code and play with it in your spare time. Don’t leave it in a
production application.

Good systems come, in part, from a willingness to
throw away some of your code. Vendors can provide the
tools to rework code and enlightened management can
provide the time but it simply doesn’t work without peo-
ple with the right attitudes.

MISCELLANEOUS
In the course of optimizing your code be careful not to
break it. An approach that works for me is to try out opti-
mizations in subclasses. Once you finish optimizing you
can decide whether or not to consolidate. Next is the hier-
archy of Matrix classes I ended up creating:

AbstractSymmetricalMatrix
DictionaryMatrix
LinearMatrix

LinearMatrixFastLoop
TreeMatrix

TreeMatrixUnrollLoop
TreeMatrixFastLoop

For the particular test I used, TreeMatrix gave the best per-
formance. When I tried a test with more dimensions, how-
ever, LinearMatrix performed better than TreeMatrix. The
best approach might be to instantiate the optimum Matrix
using the Bridge pattern2 in the same way that the Visu-
alAge Collection classes are implemented.3

In the code that feeds data to the matrix I found blocks
useful as a way to avoid reevaluating conditionals in tight

The Smalltalk Report8

A PERFORMANCE CHALLENGE

http://www.sigs.com

§ My Smalltalk version has only a subset of the C functionality.This means
that the C program must pass through a lot more conditionals and code
even for my simple test. Compounding this is the fact that Smalltalk
is running in 32 bits (via win32s) and the C code is a 16 bit app.

loops. If there are more than two possibilities, this can
help eliminate case-like statements.

One area where I didn’t need to worry about perfor-
mance was reading from the binary files. ExternalRead
Stream seems to be plenty fast. My only problem was that
methods like #nextLong assume a Little-Endian byte order
and my data is Big-Endian. Correcting this wasn’t a big deal
but it’s ironic since VisualWorks itself seems to store
Integers in the image in Big-Endian order.

CONCLUSION
Smalltalk’s expressive nature, extensive class library, and
interactive environment greatly improve the most impor-
tant performance measure—developer productivity. You
can quickly create a solution to the problem. The combi-
nation of hardware advances (faster, more memory) and
Smalltalk vendor advances (dynamic compilation, faster
library code) mean that you may never have to worry
about performance. Don’t assume Smalltalk isn’t fast
enough for your whole application.

If performance is an issue, use a profiler to locate the
small percentage of code that needs work. It’s easy to do
and works a lot better than intuition. Always keep in mind
the maintenance cost of tweaking code for performance.
You might want to consider trying another algorithm/de-
sign approach instead. This will often give you greater
performance leverage and more understandable code. It’s
also a lot easier to do in Smalltalk than in other environ-
ments. Again, don’t resist throwing code away—it’s an
important part of the process.

References
1. Knight, A. More performance tips, T S R 4(2):

19-20,1994.
2. Gamma, E. et al. D P: E R

O-O S, Addison-Wesley, Reading, MA, 1995.
3. Lalonde, W. and Pugh, J. Communicating reusable designs via

patterns, JOOP 7(8): 69-71, 1995.

Keith Piraino can be reached at keith_piraino@npd.com.

`
`

The Smalltalk Report

Figure 1. A 2x3x4 TreeMatrix.

TreeMatrix

Array

dimensionSizes

initialCellValue

rootNode

1

2

#(0 5 0 0)

#(0 0 0 0)

#(0 0 0 0)

#(0 0 0 0)

#(0 0 0 0)

#(0 0 0 1)

Array
1

2

3

Array
1

2

3

http://www.sigs.com The Smalltalk Report12

F applications, communicating
with the user in a single language (usually English) is
sufficient. However, some applications, such as

those supporting customers in an urban banking envi-
ronment, must communicate with users from diverse
language backgrounds. These applications must be
designed to support dynamically changing languages at
the user interface. For example, Figure 1 illustrates a sin-
gle test window that has been opened in both English
and French as determined by the user’s language prefer-
ence selection.

I refer to this concept of dynamic language selection as
multiple language support (MLS), to differentiate it from
the more common national language support (NLS)
which assumes the use of only a single language. This
article describes parts of the multiple language frame-
work that our team at the Toronto-Dominion Bank is
developing using Digitalk’s Visual Smalltalk.

THE LANGUAGEMANAGER CLASS
Central to the MLS framework is a subclass of NationalLang-
uageSupport called LanguageManager. A singleton instance
of LanguageManager is plugged into the existing global vari-
able NationalLanguage at application start up time.

In addition to the responsibilities it inherits, Language-
Manager adds the capability to manage language files.
Each language file contains the information required to
translate and format all on-screen text within the appli-
cation into a particular language. We can incrementally
add new languages simply by distributing new language
files without redeveloping the application.

The LanguageManager singleton manages these language
files (with help from ObjectFiler) via two public methods:

• LanguageManager>>getSupportedLanguages. Answers a
collection of language names that are currently sup-
ported by the application. During application startup,
the LanguageManager singleton scans the directory for
all language files (e.g., *.lng) to build this collection of
language names.

• LanguageManager>>setLanguage: aLanguageName. Sets
the current language to the one identified by aLanguage
Name. This method loads the contents of the appropri-
ate language file from disk. This message is typically
received from a user preferences selection tool.

Each language file contains a dictionary to translate wid-

get labels, menu labels, and other strings. It also contains
various data formatting information such as the decimal
separator character and date formats. Once loaded from
file, this information is maintained in instance variables
within the LanguageManager singleton. In particular, the
instance variable stringDictionary is populated with the
dictionary of translated strings.

The keys for stringDictionary are language-neutral
string abbreviations. In the case of widgets and menu
items, the label text that was assigned to the widget or
menu item at GUI, design time is used as the key (e.g.,
‘CloseButn’). In the case of other displayable strings, such
as those displayed in message boxes, the key is a lan-
guage-neutral abbreviation such as ‘ErrMsgComm073’.

Typically, the language dictionary for each language is
created and maintained in a spreadsheet. It is read into
the development image and saved into the language
object file using additional LanguageManager methods.

Some points regarding performance are in order here.
If the stringDictionary gets too big, the dictionary lookup
times may become unacceptably slow. Also, the use of
Strings as dictionary keys is less efficient than using
Symbols as keys to an IdentityDictionary.

One solution to the first problem is to factor the dictio-
nary into smaller dictionaries. Our production applica-
tion uses three dictionaries within the LanguageManager
singleton, one each for widget labels, menu labels, and
general strings. Other methods of factoring are possible,
however for simplicity, the framework described here has
only one language dictionary.

With respect to the second issue, the choice of Strings
as keys in stringDictionary was motivated by the fact that
the GUI environment and tools assume the use of Strings
for the names and labels of widgets and menus. A design
using Symbols would require hacking the GUI environ-
ment and tools. Such a design would also have to avoid
using the String>>asSymbol method, which performs its
own (larger and longer) string-keyed dictionary look up.
The String keys have proved to be fast enough in our ap-
plication, though this remains an area for potential per-
formance improvement.

TRANSLATING STRINGS
The primary collaborator with LanguageManager is the
String class itself. Strings respond to the asMLSString mes-

A framework for
multiple language support

William Hollings

sage and simply delegate the translation work to the
LanguageManager singleton as follows:

String>>asMLSString
“Answers my translation in the current language.”

^NationalLanguage translateString: self

which is handled by LanguageManager as:

LanguageManager>>translateString: keyString
“Answer the translation of the string keyString.”

^self stringDictionary at: keyString ifAbsent: [
keyString]

Notice that the original key string is returned if a transla-
tion string could not be found. This allows the application
to work even if some or all translations are missing from
the language file. This comes in handy during develop-
ment when the GUI and language files are in a state of flux.

TRANSLATING WIDGETS
The translation of widgets and menu labels takes place
during the opening of a window. We added the following
method to the TopPane class:

TopPane>>translateWindow
“Tell myself, all my widgets, and my menu bar to
translate themselves.”

self translate.

self allChildrenDo: [:each | each translate].
self menuWindow translate.

which sends the translate message first to itself, then to all
of the widgets contained on the window, and then to the
window’s menu bar.

The TopPane>>translateWindow message is sent after the
widgets and menus have been created as objects but be-
fore they have been made visible. The question of which
object sends this message depends on which GUI builder
is being used. Under WindowBuilder, a good place to send
this message is in the preInitWindow method of the View-
Manager subclasses. Under PARTS, a subclass of PARTS-
WindowPart can be created to override the open method so
that the window translates itself before opening:

MLSPARTSWindowPart>>open
“Translate myself before opening.”

self translateWindow.
^super open

In our MLS framework, all objects respond to the translate
message. The default method (defined in Object) does
nothing. All widgets and menus with a displayable label
override this default method to specifically translate their
label text. For widgets and windows this is done in the
ControlPane and TopPane classes, respectively, and is the
same for both classes:

TopPane>>translate
ControlPane>>translate

“Translate my label according to the current language.”

self label: (self label asMLSString).

In this method, the widget retrieves its existing language-
neutral label string and tells it to translate itself. The
resulting translated string is then assigned back to the
label. To stop nil labels from breaking the system we also
added an UndefinedObject>>asMLSString method which
simply answers nil.

TRANSLATING MENUS
Translating menu labels is a little more complex because
of the need to register menu selection accelerator keys
(e.g.,- Ctrl+S), which may be different for each language.

Recall that the TopPane>>translateWindow method sends
the translate message to the menu bar. In a non-PARTS
application, the menu bar is an instance of MenuWindow
and it simply passes the message on to its component
menus:

MenuWindow>>translate
“Tell each of my menus to translate itself.”

self menus do: [:each | each translate].

The Menu>>translate method first translates its own title
(e.g., File, Edit, etc.) and then cycles through each of its

March-April 1996 13http://www.sigs.com

Figure 1. Illustration of a single test window opened in both English and
French. Notice that even the menu accelerator keys can sometimes be
different.

menu items telling each menu item to translate itself
before setting the accelerator key for the menu item:

Menu>>translate
“Translate my title, then translate my menu items.”

self title: (self title asMLSString).
self translateItems.

Menu>>translateItems
“Tell each menuItem to translate itself and then set its
accelerator key.”

self items do: [:each |
each translate.
self setAccelKeyOf

From here, the MenuItem>>translate method translates its
own label and then tells any submenu (which would be an
instance of Menu) to translate itself.

MenuItem>>translate
“Translate my label text and if I have a submenu,
translate it.”

self label: (self label asMLSString).
self submenu translate.

Note that because the default implementation of the
translate method in Object does nothing, this method will
work correctly even if the submenu is nil (i.e., there is no
submenu).

Finally, the Menu>>setAccelKeyOf: method is where
things get a little complicated and algorithmic. This meth-
od extracts the accelerator substring from the menu item
label (e.g., ‘Ctrl+S’) and then parses the components of this
substring to convert them into a key code and bit flags.
These are in turn inserted into an array of accelerators that
is maintained by the Menu instance. This code is as follows:

Menu>>setAccelKeyOf: mItem

| lbl tabIndx accelString itemIndx bits bitsString key
keyString |

(lbl := mItem label) isNil ifTrue: [^self].
(tabIndx := lbl indexOf: Tab) > 0 ifFalse: [^self].
accelString := ReadStream on: (lbl copyFrom: (tabIndx

+ 1) to: lbl size).
accelString isEmpty ifTrue: [^self].
itemIndx := self items indexOf: mItem ifAbsent: [^self].
bitsString := accelString upTo: $+.
keyString := accelString upTo: $+.
keyString first isDigit

ifTrue: [
key := 0.
1 to: keyString size do: [:i |

key := key * 10 + (keyString at: i) digitValue].
bits := AfVirtualkey]

ifFalse: [
key := keyString first.
bits := AfChar].

The Smalltalk Report14 http://www.sigs.com

SIGS Publications, Inc., 71 West 23rd Street, 3rd Floor, New
York, NY 10010; 212.242.7447; Fax: 212.242.7574

ARTICLE SUBMISSION

To submit articles for publication, please contact:
John Pugh & Paul White, Editors, 885 Meadowlands Dr.#509,
Ottawa,Ontario,K2C 3N2 Canada;
email: streport@objectpeople.on.ca

PRODUCT REVIEWS AND ANNOUNCEMENTS

To submit product reviews or product announcements,
please contact the Editors at the address above.

CUSTOMER SERVICE

For customer service in the US, please contact PO Box
5050, Brentwood, TN 37024-5050; 800.361.1279;
Fax: 615.370.4845; in the UK, please contact Subscriptions
Department, Tower Publishing Services, Tower House,
Sovereign Park, Market Harborough, Leicestershire, LE16
9EF, UK; +44.(0)1858.435302; Fax: +44.(0)1858.434958

SIGS BOOKS

For information on any SIGS book, contact: Don Jackson,
Director of Books, SIGS Books, Inc., 71 West 23rd Street,
New York, NY 10010; 212.242.7447; Fax: 212.242.7574;
email: donald_jackson@sigs.com

SIGS CONFERENCES

For information on all SIGS Conferences, please contact:
SIGS Conferences,71 West 23rd Street, 3rd Floor, New York,
NY 10010; 212.242.7515; Fax: 212.242.7578;
email: info@sigs.com

BACK ISSUES

To order back issues, please contact: Back Issue Order
Department, SIGS Publications, 71 West 23rd Street, 3rd
Floor, New York, NY 10010; 212.242.7447; Fax: 212.242.7574

REPRINTS

For information on ordering reprints, please contact:
Reprint Management Services, 505 East Airport Road, Box
5363, Lancaster, PA 17601; 717.560.2001; Fax: 717.560.2063

ADVERTISING

For ad information for any SIGS publication, please contact:
East Coast/Europe: Gary Portie
Central US: Elisa Marcus
Recruitment: Michael Peck
Exhibit Sales, West Coast: Kristin Viksnins
Exhibit Sales, East Coast: Sarah Olszewski
212.242.7447; Fax: 212.242.7574
email: sales@sigs.com
West Coast: Diane Fuller
408.255.2991; Fax: 408.255.2992
email: dhfsigs@hooked.net

SIGS HOME PAGE

Access the SIGS Home Page at: http://www.sigs.com.

INFO@SIGS

(bitsString includes: $C) ifTrue: [bits := bits |
AfControl].

(bitsString includes: $A) ifTrue: [bits := bits | AfAlt].
(bitsString includes: $S) ifTrue: [bits := bits | AfShift].
accel at: itemIndx put: (self accelArray: key accelBits: bits).

Although all of the Menu and MenuItem methods described
apply to both PARTS and non-PARTS development, the
structure of the menu bar is slightly different under PARTS.
PARTS keeps the menu titles separate from the actual
menus, and the Menu instances are not attached to the
PARTSMenuBar (a subclass of MenuWindow) instance until
immediately before the window is opened. As a result,
PARTSMenuBar requires a different translate method:

PARTSMenuBar>>translate
“Tell each menu title and Menu to translate itself.”

self children do: [:each | each translate].
self partApplication componentDictionary

do: [:each |
each isPARTSMenuPart

ifTrue: [each menuObject translateItems]].

This method first translates the menu titles (accessed via
self children). It then locates each instance of Menu in the
PARTS application controlling the window and tells each
of them to translate their menu items.

Incidentally, don’t use PARTSMenuBar>>translate as an
example of good programming practice. In a production
application, we should add methods to both PARTS-
Application and PARTSMenuPart to reduce the coupling in
the PARTSMenuBar>>translate method. Currently, this
method must know that the PARTSApplication has a compo-
nentDictionary that contains instances of PARTSMenuPart,
which in turn holds on to instances of Menu. I cheated a bit
here to reduce the amount of code required for this article.

TRANSLATING MESSAGE BOX STRINGS
Because any string can be translated, we created a new
message box that accepts language-neutral abbreviation
strings instead of raw text. These are then translated into
the current user language. Therefore, instead of coding
the following:

MessageBox warning: ‘This action will destroy the
known universe.’.

we would code:

MLSMsgBox warning: ‘WarnUniverseByeBye’

which would be translated via String>>asMLSString before
the message box was displayed.

Unfortunately, it is not sufficient to simply create
MLSMsgBox as a subclass of MessageBox because that class
relies on native OS message boxes, which use their
own text for the ‘Yes’, ‘No’, ‘OK’ and ‘Cancel’ buttons. We
built MLSMsgBox (and other utility windows such as
MLSPrompter) from scratch.

OTHER ISSUES
The format of numbers displayed as on-screen text or
in entry fields varies from language to language (e.g.,
$1,000.00 is displayed in some languages as 1.000,00$).
To handle this, we have added methods such as
Number>>asMLSString which formats the number with the
appropriate “thousands” and decimal separators.

For Help files, we maintain a separate Help file for each
supported language. When a new language is selected the
LanguageManager singleton renames the Help files so that
the one associated with the newly selected language will
be used by the Help system.

Finally, I have certainly not exhausted the issues
surrounding full MLS support in this brief article. The
framework described does not translate the text on any
window that is already open. This would involve tagging
all menu components with a name and rebuilding the
menu accelerator key tables on the fly. I also did not ad-
dress the formidable challenge of supporting text input
in multiple languages, which touches on issues as
diverse as physical keyboards and database storage.
These framework extensions are left as an exercise for
the reader.

William Hollings is a Smalltalk architect and consultant in Toronto.
He is currently helping the Toronto-Dominion Bank devel-
op brokerage and banking applications. He can be reached at
hollings@inforamp.net.

`
`

March-April 1996 15http://www.sigs.com

March-April 1996 21http://www.sigs.com

B code lies a set of important issues
that must be mastered to ship a product out into the
real world of paying endusers. This article is the first

in a three-part series that deals with efficiently imple-
menting and managing domain models using patterns
discovered in the course of creating engineering products
for numerical modeling.

Domain models are the fundamental objects that rep-
resent the business logic of an application and store the
state underlying the user interface. The patterns present-
ed in this series of articles form a family of generic
approaches for working with these domain models: set-
ting their attributes, validating them, presenting informa-
tion about them, and optimizing them for size and speed.
Each of these patterns represents a generic solution that
we have applied over and over during the creation of our
engineering products.

Many of these patterns arose out of the need to create
shrink-wrapped software that would be competitive in
the resource-constrained Windows environment. I call
these patterns tactical because they operate at the class or
method level to solve implementation, not strategic or
architectural, problems.

Here, we consider a family of instantiation patterns—
patterns that aid in creating or initializing domain objects.

INTERIOR DECORATOR (MIX-IN STATE)
Problem: How do you share a set of useful behaviors that
may be selectively needed throughout a family of classes
in a broad hierarchy without using multiple inheritance?

Motivation: You are developing an application where
many of the objects need common behavior for main-
taining a label. However, not every kind of object needs
this label behavior. You implement the methods for main-
taining labels in the top-level class, referencing the label
attribute via an accessor method.

Object subclass: #AbstractDomainModel
instanceVariableNames:’’
classVariableNames:’’
poolDictionaries:’’

label
“Subclasses must provide access to label state to
enable label behavior.”

^self implementedBySubclass

reportOn: aStream
“Implement a simple reporting mechanism. Requires
that label behavior be enabled by subclasses.”

aStream
nextPutAll: self label;
nextPutAll: self results

You then add label instance variables to only those class-
es that need labels.

AbstractDomainModel subclass: #ConcreteDomainModel
instanceVariableNames: ‘label’
classVariableNames:’’
poolDictionaries:’’

label
“Answer a string, the object’s label. This method
provides the state needed to enable inherited label
behavior.”

^label

Applicability: This pattern is for use in single-inheritance
environments where the only other implementation
choice would be a proliferation of redundant subclasses
or methods. It requires that the classes needing to share
behavior have a common parent class or that you intro-
duce one. Use this pattern when many classes don’t need
all the possible behaviors and some need none. Each
behavior requires some state to support its implementa-
tion. Interior Decorator lets you avoid the size penalty of
adding unused state throughout the entire hierarchy.

Solution: Create a fat interface with optional state: Place
all the methods to support the required behavior high in
the hierarchy in abstract classes. Allocate the state that
supports the behavior as needed low in the hierarchy in
concrete classes.

Implementation: This pattern requires the use of accessor
methods to encapsulate the references to instance vari-
ables that are only allocated in concrete classes. Typically,
you enable a desired behavior by adding instance variables
to the class definition and implementing these accessors.

Consequences: This pattern trades off small amounts of
state or instance variable redundancy in the leaves of an
inheritance hierarchy to share behavior and avoid code
redundancy. Note that this pattern works against type

Tactical patterns for the real
world: Instantiation patterns

Darrow Kirkpatrick

safety: It is possible to send a message to an object requir-
ing a behavior that is present in the class but has not been
enabled with the requisite state, resulting in a walkback in
a low-level abstract accessor.

Related Patterns: This pattern is like Decorator1 in that it
appears to add selective, small behaviors to a class.
However, the behaviors are already present in the parent
class and it is the addition of storage for related state that
enables them. Interior Decorator does not require repli-
cating the decorated object’s public interface in a separate
decorator class and does not pay the cost of an extra level
of delegation through the decorator.

EPITOME (ATTRIBUTE FACTORY)
Problem: How do you consolidate and share the default
values for an object’s attributes?

Motivation: You are designing a domain model whose
behavior requires certain critical initial values that the
user may edit or optionally return to factory defaults. You
do not wish to duplicate these initial values throughout
the code so you embed them in a single method.

Applicability: Use this pattern when the default values for
a domain object’s attributes may be referenced in several
places: for example, in accessors for lazy initialization, in
an initialize method, or in a method that resets to factory
defaults. We have found this pattern is most useful for
high-level global or project options. In certain low-level
objects that must be instantiated and accessed quickly,
this pattern may be a performance bottleneck.

Solution: Create a class method that answers a dictionary
with one association per attribute, where the key is the
symbol for the attribute’s accessor and the value is the
object that should be the default value of the attribute.
Have all references to the attribute’s default retrieve the
value from this default attribute map.

Implementation: This should be a private method.

attributeDefaultMap
“Answer a dictionary, the default attribute values for
instances of this class.”

^IdentityDictionary new
at: #errorMessage put: String new;

at: #flags put: 0;
at: #label put: ‘Element’;
yourself

Note: If subclasses add many attributes, allocating a larg-
er initial dictionary can offer a substantial performance
optimization.

Consequences: Building the Epitome map dynamically
and accessing it attribute by attribute can be very expen-
sive. The map could be built when code is loaded and
cached in a class variable, otherwise it should be cached

in a temporary variable when used by clients. A benefit of
using this pattern, instead of embedding constant default
values inside lazy-initializing accessors, is that the initial
state of the object is available for review in one method
rather than being spread out over many methods. Note
that this pattern does not prevent the use of lazy-initial-
ization, it simply moves the values elsewhere.

Related Patterns: An alternative to this pattern is to keep
a constant-valued Prototype object available to the class at
runtime and use it to seed the initial values of instances.
Epitome is essentially a way to build and answer the
Memento for that Prototype in code. The benefit of using
Epitome is that you do not need to implement mecha-
nisms to manage a Prototype object; the drawback of the
pattern is slower performance.

ACTUATOR (INITIALIZING SETTER)
Problem: How do you convert a constant attribute of an
object to one that can vary during the lifetime of the object?

Motivation: You have defined a domain model class that
is initialized with a diameter. During initialization, the
model must size other parameters based on the initialized
diameter, like this:

initialize
“Initialize instances to default values.”
diameter := 10.
self sizeFittings.

Later, you decide to modify the domain model so that
clients can change its diameter at runtime. To accomplish
this you provide a setting accessor method and move the
dependent sizing code from the domain model’s initial-
ization method to the new accessor:

diameter: aFloat
“Set the diameter of this object to the passed floating
point value and execute dependent actions.”

diameter := aFloat.
self sizeFittings.

You designate the new accessor for public use by clients
when they wish to change the diameter at runtime as well
as modifying the domain model’s own initialization
method to use it:

initialize
“Initialize instances to default values.”
self diameter: 10.

Applicability: This pattern is applicable when an object
has been designed with some attribute or collaborator
that is set at initialization and originally does not change
during the life of the object. Special initialization code
must run when the identity of that attribute or collabo-
rator is known. Use the pattern when you wish to change
the original design to allow clients to dynamically con-
figure the attribute or collaborator during the lifetime of

The Smalltalk Report22

INSTANTIATION PATTERNS

http://www.sigs.com

the object. Actuator is also a candidate for use whenever
special initialization actions must be taken once the iden-
tities of an object’s attributes or collaborators are known.

Solution: Create a setting accessor method for the attri-
bute. Move dependent initialization code into the acces-
sor immediately after the value is set. Ensure that the
object itself, when created, uses this accessor for initializ-
ing the attribute and that clients use it for changing the
attribute’s value during the lifetime of the object.

Implementation: Move code from initialization and other
methods into a new accessor method. (If the object was
initially designed for the given attribute to be constant,
some research may be required to find all the initializa-
tion code that is dependent on the attribute.) Note that in
some cases (e.g., when event handlers have been estab-
lished on a collaborator), it may also be necessary to write
code in the accessor to perform finalization actions
before the collaborator can be replaced.

Consequences: Application of this pattern may be benefi-
cial even when attributes aren’t expected to change at
runtime because it associates dependent initialization
logic more closely with the attribute it applies to. Actuator
can reduce the size of complex initialize methods by mov-
ing their logic into separate accessors.

Related Patterns: Application of this pattern is similar to
Template Method in that it turns an initialize method with
much attribute-specific logic into a skeleton that delegates
to a series of lower-level accessor methods. However,
unlike Template Method, those lower-level methods are
concrete and not usually intended for overriding.

Actuator is also related to Observer in that dependent
code runs in response to some change in state. However,
Observer is intended for loose coupling between two or
more objects at runtime, whereas Actuator is for setting up
at development time, quick responses to changes within a
single object.

COMING UP
The next article of my three-part series considers two fam-
ilies of patterns: validation patterns for checking and pro-
tecting domain objects and informational patterns for
managing status and validation messages. The third and fi-
nal article will review a family of optimization patterns.

Reference
1. Gamma, E. et al. D P, Addison-Wesley, Reading,

MA, 1994.

Darrow Kirkpatrick is VP of Research and Development at Haestad
Methods, Inc., which specializes in numerical modeling for hydrol-
ogy/hydraulics, and has pioneered using Smalltalk for shrink-
wrapped Windows applications. Darrow enjoys hunting for pat-
terns while leading a team of talented software engineers who
have become experts at coaxing Smalltalk to perform in the real
world. He can be contacted at 203.755.1666 (voice) or by
email at 75166.525@compuserve.com.

`
`

March-April 1996 23http://www.sigs.com

you’ll be happier in the long run if you can just hold off a
little longer.

There are several reasons for this. First, time spent on
optimization isn’t being spent on those “meaningless”
chores that are often more important to the success of the
project. If testing and documentation are inadequate,
most people won’t notice or care how fast a particular list
box updates. They’ll have given up on the program before
they ever got to that window.

That’s not the worst of it. Premature optimization is
usually in direct violation of the principle of postponing
decisions. Optimization often involves thoughts like “if
we restrict those to be integers in the range from 3 to 87,
then we can make this a ByteArray and replace these dic-
tionaries lookups with array accesses”. The problem is
that we’ve probably made our code less clear and we’ve
greatly reduced its flexibility. It may have felt really good
at the time but the other people involved in the project
may not be entirely satisfied.

Of course this rule doesn’t apply to all optimizations.
Most programs will need some optimization sometime
and this is particularly true in Smalltalk. As a very high-
level language, Smalltalk makes it very easy to write very
inefficient programs very quickly. A little bit of well-
placed optimization can make the code enormously
faster without harming the program.

There’s also a large class of optimizations that I call
“stupidity removal” that can be profitably done at just
about any time. These include things like using the right
kind of collection for the job and avoiding duplicated
work. Their most important characteristic is that they
should also result in improvements to the clarity and ele-
gance of the code. Using better algorithms (as long as
their details don’t show through the layers of abstraction)
can also fall into this category.

OTHER RULES TO LIVE BY
There are many other rules of life that can be extended to
the OO design and programming domains. Here are a few
more examples. Feel free to make up more and send them
to me. Make posters out of them and put them up on your
office wall. It’ll make a nice counterpoint to those insipid
posters about “Teamwork” and “Quality” that seem to be
everywhere these days.

• Try not to care—Beginning Smalltalk programmers
often have trouble because they think they need to
understand all the details of how something works
before they can use it. This means it takes quite a while
before they can master Transcript show: ‘Hello World’.
One of the great leaps in OO is to be able to answer the
question “How does this work?” with “I don’t care”.

• Just do it!—An excellent slogan for projects that are
suffering from analysis paralysis, the inability to do
anything but generate reports and diagrams for what
they’re eventually going to do.

THE BEST OF COMP.LANG.SMALLTALK
continued from page 20

continued on page 32

http://www.sigs.com The Smalltalk Report24

D require unique, se-
quential keys for inserting new records into tables.

For example, a call tracking system may allocate a
case number or a billing system may allocate a customer
id. In some applications, the sequential key may be the
preferred method of retrieval (as in locating cases in a call
tracking system).

We present several client strategies for key allocation.
One size does not fit all. System administrative policy,
application features, and overall performance expecta-
tions must be considered carefully in selecting an algo-
rithm for generating sequential keys. Accordingly, we
examine the following factors:
1. Direct access versus stored procedure access
2. Single versus multiple key allocation
3. Error handling
4. Explicit locking versus browse mode concurrency man-

agement strategies
The code samples discussed use VisualWorks 2.0 Small-
talk from ParcPlace Systems and Sybase System 10 from
Sybase. The client/server dialog is implemented using
the basic mechanisms of the VisualWorks 2.0 Database
Connect driver for Sybase.

DIRECT VERSUS STORED PROCEDURE ACCESS
By direct access we mean the application issues SQL to
generate the next key. In this case, the application must be
intimately knowledgeable of various schema manage-
ment issues: Are the next key seed values all contained in
the same table within different records, or does each data
table have a corresponding key table? Also, how does the
client arbitrate multi-application access of the key table?
Should the table be locked during sequential key alloca-
tion or should the application select for browse?

Sequential key allocation is a good candidate for stored
procedure implementation. The function is simple, high-
ly dependent on the schema, and a focal point of client
activity. Should one application implement key allocation
improperly, it could wreak havoc on the database.

SINGLE VERSUS MULTIPLE KEY ALLOCATION
Conceptually, single key allocation is the simplest strategy.
Each time a client requests a new key, it receives the next

ordinal number. This ensures that selects ordered on the
key parallel selects ordered on the insertion timestamp
for each record. This may or may not be an application
requirement, and assumes the key is allocated only after
the record has been validated. If the client should aban-
don the insertion and terminate, the key would be lost.
Conversely, this strategy may be affected by when it is
necessary in the end-user dialog to make the key avail-
able. If the user must know the key prior to server-based
validation, it is not possible to guarantee that the key will
parallel the insertion timestamp.

There are many performance factors affecting key allo-
cation implementation. Requesting keys is relatively
expensive because the client must communicate with the
server over the network. Also, because hundreds of clients
may compete for the next key, there is a potential system
bottleneck. A solution is to have the server provide a range
of keys each time the client makes a request. How many
keys is enough? The answer depends on the application.
In fact, objects managed by an application most likely
require different ranges. For example, in a call tracking
system, case numbers may be required to be sequential in
time, whereas new customer numbers may have no such
requirement. Models should provide single and multiple
key allocation strategies. We now examine three imple-
mentations of key allocation.

SIMPLE UPDATE AND SELECT KEY ALLOCATION
In this first example, the database contains a table named
KEYS. There is a record in KEYS for each data table requir-
ing a sequential key. The method is called with the table
name as its parameter and returns an integer value.

nextKeyFor: aTableName
|ans|
self session

begin;
prepare: ‘UPDATE KEYS SET serial = serial + 1‘,

‘ WHERE tableName = ‘’’, aTableName,’’’ ‘;
execute;
prepare: ‘SELECT serial FROM KEYS where

tableName = ‘’’, aTableName, ‘’’ ‘;
execute.

Sequential key allocation
strategies in Smalltalk

Dayle Woolston & Chris Kesler

ans := self session answer atEnd; next.
self session commit.
^ans first first.

The method works because the first statement invokes a
transaction that must place a write lock on the KEYS table.
This first statement updates the serial value of the record
whose tableName value contains the string aTableName. The
next statement selects the serial value and returns the inte-
ger to the caller. The commit releases any locks; other clients
may proceed to complete the same dialog with the server.

This code makes several assumptions. First, it does not
explicitly check for any rollback condition. It may be that
the client does not have rights to update the KEYS table.
This method should encapsulate the execute statement
with a handler that enforces a rollback on such condi-
tions. The following code creates an example signal han-
dler. In production code you will want to preallocate the
signal handler.

nextKeyFor: aTableName
|ans noUpdateSignal|
noUpdateSignal := Signal new notifierString:

‘Unable to get the next key from ‘ ,
aTableName.

noUpdateSignal
handle:

[:ex |
self adminConnection rollback.
Dialog warn: ex errorString. ex return]

do:
[self session
begin;
prepare: ‘UPDATE KEYS SET serial = serial + 1‘,

‘ WHERE tableName = ‘’’, aTableName,’’’ ‘;
execute;
prepare: ‘SELECT serial FROM KEYS where

tableName = ‘’’, aTableName, ‘’’ ‘;
execute.
ans := self session answer atEnd; next.
self session commit].

^ans first first.

Second, there may be no record in the KEYS table contain-
ing aTableName as the value of its tableName column.
(Perhaps some coding error misspelled the table name
string.) In this case, the code would execute without error
but always return the most recent key in use. The end
result would be an insertion error if there were a unique
index on the key column of the data table for which the
key is intended. This condition can be detected by check-
ing the rowcount attribute for the session after each state-
ment gets executed. It should be 1 in each case.

The final assumption is that the key must be pre-
incremented. This is the type of schema assumption that
is often documented too casually, causing problems
down the road. If this method services all applications
accessing the database, then this assumption is probably
adequately handled; however, this is very unlikely. The

more likely case is that the table will be accessed by het-
erogeneous clients: 4GLs, Smalltalks, C, C++, etc. This
preincrement policy makes this function a good candi-
date for stored procedure encapsulation rather than
direct implementation.

STORED PROCEDURE KEY ALLOCATION
The next example suggests how the nextKey method may
contract with a stored procedure called nextKey.

nextKeyFor: aTableName
^useStoredProcedures

ifTrue:
[self session

prepare: ‘nextKey ‘ , aTableName, ‘, ‘,
aNumber asString;

execute.
(self session answer atEnd; next) first first]

ifFalse:
[self embbededSQLNextKeyFor: aTableName].

In this example, the database framework has some control
over whether it uses stored procedures. If so, the first clause
gets executed, otherwise execution gets redirected to
another method (a new name for the previous example).

CONCURRENCY ISSUES
One of the vital issues we’ve avoided so far is that of con-
currency control. Two separate clients cannot execute the
preceding examples at the same time. The two options
are locking and browse mode. Executing locks in this type
of method is a pessimistic form of concurrency control.
It requires signal handlers to detect the lock condition
and possibly repeat attempts until the competing client
clears the lock.

In our remaining example, we prefer an optimistic
concurrency control strategy using what is known as
browse mode. In browse mode, the client issues no lock
requests. Instead, the row contains a column of type time-
stamp. The database service updates the timestamp value
each time it performs a select against the row. In request-
ing the serial value, the client also requests the timestamp
value. It then uses the timestamp value as a where clause
restriction when updating the row to the incremented ser-
ial value. Only the client with the most recent timestamp
succeeds in updating the serial value. This success indi-
cates to the method that it may return a valid key to its
caller. All other clients executing the same method exe-
cute their signal handler and make another attempt at
fetching a new key.

Browse mode requires that the select statement end
with the words “FOR BROWSE.” The target table must
have a unique index and, as noted, a timestamp column.

MULTIPLE KEY ALLOCATION IN BROWSE MODE
Our final example demonstrates a rich set of services. The
method returns a collection of one or more sequential
integer keys for the table aTableName, enabling the client
to (possibly) cache multiple key values. We also use

March-April 1996 25http://www.sigs.com

browse mode to implement an optimistic concurrency
management strategy.

The method is composed in four sections. The first sec-
tion sets up the method by assigning a “1” to the attempts
counter, allocating a stream to compose queries, and cre-
ating a signal instance to manage any exception condi-
tions. The second section defines the exception handling
clause. When an exception occurs, the connection must
rollback the transaction and increment the attempts
counter. If more than 10 attempts occur, notify the user
with a dialogue box and error out. Otherwise, just try
again. The third section composes and executes two SQL
statements. The first statement retrieves the key and time-
stamp values; the second statement attempts to update the
key value. This section checks the session rowcount value to
verify that the update occurred. This value should be 1.
The fourth and final section creates an ordered collection
and assigns to it a sequence of anInteger integers, begin-
ning with the first available key value.

nextKeyFor: aTableName incrementBy: anInteger
| currentData timestamp noUpdateSignal attempts oc
aStream |
attempts := 1.
aStream := (String new: 75) writeStream.
noUpdateSignal := Signal new notifierString:

‘Unable to get the next key from ‘ ,
aTableName.

noUpdateSignal
handle:

[:ex |
self adminConnection rollback.
attempts := attempts + 1.
attempts > 10 ifTrue: [Dialog warn: ex

errorString. ex return].
ex restart]

do:
[self adminConnection begin.
self adminSession

prepare:
‘select key, timestamp from ‘,
aTableName , ‘ FOR BROWSE’;

execute.
currentData := self adminSession answer atEnd;

next.
timestamp := currentData last.
aStream

nextPutAll: ‘update ‘;
nextPutAll: aTableName;
nextPutAll: ‘set key = Key+‘;
print: anInteger;
nextPutAll: ‘ where timestamp = ‘;
sqlPrint: timestamp.

self adminSession
prepare: aStream contents;
execute.
answer.

self adminSession rowCount < 1 ifTrue:

[noUpdateSignal raise].
self adminConnection commit].

oc := OrderedCollection new: anInteger.
lastUsedId + 1 to: lastUsedId + anInteger do: [:i | oc
add: i].
^oc.

Each of these examples is acceptable depending on as-
sumptions that must be supported by the client. This last
example, however, illustrates several important op-
timizations. First, the algorithm for fetching the next key
and updating its row on the server is enapsulated by a sig-
nal handler. Second, the method checks the session row-
count value to ensure the update actually occurred. If it did
not, the signal is raised and the operation attempted up to
10 times. Third, the SQL is constructed using a write
stream; a faster strategy than successive string concatena-
tion with commas.

Despite the optimizations, the code is written for clarity
over performance. A production version would create the
signal at initialization time and keep it in a class-side dic-
tionary. It doesn’t make sense to create a new signal during
each request for a new key. Also, it is important to allocate
a string for the write stream that is very nearly the size of
the largest SQL statement. Performance profiling demon-
strates that write stream creation time is dominated by the
size of the string allocated for the stream. Don’t allocate a
500-byte string and think the stream operations are saving
you any time over string operations with the comma oper-
ator. The best solution is to create the string only once, cre-
ating the write stream on that same string over and over
with each call to the method. Finally, the ordered collec-
tions provide convenient collection services. However, they
are considerably slower than arrays. The final section
should probably be implemented with an array.

It is not immediately obvious, but this strategy also al-
locates a separate connection/session for servicing next
key requests. It may be that this method executes in the
context of saving many objects to the database bounded
by a single begin/commit pair. As each object gets saved, it
must request the next available key, which (as illustrated)
requires its own transaction control. This alternate ad-
ministrative connection executes key retrievals within a
separate transaction. (It is customary for browse mode
strategies to employ two connections.)

CACHING KEYS
The remaining code illustrates how a client may cache
multiple (sequential) keys. This strategy is appropriate in
many cases; it can greatly reduce the number of database
requests, thus enhancing overall client performance and
reducing network traffic. Without such a strategy, each
insert operation generates two database transactions, first
to fetch a key and second to perform the insert.

nextKey
| key |
(keyCache isNil or:

[keyCache isEmpty])

The Smalltalk Report26

SEQUENTIAL KEY ALLOCATION

http://www.sigs.com

continued on page 32

The Smalltalk Report32

name first clusterInBucket: empCluster.
name middle clusterInBucket: empCluster.
name last clusterInBucket: empCluster.

“ cluster the address and its components “
address := anEmp address.
address clusterInBucket: addressCluster.
address street clusterInBucket: addressCluster.
address city clusterInBucket: addressCluster.
address state clusterInBucket: addressCluster.
address zip clusterInBucket: addressCluster.].

This column has described how to determine if clustering
objects might help application performance and how to
cluster objects using ClusterBuckets. My next column will
discuss how to measure overall system performance and
steps for tuning multi-user Smalltalk for higher transac-
tion throughput. `

`

GETTING REAL continued from page 19

• Avoid commitment—This is another way of
expressing the principle of postponing decisions but
one that might strike a chord with younger or
unmarried programmers.

• It’s not a good example if it doesn’t work—This one
comes from David Buck (dbuck@magmacom.com),
who’s fed up with looking at example and test
methods that haven’t been properly maintained as the
code evolved. I can’t think of a way to apply this to life
but it’s good advice anyway.

• Steal everything you can from your parents—A
principle for those trying to make effective use of
inheritance or moving into their first apartment.

• Cover your a**—Like in a bureaucracy, the most
important thing is to make sure that it isn’t your fault.
Make sure your code won’t have a problem even if
things are going very wrong elsewhere. `

`

THE BEST OF COMP.LANG.SMALLTALK
continued from page 23

ifTrue: [keyCache := self nextKeys: self
keyCacheSize].

key := keyCache first.
keyCache removeFirst.
^key.

If you choose to make the array optimization in the
nextKeys: method, this method must be changed to insert
nil values into the array as each key gets returned rather
than using the removeFirst selector.

Dayle Woolston and Chris Kesler have been working with
Smalltalk for 4 years building client/server database applications.
They can be reached at dayle_woolston@novell.com and
chris_kesler@novell.com.

`
`

SEQUENTIAL KEY ALLOCATION
continued from page 26

http://www.sigs.com

The Smalltalk Report16 http://www.sigs.com

“C
’, , don’t have time for testing, we’ve
gotta get the demo ready for the department
heads meeting!” announced Aaron, the project

leader, as he stared at the ceiling in exasperation. Things
had been going well—too well, it seemed. MegaCorp had
been having some difficult times with development
schedules and after many studies, meetings, and much
political maneuvering, management went along with
Aaron Blake’s plan to transfer their traditional develop-
ment environment into Smalltalk with a pilot project.

Aaron had been in this game awhile; he knew this pro-
ject was a career maker or breaker, so he had planned the
transition in careful detail. His team had gotten the train-
ing they needed, he had budgeted for the best tools avail-
able, and in a real coup for MegaCorp, he had even con-
vinced them to bring in some experienced mentors, so
that his team wouldn’t repeat someone else’s mistakes.

Most important, MegaCorp MIS Director, Andrea
Saunders, had personally approved Aaron’s proposed
development process, which was unlike anything anyone
had ever seen within MegaCorp. MegaCorp needed rapid
turnaround on various software projects and their tradi-
tional waterfall process had been running an average of
250% off original schedule. Their users required six-week
changes; IS was quoting six-month changes but actually
delivering in a year and a half!

It had been a hard sell. Andrea knew there was a prob-
lem, but she wasn’t ready to simply swap a new problem
for an old one. “Whenever one of my guys comes crying
about all the hoops they’re jumping through, I ask them,
‘ya got something better?’”

Luckily, Aaron was in his usual state of preparedness
and had come to the meeting with an impressive presen-
tation citing Barry Boehm and other development pro-
cess scholars. He showed Andrea and her department
heads how simultaneous design, implementation, and

testing could result in an evolving, incremental product
that could deliver quick changes to users without sacrific-
ing quality. He had no idea that all his careful planning
could result in disaster!

EARLY GAINS
“Trigger” Larsen was Aaron’s best developer and the fast-
est squirt-gunner in the company. Trigger had gone off for
a month of “Smalltalk immersion therapy” in an appren-
ticeship program, and had returned with stars in his eyes.
“Hey Aaron, look what I got working today!” he’d often
exclaim, which was a bit tiring, but it was the kind of nui-
sance Aaron could easily live with—much preferred over
the usual complaining about short schedules and missed
deadlines.

Trigger quickly assembled a GUI that was years ahead
of anything MegaCorp had ever put together. True, the
database wasn’t connected yet, and the legacy systems
were not interfaced, but hey—it looked sexy and actually
seemed to be doing something, unlike the “paint and
draw” prototypes that other departments had been put-
ting together for years.

Enthusiasm has its drawbacks and when combined
with a little boastful competitiveness, it can have bad side
effects. Trigger played racquetball with Denny Hicks, a
developer on a “traditional development” team, and
could contain his enthusiasm no longer. “Hey, you should
see the neat stuff we’ve been doing!” Trigger shouted over
the sound of ricocheting balls and pounding sneakers. It
seemed an innocent enough boast at the time.

PROCEDURAL DISSONANCE STIRRING
It was kind of nice being ignored. Aaron knew this
couldn’t last forever, but neither did he suspect it was the
calm before the storm. The pace of a traditional waterfall
project meant that the first third or so of the schedule
was dominated by documents—but no one wanted to see
the documents, they just wanted assurance that the doc-
uments were being produced.

Aaron was cheating a bit here on the cyclic develop-
ment process. He followed the letter of the MegaCorp
Software Procedures and Standards Manual by naming

Jan Steinman and Barbara Yates are cofounders of Bytesmiths, a
technical services company that has been helping corporations
adopt Smalltalk since 1987. Between them, they have more than
20 years Smalltalk experience. They can be reached at Bar-
bara@Bytesmiths.com or Jan@Bytesmiths.com, or on the web at
http://www.bytesmiths.com.

Managing Objects

The Demo Trap
Barbara YatesJan Steinman

and listing all the required documents, and checking
them off as produced, reviewed, and delivered at the ap-
propriate intervals.

The “cheating” part was that they were “incomplete” by
MegaCorp standards—he kept them in their Smalltalk
development environment, so they could be updated
readily, instead of “checking them in” to the mainframe,
which generally meant no one ever changed them again,
because rigorous procedures were involved with check-in
and check-out.

They were also much smaller than usual because
instead of an extensive boilerplate for every conceivable
situation (half of which were marked “N/A”), Aaron insist-
ed on plain English descriptions of the behaviors and
interactions of the objects in the system.

A greater heresy that wouldn’t have passed muster if he
hadn’t bribed the bored QA guys (by promising to train
them in Smalltalk and actually let them write some test
code) was the fact that none of the documents his group
produced said anything about the internal structure of
their objects! He knew he could get shot down for that,
but he also suspected he’d need that flexibility later dur-
ing performance tuning. “Isn’t it enough for now to say
that an Employee can answer its Department without stating
that it stores its Department somewhere?” Aaron mused to
himself.

The net result of this was that after several months,
MegaCorp treated Aaron as though he were “waterfalling”
through analysis into design—it ignored him—while in
reality, his team had Pretty Neat Stuff running. No one at
MegaCorp had ever seen Pretty Neat Stuff running before
at least 110% of the initial schedule had been spent!

“Hey Aaron!” shouted Jake Sather across the lunch
room, “Denny tells me you’ve got a GUI going—can I get
a look sometime soon?” Jake was Aaron’s peer, managing
the “traditional development” group Denny Hicks worked
in. “Sure, c’mon up this afternoon!” replied Aaron. (He had
been catching some of Trigger’s enthusiasm as of late.)

WHAT IS OUR PRODUCT?
Jake’s demo went well—too well, it seemed. It would have
been better if the demo had gone worse, say, if it had
crashed a few times. It would have been better if Aaron
had stalled Jake to prepare, because Aaron’s team had
been practicing continuous integration and continuous
testing, and consequently this was the best spur-of-the-
moment demo Jake had ever seen at MegaCorp. Aaron
looked at it and saw a half-finished prototype; Jake looked
at it and saw a product.

The Friday staff meeting was not a pretty sight for Aaron.
“You guys should see what Aaron’s been hiding from
us!” Jake started out, “We all should be looking at this stuff!”
They scheduled several demos that week. Marketing
should get a look; Sales was on a boondoggle, so they would
need their own demo; of course the tech writers would
need a working copy; and users—what about the users?
“We’ll have to find some; Aaron, can you look into that?”

None of Aaron’s careful planning accounted for the

coming weeks. Oh, he had planned for demos all right,
but he didn’t anticipate the magnitude of interest that the
“early GUI” generated.

But the interest in Aaron’s stuff was not passive.
Everyone thinks they’re a “GUI guru,” when really they are
more likely seduced by “neat stuff” rather than what actu-
ally is useful to an end user. Marketing immediately want-
ed “more color and icons,” while various VPs who drifted
in and out of Aaron’s office put in their own personal GUI
order. Meanwhile, Sales wanted to immediately ship
everything they saw. Aaron was averaging at least two
demos per week, each one ending with some “recom-
mendation” of some kind. His schedule was slipping as
his developers thrashed away implementing conflicting,
unplanned changes.

Aaron fantasized about the want ad he would soon be
placing: “Product Demo Manager for hire. Expert at jump-
ing through upper management hoops with constantly
changing but meaningless user interface stuff. If your
product is demos, I’m your man!” He thought hard about
what he was trying to accomplish, mentally crumpled up
the half-composed ad, and picked up the phone. “Andrea,
can we have a talk?” he asked.

RETURN OF SANITY
After hearing him out, Andrea Saunders agreed that
Aaron’s project needed a shield. Demos would be limited
to the period immediately following “cycle end,” which
averaged every six weeks. “Must do” demos in between
the scheduled ones would only be on the software that
had recently been formally presented—no more pulling
people off “real work” to prepare a special demo.

Trigger had completed the architecture work and
much of the design and had given the implementation a
good start. His outgoing, enthusiastic, and somewhat
boastful personality earned him the new unofficial title of
“appeasement engineer.”

“Half your job is to see that no one else on the team is
impacted by demo activity,” Aaron told him, “and the
other half is to do everything else you were doing with all
your time before!” he joked. He knew that Trigger was up
to the challenge, and could carry on limited peer review
and coding while carefully tracking all the little tasks that
producing a good demo requires, and still have time for
manic squirt-gun fights.

The Demo Trap had slipped the schedule, and they
weren’t going to ship all the functions they had originally
planned, but their “continuous development” regime was
paying off regardless. They had taken on “productization”
early, and all they had to do between cycles was add func-
tionality. Sales wanted what they had now, and Marketing
was actually considering a “MegaSoftLite” offering to “se-
lected beta partners.”

“If this keeps up,” Aaron mused, “it could be the first
time in history that MegaCorp has shipped a product—
albeit not the one they set out to build—ahead of sched-
ule!” He sighed a contented sigh and went back to plan-
ning his next Smalltalk project. `

`

March-April 1996 17http://www.sigs.com

The Smalltalk Report18 http://www.sigs.com

A before delivering any applica-
tion is tuning the code to meet performance re-
quirements. In single-user Smalltalks on the client

machine, this activity typically involves using profiling
tools to identify the methods where most time is spent.
Once these methods are identified, several options are
available, such as implementing the methods as primi-
tives in C code, caching calculated values that are used
repeatedly, or perhaps most important, producing a bet-
ter design. This tuning activity might also involve analyz-
ing the memory usage of the application, reducing the
memory footprint of the application while it is running,
minimizing the number of temporary objects that are cre-
ated and then quickly garbage collected, and exercising
more explicit control over garbage collection (especially
in real-time systems).

These same tuning activities are applicable to multi-
user, server Smalltalk as well. In addition, because server
Smalltalk must accommodate concurrent transactions by
many hundreds of users, and must handle many millions
of objects being created and retrieved, there are addition-
al ways in which applications can be tuned. In this col-
umn I discuss some of the techniques to tune multi-user,
server Smalltalk applications.

A key component in tuning a large-scale, multi-user
Smalltalk application is understanding and controlling
the placement of objects on disk. Because the number
and size of objects may prevent all that are being used in
an application from being present in RAM at once, the
proximity of objects may impact application perfor-
mance. Obviously, the fewer disk pages to be accessed
during the normal course of application execution the
better performance. To tune the placement of objects
on disk, server Smalltalk must allow developers to cluster
objects that are frequently accessed together. In
GemStone Smalltalk, objects are placed on disk based on
their access patterns by default. More specifically, objects
that are created or modified within the same transaction
tend to be placed close together. In many cases, this de-
fault placement is sufficient.

However, GemStone Smalltalk does provide additional
protocol to allow developers to discover where objects are

placed and to move them closer together for more effi-
cient access.

The first step in tuning an application’s performance
for accessing objects is to understand the reading and
writing characteristics of the application while it is run-
ning. In GemStone Smalltalk, you can send the messages
“pageReads” or “pageWrites” to class System to get the cu-
mulative number of pages that were read or written since
the session began (i.e., since you logged into the server).
Typically, it is useful to measure the number of pages read
immediately before and immediately after an extensive
calculation or query to determine if clustering objects
together might be of benefit. For example, the following
code returns the number of pages that were read to exe-
cute the given query.

| initialNumberOfReads |
initialNumberOfReads := System pageReads.
SetOfPersons select: [:person |
“ find each person younger than their spouse “
person isMarried and: [person spouse age > person age].

^ System pageReads - initialNumberOfReads

Pages are written to disk for two reasons: first, when inter-
nal buffers become full and must make room for new
objects to be created; second, when the transaction is
committed. Measuring the number of pages written at
various times during the life of a transaction can help
determine if buffer sizes need to be increased, whereas
measuring the number of pages written just before and
after a transaction is committed may help determine if
more explicit control over clustering may help.

Clustering related objects together solves a specific
problem: poor performance because of too much disk ac-
tivity. One way to check how objects are clustered is to
determine which pages the objects are stored on. You can
send the message “page” to any object to get an integer
identifying the disk page on which the receiver resides.
This integer is a logical identifier of the page, not a point-
er to a storage location.

Objects are stored persistently in structures called ex-
tents. An extent is a disk file or raw partition on disk. The
repository of all objects can be maintained in multiple
extents, possibly distributed among several disk drives on
several machines. In GemStone Smalltalk, there is a single
object, named SystemRepository, that is an instance of

Getting Real

Jay Almarode

Using Smalltalk since 1986, Jay Almarode has built CASE tools, in-
terfaces to relational databases, multi-user classes, and query sub-
systems. He is currently a Senior Software Engineer at GemStone
Systems Inc., and can be reached at almarode@gemstone.com.

Tuning multi-user Smalltalk

class Repository. In addition to defining protocol to per-
form online backups and restores, to dynamically add
new extents, and to create replicates of extents for pur-
poses of fault tolerance, class Repository also has methods
to provide information about the extent in which a page is
located and the file name for a given extent. The next
example shows how one can determine the file name
where an object is actually stored on disk.

| extendId |
“MyObject is the object whose location we are interested in.“
extendId := SystemRepository extentForPage: MyObject
page.
^ SystemRepository fileNames at: extendId.

By analyzing the reading and writing behavior of your
application for excessive disk activity and determining
the number and location of pages where objects reside,
performance may be improved by explicitly controlling
how objects are clustered together. Conceptually, you
can think of objects as being written to disk on a stream
of disk pages. When a page is filled, another page is cho-
sen and objects are written to the new page. The stream
of pages used for writing is called a ‘bucket’. GemStone
Smalltalk provides the class ClusterBucket to give pro-
grammers control over which stream of pages objects are
written. Every object is associated with an instance of
ClusterBucket and all objects assigned to the same
ClusterBucket will be clustered together. When objects
with the same ClusterBucket are written to disk, they are
written to contiguous locations on the same page, if they
will fit, or contiguous locations on several pages if not.

A ClusterBucket can be associated with a specific extent.
Each ClusterBucket has an instance variable extentId that
specifies which file the stream of pages will be written.
You can find out what extents are available by executing
the expression SystemRepository fileSizeReport. This returns
a string that describes the extent identifier, file name, file
size, and space available for each available extent. An
example of how to set the extent for an existing
ClusterBucket is the expression aClusterBucket extendId: 3.

You can create a new ClusterBucket by executing the
expression ClusterBucket newForExtent: 4. Initially, there
are seven existing instances of ClusterBucket maintained
in a global array named AllClusterBuckets.

Some of these are available for application developers,
whereas others are used to cluster system objects, such
as kernel methods or source code strings. When new

instances of Cluster
Bucket are created,
they are added
to this global array
and a ClusterBucket’s
position in this ar-
ray is known as its
cluster Id.

This provides a
way to reference any
ClusterBucket that ex-

ists through its clusterId, for example, by performing the
expression ClusterBucket bucketWithId: 7.

To specify the ClusterBucket for a particular object, you
can send the message “clusterInBucket: aClusterBucket”.
This will not immediately write the object to disk but in-
dicates that when it is next written, the stream of pages
in which it is written will be determined by the given
ClusterBucket.

If you want to write the object to disk immediately,
you can send the message “moveToDiskInBucket: aCluster
Bucket”. Sending the “clusterBucket” message to an object
will return the ClusterBucket to which the receiver is cur-
rently assigned. GemStone Smalltalk provides some con-
venience methods to help cluster objects. You can send
the message “cluster” to any object to assign it to the cur-
rent default ClusterBucket. You can use this message to
build specialized clustering behaviors for your applica-
tion classes. One such method already provided is
clusterDepthFirst, which traverses through the named and
indexable instance variables of the receiver, sending the
“cluster” message to each object. The cluster method re-
turns a boolean indicating if the receiver has already been
clustered during the current transaction. This is used to
prevent infinite recursion. There are also convenience
methods defined in class Behavior to cluster classes and
related objects. The clusterBehavior method clusters a
class and its method dictionary. The clusterDescription
method clusters the objects that describe the structure of
a class, such as its instVarNames array, class variables, in-
stance variable constraints, and class history.

To illustrate how to control object clustering, imagine
a set of Employee objects based on the simplified schema
illustrated in Figure 1.

Suppose most applications that access an instance of
Employee also access the name and ssn as well; so we
would like to cluster instances of Employee with their cor-
responding Name and ‘ssn’ String objects.

The addresses of employees are accessed less frequent-
ly and are typically accessed for all employees at once, so
we would like to cluster all Address objects together. The
following code shows how we can cluster these objects so
that employees and their frequently accessed subcompo-
nents are stored contiguously and employee addresses
are grouped together separately.

| empCluster addressCluster |

“ get the bucket previously created for Employees “
empCluster := ClusterBucket bucketWithId: 8.
“ get the bucket previously created for Addresses “
addressCluster := ClusterBucket bucketWithId: 9.

TheSetOfEmployees do: [:anEmp | | name address |
anEmp clusterInBucket: empCluster.
anEmp ssn clusterInBucket: empCluster.

“ cluster the name and its components “
name := anEmp name.
name clusterInBucket: empCluster.

March-April 1996 19http://www.sigs.com

Figure 1. Employee schema. continued on page 32

Employee

name

ssn: String

address

Name

first: String
middle: String
last: String

Address

street: String
city: String
state: String
zip: String

The Smalltalk Report32

name first clusterInBucket: empCluster.
name middle clusterInBucket: empCluster.
name last clusterInBucket: empCluster.

“ cluster the address and its components “
address := anEmp address.
address clusterInBucket: addressCluster.
address street clusterInBucket: addressCluster.
address city clusterInBucket: addressCluster.
address state clusterInBucket: addressCluster.
address zip clusterInBucket: addressCluster.].

This column has described how to determine if clustering
objects might help application performance and how to
cluster objects using ClusterBuckets. My next column will
discuss how to measure overall system performance and
steps for tuning multi-user Smalltalk for higher transac-
tion throughput. `

`

GETTING REAL continued from page 19

• Avoid commitment—This is another way of
expressing the principle of postponing decisions but
one that might strike a chord with younger or
unmarried programmers.

• It’s not a good example if it doesn’t work—This one
comes from David Buck (dbuck@magmacom.com),
who’s fed up with looking at example and test
methods that haven’t been properly maintained as the
code evolved. I can’t think of a way to apply this to life
but it’s good advice anyway.

• Steal everything you can from your parents—A
principle for those trying to make effective use of
inheritance or moving into their first apartment.

• Cover your a**—Like in a bureaucracy, the most
important thing is to make sure that it isn’t your fault.
Make sure your code won’t have a problem even if
things are going very wrong elsewhere. `

`

THE BEST OF COMP.LANG.SMALLTALK
continued from page 23

ifTrue: [keyCache := self nextKeys: self
keyCacheSize].

key := keyCache first.
keyCache removeFirst.
^key.

If you choose to make the array optimization in the
nextKeys: method, this method must be changed to insert
nil values into the array as each key gets returned rather
than using the removeFirst selector.

Dayle Woolston and Chris Kesler have been working with
Smalltalk for 4 years building client/server database applications.
They can be reached at dayle_woolston@novell.com and
chris_kesler@novell.com.

`
`

SEQUENTIAL KEY ALLOCATION
continued from page 26

http://www.sigs.com

The Smalltalk Report20 http://www.sigs.com

L , reviewed some important principles of
OO design, many of which apply equally well to life.
The fundamental principle of OO is: Never do any

work that you can get someone else to do for you. And there
are secondary principles:

• Avoid responsibility
• Postpone decisions

This month we examine a few more principles.

MANAGERS DON’T DO ANY REAL WORK
The subject of “manager” or “control” objects can provoke
a lot of debate in OO circles, much as the subject of “man-
agers” does in other work environments. Some argue that
the role of manager is inherently bad for software design
and that one should avoid employing them. Others argue
that, although many of them represent a throwback to
outdated ways of thinking, they can be very useful under
the right circumstances.

I definitely believe that managers can be useful, but it’s
important to distinguish between good ones and bad
ones. For example, consider a program in which most of
my classes are “record objects” (objects whose only be-
haviours are get and set methods). The real work is done by
a control class that manipulates these objects with full
access to all their data. At this point I have a procedural
program dressed up in an OO disguise. The control object
is in the most complete possible violation of the funda-
mental principle because it’s trying to do all the work itself.

On the other hand, consider a window class like the
VisualWorks ApplicationModel or the Visual Smalltalk Appli-
cationCoordinator. These are manager objects that coor-
dinate the interactions between user interface widgets
and the domain model. They’re very important to good
GUI design and it would be much harder to get a clean
design without them.

People who are vehemently opposed to any kind of
manager object are often stuck in the trap of trying to pre-
cisely model the world, taking the OO paradigm much too
literally. One of my favourite quotes on this subject (from
several years back) is from Jeff Alger, who wrote:

“The real world is the problem; why would you want to
just simulate it?”

How can we tell a good manager object from a bad
one? We apply the principle that managers don’t do real
work. A manager object should manage interactions be-
tween other objects and should be trying to do work itself,
unless it’s legitimate management work.

An example of legitimate management work is an Ap-
plicationModel figuring out which menu items need to be dis-
abled. An example of nonlegitimate work would be doing
(nontrivial) calculations of values to be displayed in its fields.
Those values should be calculated by the domain objects.

This rule can be tricky to apply in practice. It is always
obvious whether something is legitimate management
work or not. Always remember that this is just a specific
example of the fundamental principle. If the manager can
plausibly get someone else to do the work, it should do so.

Another difficulty is that the word “Manager” is some-
times tacked on to the end of a class name even though
what it describes is not a manager at all. In a recent
comp.object discussion, Robert Cowham (cowhamr@logi-
ca.com) described a DiscountPolicyManager object and
worried about the desirability of introducing a manager
object even though it seemed to make the design cleaner.
The description was as follows:

A Discount Policy Manager is going to be passed, say, an
Invoice object and will calculate the appropriate dis-
count to be applied to that Invoice (using methods on
the Invoice to find out about it) and then use a method
on Invoice to add the discount to it.

Reading this description, it’s clear that the Discount
PolicyManager is really just a policy object as described in
the previous section. It isn’t a manager at all and should
be called DiscountPolicy instead.

PREMATURE OPTIMIZATION LEAVES EVERYONE
UNSATISFIED
The most fun you can have as a programmer is optimizing
code. There’s nothing quite so satisfying as taking some lit-
tle piece of functionality and making it run 50 times faster
than it used to. When you’re deep in the middle of mean-
ingless chores like commenting, testing, and document-
ing, the temptation to let go and optimize is almost irre-
sistible. You know it’s got to be done sometime and you feel
like you just can’t put it off any longer. Sometimes you’re
right and the time has come to make this piece of code
really scream. More often than not,

The Best of comp.lang.smalltalk

Alan KnightPrinciples of OO design, Part 2

Alan Knight is cynic-in-residence at The Object People, 885
Meadowlands Dr. E., Ottawa, Ontario, K2C 3N2. He can be reached
at 613.225.8812 or by email at knight@acm.org. continued on page 23

the object. Actuator is also a candidate for use whenever
special initialization actions must be taken once the iden-
tities of an object’s attributes or collaborators are known.

Solution: Create a setting accessor method for the attri-
bute. Move dependent initialization code into the acces-
sor immediately after the value is set. Ensure that the
object itself, when created, uses this accessor for initializ-
ing the attribute and that clients use it for changing the
attribute’s value during the lifetime of the object.

Implementation: Move code from initialization and other
methods into a new accessor method. (If the object was
initially designed for the given attribute to be constant,
some research may be required to find all the initializa-
tion code that is dependent on the attribute.) Note that in
some cases (e.g., when event handlers have been estab-
lished on a collaborator), it may also be necessary to write
code in the accessor to perform finalization actions
before the collaborator can be replaced.

Consequences: Application of this pattern may be benefi-
cial even when attributes aren’t expected to change at
runtime because it associates dependent initialization
logic more closely with the attribute it applies to. Actuator
can reduce the size of complex initialize methods by mov-
ing their logic into separate accessors.

Related Patterns: Application of this pattern is similar to
Template Method in that it turns an initialize method with
much attribute-specific logic into a skeleton that delegates
to a series of lower-level accessor methods. However,
unlike Template Method, those lower-level methods are
concrete and not usually intended for overriding.

Actuator is also related to Observer in that dependent
code runs in response to some change in state. However,
Observer is intended for loose coupling between two or
more objects at runtime, whereas Actuator is for setting up
at development time, quick responses to changes within a
single object.

COMING UP
The next article of my three-part series considers two fam-
ilies of patterns: validation patterns for checking and pro-
tecting domain objects and informational patterns for
managing status and validation messages. The third and fi-
nal article will review a family of optimization patterns.

Reference
1. Gamma, E. et al. D P, Addison-Wesley, Reading,

MA, 1994.

Darrow Kirkpatrick is VP of Research and Development at Haestad
Methods, Inc., which specializes in numerical modeling for hydrol-
ogy/hydraulics, and has pioneered using Smalltalk for shrink-
wrapped Windows applications. Darrow enjoys hunting for pat-
terns while leading a team of talented software engineers who
have become experts at coaxing Smalltalk to perform in the real
world. He can be contacted at 203.755.1666 (voice) or by
email at 75166.525@compuserve.com.

`
`

March-April 1996 23http://www.sigs.com

you’ll be happier in the long run if you can just hold off a
little longer.

There are several reasons for this. First, time spent on
optimization isn’t being spent on those “meaningless”
chores that are often more important to the success of the
project. If testing and documentation are inadequate,
most people won’t notice or care how fast a particular list
box updates. They’ll have given up on the program before
they ever got to that window.

That’s not the worst of it. Premature optimization is
usually in direct violation of the principle of postponing
decisions. Optimization often involves thoughts like “if
we restrict those to be integers in the range from 3 to 87,
then we can make this a ByteArray and replace these dic-
tionaries lookups with array accesses”. The problem is
that we’ve probably made our code less clear and we’ve
greatly reduced its flexibility. It may have felt really good
at the time but the other people involved in the project
may not be entirely satisfied.

Of course this rule doesn’t apply to all optimizations.
Most programs will need some optimization sometime
and this is particularly true in Smalltalk. As a very high-
level language, Smalltalk makes it very easy to write very
inefficient programs very quickly. A little bit of well-
placed optimization can make the code enormously
faster without harming the program.

There’s also a large class of optimizations that I call
“stupidity removal” that can be profitably done at just
about any time. These include things like using the right
kind of collection for the job and avoiding duplicated
work. Their most important characteristic is that they
should also result in improvements to the clarity and ele-
gance of the code. Using better algorithms (as long as
their details don’t show through the layers of abstraction)
can also fall into this category.

OTHER RULES TO LIVE BY
There are many other rules of life that can be extended to
the OO design and programming domains. Here are a few
more examples. Feel free to make up more and send them
to me. Make posters out of them and put them up on your
office wall. It’ll make a nice counterpoint to those insipid
posters about “Teamwork” and “Quality” that seem to be
everywhere these days.

• Try not to care—Beginning Smalltalk programmers
often have trouble because they think they need to
understand all the details of how something works
before they can use it. This means it takes quite a while
before they can master Transcript show: ‘Hello World’.
One of the great leaps in OO is to be able to answer the
question “How does this work?” with “I don’t care”.

• Just do it!—An excellent slogan for projects that are
suffering from analysis paralysis, the inability to do
anything but generate reports and diagrams for what
they’re eventually going to do.

THE BEST OF COMP.LANG.SMALLTALK
continued from page 20

continued on page 32

The Smalltalk Report32

name first clusterInBucket: empCluster.
name middle clusterInBucket: empCluster.
name last clusterInBucket: empCluster.

“ cluster the address and its components “
address := anEmp address.
address clusterInBucket: addressCluster.
address street clusterInBucket: addressCluster.
address city clusterInBucket: addressCluster.
address state clusterInBucket: addressCluster.
address zip clusterInBucket: addressCluster.].

This column has described how to determine if clustering
objects might help application performance and how to
cluster objects using ClusterBuckets. My next column will
discuss how to measure overall system performance and
steps for tuning multi-user Smalltalk for higher transac-
tion throughput. `

`

GETTING REAL continued from page 19

• Avoid commitment—This is another way of
expressing the principle of postponing decisions but
one that might strike a chord with younger or
unmarried programmers.

• It’s not a good example if it doesn’t work—This one
comes from David Buck (dbuck@magmacom.com),
who’s fed up with looking at example and test
methods that haven’t been properly maintained as the
code evolved. I can’t think of a way to apply this to life
but it’s good advice anyway.

• Steal everything you can from your parents—A
principle for those trying to make effective use of
inheritance or moving into their first apartment.

• Cover your a**—Like in a bureaucracy, the most
important thing is to make sure that it isn’t your fault.
Make sure your code won’t have a problem even if
things are going very wrong elsewhere. `

`

THE BEST OF COMP.LANG.SMALLTALK
continued from page 23

ifTrue: [keyCache := self nextKeys: self
keyCacheSize].

key := keyCache first.
keyCache removeFirst.
^key.

If you choose to make the array optimization in the
nextKeys: method, this method must be changed to insert
nil values into the array as each key gets returned rather
than using the removeFirst selector.

Dayle Woolston and Chris Kesler have been working with
Smalltalk for 4 years building client/server database applications.
They can be reached at dayle_woolston@novell.com and
chris_kesler@novell.com.

`
`

SEQUENTIAL KEY ALLOCATION
continued from page 26

http://www.sigs.com

The Smalltalk Report2

H
’ —do you
ever use become: in your applications? What
twigged the issue was the fact that, for a long
time now, our training materials have includ-

ed an application that makes use of the become: op-
eration. It was written to illustrate the power of
Smalltalk and to introduce people to the issue of object
mutation. But we know that in our own software devel-
opment, we rarely use it; we’re sure that’s true of others
as well. The question is, why not? And if it’s not to be
used, then should vendors con-
tinue to support it?

For those of you who may not
be familiar with become:, it is de-
fined as an instance method in
the class Object. The intention of
the message send “object1 be-
come: object2” is to mutate object1
into object2. However, there are
two different implementations
found in the various Smalltalks.
Visual Smalltalk’s implementa-
tion has always had the effect that
all references to object1 are made references to object2;
object1 is left with no references and is therefore gar-
bage collected. IBM Smalltalk for Windows and OS/2
provide similar behavior. VisualWorks, on the other
hand, implements a become: that swaps the references
between the two objects—all the original references to
object1 become references to object2, and all the origi-
nal references to object2 are made references to object1;
neither object gets garbage collected.

This, of course, leaves you with radically different
behavior for the same message, which is one obvious
reason for not using become:. The classic example of
this problem is someObject become: nil yields radically
different results! Another reason for the lack of use
of become: is historical. Early implementations of
Smalltalk did not always yield the expected results
and/or perform well at all. As a result, many gave up
on the operation and found another approach.

But the question still lingers—even if the issues list-
ed were resolved, would it be appropriate to make use
of become:? The answer, of course, is “it depends…”.

The real issue is there are two different interpretations
of what become: really means in an application. A
statement such as “with become:, you can make an
elephant become a mouse” is not appropriate be-
cause the two objects are not related to each other in
any manner. This really represents replacement, not
mutation.

Another interpretation of become: is that it provides
a mechanism to allow an object to dynamically
change its behavior. Consider this statement: “As a

boy grows older, he becomes a
man.” The message become: can
be used in this context to model
the changing behavior of a per-
son. For example, mobility is
achieved by a young child
through crawling; an older child
walks. As a result, when the mes-
sage move Around is sent to a
person, the message is inter-
preted differently at different
ages. A possible implementation
would be to have a child object

actually mutate into an adult object. It is important
that the object decides to do this itself and does not
depend on other objects. This avoids code like self age
< 2 ifTrue: [self crawl] ifFalse: [self walk]. Although the
example is trivial, it is illustrative of the type of behav-
ior changes we require from an object.

So, is become: necessary? Probably. Applications do
exist where it would be beneficial and perhaps even
appropriate. But in the end we find it is a neat idea,
but for most problems we should find another solu-
tion. For example, in the person example cited, it’s al-
ways possible to introduce a generic Person object and
have them have roles or characteristics. So, a person
may either have child or adult characteristics and its
behavior is directly dependent on which characteris-
tics it has. These are nontrivial systems to implement,
but they give you the desired behavior.

As this is the Smalltalk Solutions issue, we hope
many of you take advantage of the conference. It’s the
best opportunity for Smalltalk to show off its success-
es. Please drop by and introduce yourself!

Editors’ Corner
Paul WhiteJohn Pugh

Here’s a technical question
for you—do you ever use

become: in your
applications?

http://www.sigs.com

May 1996 1

Table of Contents
May 1996 Vol 5 No 7

Features
Tactical patterns for the real world: 4
Validation and informational patterns
Darrow Kirkpatrick
This series on patterns for working with domain models continues, with
a focus on patterns for validating objects and for managing status and
validation messages.

Equality versus identity 10
Bobby Woolf
Experienced Smalltalk programmers know the difference between object
equality and object identity—but what does it mean in terms of logical
programming?

Deep in the Heart of Smalltalk 14
The active life is the life for me!
Bob Hinkle & Ralph E. Johnson
Active variables allow programmers to monitor all
accesses to object state on a per-object basis.

Getting Real 21
Configuring server Smalltalk
Jay Almarode
Configuring and tuning multi-user, server Smalltalk systems is very
different from tuning single-user client Smalltalk applications.The tools
available for monitoring statistics can be invaluable in this process.

Managing Objects 23
Beware the octopus
Jan Steinman & Barbara Yates
If your organization has system diagrams with a
bunch of circles connected by lines to a central circle,
it may not be ready for object thinking.

Departments
Editors’ Corner 2

CONFERENCE OVERVIEW

Smalltalk Solutions ’96: 27
Progress and new challenges

Product News 30

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, monthly except in Mar–Apr, July–Aug, and Nov–Dec. Published by
SIGS Publications Inc., 71 West 23rd St., 3rd Floor, New York, NY 10010. © Copyright 1996 by SIGS Publications. All rights reserved.
Reproduction of this material by electronic transmission, Xerox or any other method will be treated as a willful violation of the US
Copyright Law and is flatly prohibited. Material may be reproduced with express permission from the publisher. Bulk rate U.S. postage
paid Lancaster, PA, permit 161. Canada Post International Publications Mail Product Sales Agreement No. 290386.

Individual Subscription rates 1 year (9 issues): domestic $89; Mexico and Canada $114, Foreign $129; Institutional/Library rates:
domestic $199, Canada & Mexico $224, Foreign $239. To submit articles, please send electronic files on disk to the Editors at 885
Meadowlands Drive #509,Ottawa,Ontario K2C 3N2,Canada,or via Internet to streport@objectpeople.on.ca.Preferred formats for figures
are Mac or DOS EPS,TIF,or GIF formats.Always send a paper copy of your manuscript, including camera-ready copies of your figures (laser
output is fine).

POSTMASTER: Send domestic address changes and subscription orders to: The Smalltalk Report, P.O. Box 5050, Brentwood, TN 37024-
5050. For service on current domestic subscriptions call 1.800.361.1279 or fax 615.370.4845. Email: subscriptions@sigs.com. For foreign
subscription orders and inquiries phone +44(0)1858.435302. PRINTED IN THE UNITED STATES.

Columns

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS Publications Advisory Board
Tom Atwood, Object Design
François Bancilhon, O2 Technology
Grady Booch, Rational
George Bosworth, ParcPlace-Digitalk
Jesse Michael Chonoles, Lockheed Martin ACC
Stuart Frost, SELECT Software
Adele Goldberg, ParcPlace-Digitalk
Thomas Keffer, Rogue Wave Software
R. Jordan Kriendler, IBM Consulting Group
Thomas Love, Consultant
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Cliff Reeves, IBM
Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

The Smalltalk Report
Editorial Board

Jim Anderson, ParcPlace-Digitalk
Adele Goldberg, ParcPlace-Digitalk
Reed Phillips
Mike Taylor, ParcPlace-Digitalk
Dave Thomas, Object Technology International

Columnists
Jay Almarode, GemStone Systems Inc.
Kent Beck, First Class Software
Juanita Ewing, ParcPlace-Digitalk
Bob Hinkle, Consultant
Tim Howard, FH Protocol, Inc.
Ralph E. Johnson, University of Illinois
Alan Knight, The Object People
Mark Lorenz, Hatteras Software, Inc.
Jan Steinman, Bytesmiths
Rebecca Wirfs-Brock, ParcPlace-Digitalk
Barbara Yates, Bytesmiths

SIGS Publications Group, Inc.
Richard P. Friedman, Founder, President, and CEO
Hal Avery, Group Publisher
John McCormick, Editorial Director

Editorial/Production
Elizabeth A. Upp, Managing Editor
Elisa Varian, Director of Manufacturing
Andrea Cammarata, Art Director
Seth Bookey, Assistant Managing Editor
Dan Olawski, Production Editor
Sue Mycka, Desktop Designer
Margaret Conti, Advertising Production Coordinator

Circulation
Elayne Glick, Circulation Director
Lawrence E. Hoffer, Marketing Manager
Byron Scarlett, Assistant Circulation Manager

Advertising/Marketing
Gary Portie, Advertising Manager, East Coast/Canada/Europe
Elisa Marcus, Advertising Manager,Central US
Michael W. Peck, Advertising Representative
Kristine Viksnins,West Coast Exhibit Sales
Sarah Olszewski, East Coast Exhibit Sales

212.242.7447 (v), 212.242.7574 (f)
Diane Fuller & Associates, Sales Representative,West Coast

408.255.2991 (v), 408.255.2992 (f)
Nancy Beuschel, Promotions Manager for Magazines

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Senior Accounting Manager
Bibi Budhram, Accounts Payable

Publishers of JOURNAL OF OBJECT-ORIENTED
PROGRAMMING, OBJECT MAGAZINE, C++ REPORT,
THE SMALLTALK REPORT, THE X JOURNAL, REPORT
ON OBJECT ANALYSIS & DESIGN, JAVA REPORT,
OBJECT CURRENTS (ONLINE), OBJECT EXPERT (UK),
and OBJEKTSPEKTRUM (GERMANY)

SIGS
PUBLICATIONS

The Smalltalk Report4 http://www.sigs.com

P series of articles on patterns for
efficiently implementing and managing domain
models we looked at a family of patterns for dealing

with instantiation issues. Interior Decorator showed how
to share a set of useful behaviors that may be selectively
needed throughout a family of classes in a broad hierar-
chy. Epitome showed how to consolidate and share the
default values for an object’s attributes. Actuator showed
how to convert a constant attribute of an object to one
that can vary during the lifetime of the object.

In this issue we explore two additional families of pat-
terns: the first dealing with validation issues—checking
and protecting domain objects, and the second dealing
with informational issues—managing status and valida-
tion messages.

VALIDATION PATTERNS

Safeguard (Delayed Validation)

Problem. Where do you put complex validation logic; and
how do you prevent invalid domain objects from being
used?

Motivation. You want to allow user editing of a slope ob-
ject that represents the simple equation

slope=(elevation2–elevation1) / length.

You wish to encapsulate in the slope class the domain val-
idation rule that length may not equal zero, yet this means
allowing some domain models to take on illegal values for
length temporarily, so that it may be validated. You estab-
lish an overall domain model validation method, a
Safeguard, to be checked before any attempt is made to
calculate the model.

Applicability. Use this pattern when you need to validate
domain objects to catch data-entry errors or other logi-
cal errors that would prevent correct calculation, and
when the validation logic requires intimate knowledge

of the domain. It is particularly appropriate for top-level
validation of complex models with many interrelated
parts.

Solution. Associate complex validation logic with domain
classes by writing validation methods. Allow data that
may be invalid into the domain, but guard calculations
with a validation method.

Implementation. Write a public validation method called
#isValid for use by clients, delegating to a private #validate
method that may be overridden by domain subclasses.
The public method should reset error flags as necessary
before the specific validation is invoked, and answer the
result of the validation:

isValid
“Answer a Boolean, whether this object is currently valid.”
^self

clearErrorFlag;
validate;
isErrorFlagSet

validate
“Test all aspects of this object for validity and if any

fail set the error flag.”
length > 0 ifFalse: [

self setErrorFlag]

Consequences. This pattern encourages the programmer
to keep validation code near the domain state that it pro-
tects, improving encapsulation. But to maintain valida-
tion logic in the domain means you must allow bad data
into the domain temporarily, and validate it later. A
benefit of applying this pattern is that expensive valida-
tion occurs only on demand, rather than whenever there
is a change to the model (which can be slow), or when
indicated by a modified flag (which can be hard to main-
tain). A drawback is that clients must remember to check
for validity before using the model.

Tactical patterns for the
real world: Validation
and informational patterns

Darrow Kirkpatrick

Related Patterns. An alternative to this pattern is to use a
Memento1 to copy the domain object and make that
Memento instead of the object available for editing. The
Memento can then be validated before it is applied to the
domain object. The drawback to this approach is the ten-
dency of validation code to drift out of the domain into
interface or broker classes.

See Verdict for more discussion of how the messages
that result from validation may be managed. The #isValid
method is an example of Template Method.

DEFLECTOR (DEFENSIVE SETTER)

Problem. How do you prevent attributes of certain classes
from ever taking on illegal values?

Motivation. You maintain a global help level that user
interface elements check to determine how much help
and functionality they should reveal. Rather than require
those clients to deal with illegal values, it is convenient to
force the help level to remain within a certain range. To
guarantee this range you implement a help level setter
method that rejects illegal values, and you require all
clients to use it.

helpLevel: anInteger
“Set the help level for the system to the passed integer,

if it is valid.”
(anInteger between: 1 and: 3)

ifTrue: [helpLevel := anInteger].
^helpLevel

Applicability. Often in a running system an attribute can be
set from many different sources, such as the user interface,
client code, or an initialization file. Some of these sources
may be unreliable, yet the attribute must never become
invalid. Use Deflector when attributes of critical objects
must never take on illegal values and there is no opportuni-
ty to perform interactive validation before the value takes
effect. The client that is setting the attribute does not
require that the operation succeed for the system to remain
stable, and is not prepared to handle an exception.

Solution. Perform validation against the passed value in
the setter method itself. If the value is invalid, simply do
not set it. There is no exception or error return. The cur-
rent value of the attribute is always returned.

Implementation. Move validation code to the lowest level
in the object implementation. If extra performance or
bypassing validation are sometimes required, consider
implementing a second, low-level, “basic” accessor that
performs no validation before setting the attribute.

Consequences. This pattern leads to robust but possibly
obtuse behavior. Because there is silent validation of
attributes, users will be protected from—but not notified
of—error conditions. Because there is some overhead to
perform validation in accessors, this pattern is not appro-
priate for performance-critical code.

Related Patterns. Deflector is an example of early valida-
tion; Safeguard is an example of late validation.

VALIDATER (CONFIGURABLE VALIDATION)

Problem. How do you provide default validation of do-
main attribute values, while allowing end users to modify
default validation logic safely?

Motivation.Youaredesigningasystemthatmodelstheflow
of water, requiring a specific gravity to characterize the
water. In certain situations it may be possible for an expert
to use the system to model the flow of other kinds of fluids.
To protect novice users you implementa defaultvalidation
tocheckvaluesenteredforspecificgravityagainsttherange
of legal values for water. However you objectifythat valida-
tionas a persistent, editableobjectso thatexpert usersmay
configure the systemto acceptvaluesfor otherfluids.

Applicability. Use the Validater pattern when you wish to
implement domain validation rules that can be relaxed or
adjusted by the end user. The user-configurable portion
of the rules must be represented by values that can be
edited in a running program. The pattern as described
here is for field-level attribute validation, such as range-
checking, that requires no external context to perform.

Solution. Create an abstract validater class with concrete
subclasses embodying state and behavior for different
validation strategies.

Implementation. One approach to managing validaters
is to have domain classes maintain symbolic names to spec-
ify the type of validation each of their attributes should
receive. These symbolic names are keys into a global or pro-
ject-level dictionary of available validaters. Have the object
that is responsible for accepting edited attribute values—
perhaps an Adapter—pass those values to the associated val-
idater object for approval before being committed.

It may be convenient to have validaters share the same

The Smalltalk Report6

TACTICAL PATTERNS FOR THE REAL WORLD

http://www.sigs.com

NumericRange
Validater

StringLength
Validater

Validater

DomainModel

1

n
validates using

subclasses

subclasses

Figure 1. Validater class hierarchy.

May 1996 7http://www.sigs.com

protocol as code blocks, so they can be used interchange-
ably. This way the same client code can perform valida-
tion with runtime-specified validaters, or with more com-
plex logic specified at development time via a block.

Consequences. This pattern assumes a more complex in-
teraction with the user. A view should be in control of the
validation process so the user can be notified and given
the opportunity to correct domain attributes that fail val-
idation. Also, you may need to provide separate editors
for each validater subclass that can be configured by the
user. The subtleties of editing validation parameters may
confuse some end users.

Related Patterns. Validaters are an example of the Strategy
pattern. They objectify different algorithms for perform-
ing validation, and make them interchangeable. Often a
Validater will be used by an Adapter that has responsibility
for interfacing between an editor and domain model.

Reviewing the three validation patterns, Validater is
another example of early validation, while Deflector is an
example of the earliest possible validation, and Safeguard
is an example of late validation. You might use Validater to
support editing domain attributes from dialogs where
field-level validation is required. You would use Deflector
to protect attributes which are subject to change from any
source, including other application code. And you would
use Safeguard when performance is critical, or more con-
text is needed to perform validation than is available from
the attribute value alone.

INFORMATIONAL PATTERNS

Verdict (Visitor Message Token)

Problem. How do you manage the results of a complex and
expensive validation across a series of domain objects so
that their status or validity may be queried at a later time?

Motivation. You are designing the solution of a large net-
work model. Each node in the network has associated
constraints that must be met in order for the solution to
be considered valid. If a node fails constraints the solu-
tion should proceed, but the failure must be stored so
the user can be notified. To accomplish this you design
the constraint checking algorithm to set a message sym-
bol, a Verdict, into any node that fails constraints. Later,
when the user inspects the node, the symbol is discov-
ered and converted into a message for display.

Applicability. Use this pattern when it is not possible to
interrupt validation, for example when validating domain
objects requires context from an external object during an
expensive traversal. And use it when the results of the val-
idation must be stored for later use, for example when dis-
play of result strings may needto happen in a dialog during
later editing of a domain object.

Usually it is an external, visiting object that leaves a to-
ken to be interpreted later. But rather than the visitor be-
ing another object, it might be a subclass that is providing
validation behavior to add a Verdict into the object’s mes-
sage collection as validation proceeds.

Solution. Create a facility for storing within each domain
objecta collection of zero or more symbolsthatindexintoa
global map of validation, warning, and error messages.
When a validation is performed—and problems are
found—add the appropriate symbols to the domain ob-
ject’s message collection. If there are no validation prob-
lems,removetheappropriatesymbolsfromtheobject’scol-
lection,if they have been addedduring a prior validation.

Implementation. A more flexible solution for managing
messages is to allow multiple categories by maintaining a
dictionary in the domain object whose keys are types of
messages (constraint, warning, and error for example),
and whose values are sets of symbols representing
specific messages. If a message dictionary is used, sub-
classes and clients can add their own message categories.

Consequences. This pattern moves validation behavior out
of low-level domain objects into higher-level objects.
Because of the threat to encapsulation this may not
always be desirable, though it can be essential if addition-
al context is required to perform the validation.

Applying this pattern throughout a domain hierarchy
may result in wasted space if many objects don’t need to
maintain validation messages, especially if message cate-
gory dictionaries are used. Consider applying the Interior
Decorator pattern to save space. Note that the need to re-
move message tokens once objects are valid requires ad-
ditional logic and can be prone to subtle bugs.

Related Patterns. A Verdict may be left by a Visitor perform-
ing validation. Or, subclasses may add Verdict messages by
overriding portions of a validation implemented by a
Template Method. A Safeguard method may use the pres-

aStreaming
StatusLog

anInteractive
StatusLog

aNetworkModel

aNodeModel

(2) watch: aNodeModel

(4) putLine: aString

(1) logFor: aBlock

(3) calculate

(5) putLine:

(5) putLine:

Figure 2. Ticker Tape object messages.

ence of a Verdict message to indicate that the domain
object is not valid.

TICKER TAPE (STATUS MESSAGE LOG)

Problem. How do you collect status information from a
lengthy domain operation involving thousands of objects,
none of which have visibility to the user interface?

Motivation. You are designing a com-
plex network calculation. When
standalone test suites are run during
development, no status information
is desired. However, when a user
interface is present and calculations
are occurring
at runtime, feedback to the user is
essential. Therefore you implement a
publish and subscribe mechanism
for domain model messaging. Domain models trigger
messages as they calculate. Clients may subscribe to, col-
lect, and present those messages if they wish.

Applicability. Use this pattern when one or more domain
objects must perform a lengthy or complex operation for
which status information may not always be desirable,
and the formatting of the status information is a function
of individual domain objects.

This pattern is also useful for debugging and tracing,
and any time that status information must be collected
for filtering or presenting later. It is not appropriate when
heavy formatting or graphics are required—such as for
WYSIWYG reporting.

Solution. Create a simple low-level protocol in domain ob-
jects for outputting formatted strings. The protocol should
simply trigger an event with the string as argument. Create
a family of status log classes that can subscribe to these
events and present the status information with various
levels of formatting and interactivity.

Implementation. The fundamental methods required are:
Model >> #logFor: aBlock to establish a status log for the

duration of aBlock. This method is implemented in the top
level domain object, which is performing the lengthy

operation. The method is responsible for instantiating the
status log, traversing all the lower-level domain models so
the log can subscribe to their events, evaluating the block
(causing the lengthy operation to proceed), and then tra-
versing again so the log can drop the models.

StatusLog >> #watch: aModel and StatusLog >> #drop:
aModel in the status log object to subscribe to and cancel
receiving the status events triggered by a domain model.

Model >> #putLine: aString to trigger
the status event from the domain
object. (Use a method of the same
name to output the text in the status
log.)

Consequences. Note that hooking up
numerous domain object events to
handlers in the status log object and
releasing them afterwards may be
expensive, but is relatively fast com-

pared to the long operations for which this pattern is
appropriate.

Related Patterns. Ticker Tape uses the Observer pattern to
implement a publish and subscribe mechanism: the do-
main models are the subjects and the status logs are the
observers.

COMING UP
The concluding article in this series presents a family of
patterns for dealing with optimization issues—imple-
menting domain models that must perform well even
though they incorporate extra levels of indirection to be
persistent or transient.

Reference
1. Gamma, E. et al., Design Patterns, Addison-Wesley, Reading, MA,

1994.

Darrow Kirkpatrick is Vice President of Research and Develop-
ment at Haestad Methods, Inc., which specializes in numerical
modeling for hydrology/hydraulics, and has pioneered using
Smalltalk for shrink-wrapped Windows applications. Darrow
enjoys hunting for patterns while leading a team of software
engineers who have become experts at coaxing Smalltalk to per-
form in the real world. He can be contacted by phone at
203.755.1666 or by email at 75166.525@compuserve.com.

`
`

The Smalltalk Report8

TACTICAL PATTERNS FOR THE REAL WORLD

http://www.sigs.com

This pattern moves

validation behavior

out of low-level domain

objects into higher-level

objects.

http://www.sigs.com The Smalltalk Report10

O trickier concepts in Smalltalk is the dis-
tinction between object equality and object identi-
ty. Any experienced Smalltalk programmer knows

the difference: If two objects are equal, “=” (equal) returns
true; if they’re identical, “==” (double-equal) returns true
as well. But what does that difference actually mean in a
logical programming sense? Should you design your code
so that objects that are equal have to be identical? When
should your code test with equal ver-
sus double-equal? The difference
between equality and identity seems
to be like fine art: You can’t say what
it is exactly but you know it when you
see it. Even though you know what
it is, it’s very difficult to explain to
someone else who doesn’t know. Yet
understanding this difference is important if you want to
use Smalltalk well.

A METAPHORICAL EXAMPLE
This little story illustrates the difference. (I can’t take
credit for this story; it’s been floating around my compa-
ny for years.) A person sits down at a restaurant table
and notices the customer at the next table eating a deli-
cious plate of lasagna. When the waiter arrives, the per-
son points at the lasagna on the next table and says, “I
want that.” How should the waiter fulfill this request? He
could get another plate of lasagna just like it and serve it.
Or he could take the plate of lasagna away from the cus-
tomer at the next table and serve it to this person.

If the waiter brought a second serving,
the second plate of lasagna would be
equivalent to the first one. If the waiter
took the serving off the next table, the sec-
ond plate of lasagna would be identical to
the first one. In this context, equality
means that the two plates have the same
properties but are not the same plate.
Identity means that the two plates are real-
ly the same plate. The most practical dif-
ference is that two equal plates contain
two servings of lasagna; two identical
plates contain a total of one serving.

SIGNIFICANCE IN SMALLTALK
When two seemingly separate objects have the same iden-
tity, that means they’re really just two different handles on
the same object. A handle is a variable or literal you use to
access an object. The variable does not really contain the
object, it just containsa pointerto the object.It is oftensaid
that everything in Smalltalk is an object. It could also be
said that everything in Smalltalk is a pointer to an object.

You can never actually work with the
objects directly, you just work with
the pointers to objects. Because
everything is a pointer, there is never
a need to distinguish between a
pointer and the value itself.

POINTERS ARE SIMPLER
This explains some of the conventions that make
Smalltalk code different (and simpler) than other lan-
guages. In C/C++, for example, a variable yourPhone might
contain a PhoneNumber. If you copy yourPhone into
myPhone (myPhone = yourPhone), whether the variables
copy the value or share the same one depends on how the
variables are declared, as shown in Listing 1.

C/C++ allows/forces you to manipulate the pointers
specifically. Thus a programmer has to be careful to use
them properly; a mistake can cause serious, often subtle
bugs.

(By the way, you would not believe how much trouble
I had writing that C++ example. I spoke to a couple of
friends of mine who know C++ and told them the dilemma

Equality versus identity

Bobby Woolf

PhoneNumber myPhone, yourPhone; // declares two instances of
PhoneNumber

myPhone = yourPhone; // copies the PhoneNumber

PhoneNumber *myPhone, *yourPhone // declares two pointers,
// each points to a PhoneNumber

yourPhone = new PhoneNumber; // initialization
myPhone = yourPhone; // shares the PhoneNumber
*myPhone = *yourPhone; // copies the PhoneNumber

Listing 1.

What exactly makes
two objects equal is often

very subjective.

I was trying to illustrate. Our conversation then got
very complicated as they explained all the different
things that the programmer would have to consider.
Just trying to find a simple example that shows two
variables that share a single object versus copies of
the object was very difficult. Somehow I think that
the difficulty I had preparing this example does
more than the example itself to illustrate how com-
plex C/C++ can be!)

In Pascal, the programmer can declare a subroutine
parameter to receive a variable either by value or by refer-
ence. If the variable is passed by value, it is copied, which
is expensive for variables that contain a large amount of
data. However, since the subroutine has its own local copy
of the data, the subroutine can make all kinds of changes
to the copy. It knows that those changes won’t affect the
rest of the program outside the subroutine. If a variable is
passed by reference, the subroutine gets a pointer to the
same data that the rest of the program is using. This
pointer is inexpensive to create. However, the subroutine
has to be more careful about the changes it makes to the
parameter since those changes affect the original vari-
able’s data. Thus programmers that nonchalantly change
a parameter’s contents have to learn to be a lot more care-
ful whenever that parameter is passed by reference.

Smalltalk programmers do not need to make these dis-
tinctions between a value and a pointer to the value. Any
variable is just a pointer (see Listing 2).

So any Smalltalk variable declaration is equivalent to a
C/C++ pointer variable declaration. Whereas Pascal para-
meters can be passed by reference (pointer) or value
(copy), Smalltalk method parameters are always passed
by reference. If you want to copy a variable’s value in
Smalltalk, you need to explicitly send it a message like
copy. This makes Smalltalk’s syntax simpler, its intent
more explicit, and its code more consistent.

GARBAGE COLLECTION
Everything being a pointer helps explain how garbage col-
lection works: When nobody’s pointing to an object any-
more, it gets garbage collected. Every variable is a pointer
to a value. Code uses a variable as a handle to that object.
As long as an object has a pointer to it, some code has a
handle to access it, so it should not be garbage collected.
But once there are no more pointers to an object, no one
has a handle on it, so no one could access that object even
if they wanted to. Since no one can access the object, it
can safely be garbage collected and no one will miss it.

DISTINGUISHING OBJECTS
So how do you tell when two objects are actually the same
object? You use the messages “=” (equal) and “==” (equal-
equal or double-equal). Equal tells you whether two
objects are equivalent, meaning that they represent two
values where one is as good as the other. Double-equal
tells you whether two objects are identical, which is to say
that they are the same object. Equal tests for equality
whereas double-equal tests for identity.

Double-equal is easy to design and implement. The
double-equal method is defined in Object and cannot be
overridden in subclasses. (Technically, double-equal can
be implemented in subclasses, but the compiler ignores
those implementors so they are never executed.) The
implementation simply follows the two pointers to see if
they point to the same address in memory. Even if two
objects are alike in every possible way, if they’re two dif-
ferent objects, they’ll occupy two different locations in
memory. Thus, they’re copies: Changes to one are not
reflected in the other. Yet it can be very difficult to tell
them apart without changing them. The way to do this is
to test if they’re double-equal: Do they occupy the same
location in memory?

Why is it important to know whether two handles point
to the same object? Here’s a simple example:

| set1 set2 |
set1 := Set withAll: #(a b c).
set2 := set1.
set2 add: #d.

Transcript cr; show: set1 printString.
Transcript cr; show: set2 printString.

When the Sets are displayed, set2 obviously contains #d,
but does set1? Most new Smalltalkers would say that set1
does not contain #d because it was not sent “add: #d” like
set2 was. The surprise is that set1 does contain #d just like
set2 does because set1 and set2 are really two separate
pointers to the same object. This code proves it:

| set1 set2 |
set1 := Set withAll: #(a b c).
set2 := set1.
Transcript cr; show: (set1 == set2) printString.

The result, true, shows that the two variables are really the
same object. This is why when you change one of them,
the other changes as well.

VisualWorks will actually show
you an object’s address, sort of, if you send it the message
identityHash (previously called asOop). This returns a num-
ber that is unique for every object in the image. Thus two
objectswiththe sameaddressarereallythesameobjectand
have the same identity-hash.This is helpfulwhen you have
two objects in two separate inspectors and you want to
compare them to see if they’re the same object. You can’t
verywellusedouble-equal;whichinspectorwouldyou run
it in?But you cansend identityHash to each object and visu-
ally compare the results.

May 1996 11http://www.sigs.com

| myPhone yourPhone |
yourPhone := PhoneNumber

readFromString: ’212-555-1010’. ”initialization”
myPhone := yourPhone. ”shares the PhoneNumber”
myPhone := yourPhone copy. ”copies the PhoneNumber”

Listing 2.

WHAT IS EQUAL?
Although double-equal’s implementation is clear and
simple, equal’s is anything but. Surprisingly, many de-
velopers do not seem to recognize this dilemma. Even
for fairly oddball classes, programmers often think that
implementing equal is perfectly straightforward. In one
case, an experienced developer told me that if two views
have the same model, they’re equal (in his opinion).
Since these two views might be two different kinds of
widgets in two different windows, I had a hard time
thinking of them as equivalent. Thus I find that what
exactly makes two objects equal is often very subjective.

In VisualWorks, the most straightforward implemen-
tors of equal are in the
ArithmeticValue hierarchy. Es-
sentially, two ArithmeticValues (think
of them as Numbers) are equal if the
difference between them is zero.
Similarly, if Dates or Times represent
the same offset, they’re equal. So the
Magnitude hierarchy in general is
pretty clear-cut.

Then again, Characters are
Magnitudes, but what does it mean for them to be equal?
ParcPlace says that the two characters must be the exact
same one. However, couldn’t it be said that “A” is, in a
sense, equal to “a”? Maybe, maybe not (which helps
explain Character>> same As:). The point is not that
ParcPlace is wrong, but that when it comes to equal, the
obvious answer is not necessarily so obvious once you
think about it.

Consider the Collection hierarchy, the second-most fer-
tile source of implementors of equal. For two Collections to
be equal, they have to contain the same number of ele-
ments and the two elements in each position have to be
equal. This seems reasonable. However, this eliminates Sets
because they are unordered; two equal elements being in
the same position in the two Sets is just coincidence. It also
means that #(a b c) does not equal #(c b a); although the
elements are the same, the positions are different. Is it obvi-
ous that equal should work this way? Maybe, maybe not.

Most other classes that implement equal—and there
aren’t a whole lot of them—do so pretty unimaginatively.
They verify that both objects are of the same class/species
and that their instance variables have the same values.
Thus a BlockClosure is only equal to another BlockClosure
that has the same method, outer Context, and copiedValues.
Does that really happen a lot?

EQUALITY AND TYPE
For two objects to be equal, they have to be of the same
type. Objects which are not of the same type are not com-
parable, so they cannot be equal.

However, what constitutes a type in Smalltalk is un-
clear. For the purposes of determining equality, there are
four main ways of determining if two objects are the same
type:

• Are they instances of the same class? BlockClosure>>=

(in VisualWorks) first checks that both objects are
instances of the same class.

• Are they instances of the same species? Sequenceable
Collection>>= first verifies that the species of the two ob-
jects is the same.

• Are they instances from the same hierarchy? Interval>>=
first confirms that the second object isKindOf: Interval.

• Do they claim to be the same type? String>>= initially
confirms that the argument isString.

In each of these cases, equal makes sure that the two ob-
jects are of the same type by verifying that their classes are
equivalent. This check is the first one made; if it fails, all
other comparison is skipped.

Verifying that two objects are of the
same type before making any other
checks has an important benefit:
equal can be used to compare any
two objects and will not fail. If the
argument is not of the right type, it
will probably not understand the
messages equal sends to it. This
would cause a message-not-under-
stood or similar error. Thus every

implementor of equal should first verify that the receiver
and argument are instances of comparable classes.

EQUAL AVOIDS DUPLICATES
If you want to know whether two objects should be equal,
here’s the question to ask yourself: Should I be able to
store both objects in a Set, or should the second be con-
sidered a duplicate of the first? A Set is a collection that
eliminates duplicates. So what constitutes a duplicate? If
the object being added is equal to an object that is already
in the collection, the Set does not add the new object. This
eliminates duplicates.

If two objects are equal, they cannot be stored in a Set
together. If they’re unequal, a Set will not eliminate either
as being a duplicate of the other. So you can forget defin-
ing equal through logical semantics and theoretical dis-
sertations; the simplest answer is: Do you want to be able
to store them both in a Set? Of course now programmers
will argue the semantics of whether both objects should
be able to live in the same Set.

This also explains what an IdentitySet is. Whereas a Set
eliminates duplicate elements, an IdentitySet eliminates
identical elements. Thus a Set tests for duplication using
equal; an IdentitySet uses double-equal.

An IdentitySet is slightly more efficient than a Set
because double-equal is faster than equal. However,
using an IdentitySet to eliminate duplicates is dangerous.
The IdentitySet will eliminate duplicates as long as equal
and double-equal work the same for the objects in the
collection. Yet this will fail if another developer imple-
ments equal for these objects so that it works differently
than double-equal. Thus it’s safest to eliminate duplicates
using a Set. Use an IdentitySet to eliminate identical
objects, or to store objects where duplicates are guaran-
teed to be identical objects (such as Symbols).

The Smalltalk Report12

EQUALITY VERSUS IDENTITY

http://www.sigs.com

When it comes to equal,
the obvious answer is not

necessarily so obvious once
you think about it.

EQUAL IS DOUBLE-EQUAL
Because it is often not obvious what makes two objects
equal, the default implementor of equal is

Object>>= anObject
^self == anObject

Thus for most objects, they’re equal if (and only if) they’re
double-equal. If they don’t have the same identity, they
definitely don’t have equality. Which is to say that equali-
ty doesn’t make much sense for most objects. Identity
always makes sense, which is why it’s quite easy to design
and implement. Equality, on the other hand, just doesn’t
make much sense for most types of objects.

You should avoid implementing equal arbitrarily. A
standard protocol like equal is not very useful if its imple-
mentation is subjective and privy to the whim of the last
person to implement it. If the user of your class can’t tell
what equal does without looking at your implementation,
that method is not going to help him very much. In fact, it
will hurt him if he’s depending on all of the implementors
in a hierarchy working polymorphically.

HASH
There is an easily overlooked but significant comment in
VisualWorks’ default implementor of equal:

Object>>= anObject
“... If = is redefined in any subclass, consider also
redefining the message hash.”

This subtle suggestion is the only warning you get that
equal and hash go hand-in-hand. This is because the chief
user of hash (besides other implementors of hash) is
findElementOrNil:. This is the method Set classes use to put
an element in (add:) and find it again (includes: and
remove:). For example, the implementor in Set contains
these two lines:

Set>>findElementOrNil: anObject
...
index := self initialIndexFor: anObject hash

boundedBy: length.
[(probe := self basicAt: index) == nil or: [probe =
anObject]] whileFalse: ”keep looking”
...

Notice that anObject is being compared in two ways, hash

and equal. This means that if two objects are equal, they
need to hash to the same value. Otherwise, you could
store an item and its equivalent together in the same Set.

For example, let’s say you store “4.0” and “4” in a Set.
Since they have the same hash value, the Set looks in 4.0’s
position, sees that it’s equal to 4, and so doesn’t store 4. If
their hash values weren’t equal, the Set would look in
some other position, not find the 4.0, and store the 4 in
the first empty slot it comes to. Similarly, if 4.0 is in a Set
and you look for 4, you probably won’t find it unless they
have the same hash value.

By the way, the opposite is not true: two objects which
hash to the same value do not need to be equal. A Set will
avoid collisions more efficiently if unequal values have
different hash values. Yet even if they do have the same
hash value, the Set will handle the collision correctly be-
cause it realizes that they are not equal.

So whenever you implement equal, you should imple-
ment hash as well. If the implementor of hash is the same
as its super-implementor, you don’t need the new one,
but it’s important that you at least thought about it.

CONCLUSIONS
Here are the eight main points in this article:

• A handle is a pointer to an object. A variable is a handle.
• Everything is Smalltalk is a pointer to an object.
• Identity means that two handles hold the same object.
• Equality means that two handles hold equivalent

objects, but equivalency is fairly subjective.
• For two objects to be equal, they have to at least be of

the same type. Each implementor of equal should first
check that both objects are of the same type.

• A Set considers two objects duplicates if they are equal.
Duplicates in an IdentitySet are identical.

• Equality doesn’t make sense for most types of objects,
in which case equality is the same as identity.

• Two objects which are equal need to have the same
hash value.

In my next article, I’ll talk about three different types of
instance variables. One of these types is instrumental in
determining object equality.

Bobby Woolf is a Senior Member of Technical Staff at Knowledge
Systems Corp. in Cary, NC. He mentors Smalltalk developers in the
use of VisualWorks, ENVY, and Design Patterns. He welcomes your
comments at woolf@acm.org or at http://www.ksccary.com.

`
`

May 1996 13http://www.sigs.com

The Smalltalk Report14 http://www.sigs.com

A Smalltalk is an object, including
language elements like classes, methods, processes,
and contexts. Variables are a major exception to this

rule of thumb. While global and class variables are objects
in most implementations of Smalltalk, instance variables
and temporary variables are not. That’s too bad, because
instance variables have many uses as objects. (Making
temporary variables first-class seems less useful.)

For example, user interface widgets often wish to de-
pend on a particular attribute of an object. VisualWorks
has you represent these attributes with ValueHolders,
which are objects that hold a single value. If you store an
attribute in a ValueHolder, widgets can depend on the
ValueHolder and be notified when that attribute changes.
However, to change a design that doesn’t use ValueHolders
to one that does, you have to rewrite your program,
changing accesses to attributes stored in ValueHolders.
There are times when you want to keep the program as it
is, but just change the way you store the attribute. In other
words, you’d like to depend directly on a variable without
explicitly having to store a ValueHolder in it. This feature is
called active variables* and is very useful when you are
debugging and fine-tuning a program.

In this column we use VisualWorks 2.0 to implement
active variables in three steps. First, we define the class
ActiveVariable and show how to convert an object’s slots
to contain instances of it. Next, in the largest step, we
introduce a new class for an object containing one or
more ActiveVariables. Finally, we use a new kind of
MethodProducer to recompile methods in the new class.

ACTIVE IS AS ACTIVE DOES
To our knowledge, the first language to include active vari-
ables was LOOPS. Active variables descended to CLOS in
the form of access daemons on slots. We’re not the first to
implement active variables in Smalltalk (see Messick1 for
example), and our specification is similar to what others
have done. Our implementation of ActiveVariables is new,
since we use the GenericCompiler and MethodProducer de-
scribed in our previous columns. ActiveVariables satisfy the
following high-level specification:

Class: ActiveVariable
Superclass: Object
Important instance variables:
name <String>
value <Object>
readDependents <Set of 2-argument BlockClosures>
writeDependents <Set of 3-argument BlockClosures>
Important instance methods:
value

Return the ActiveVariable’s value, and also notify
readDependents.

value: anObject

Set the ActiveVariable’s value, and also notify
writeDependents.

The read dependents are two-argument blocks, whose
parameters are the ActiveVariable and its current value.
These blocks are evaluated whenever the message #value
is sent to the ActiveVariable, as follows:

Method for ActiveVariable

value
readDependents do: [:each | each value: self value:

value].
^value

Similarly, the write dependents are evaluated whenever

Bob Hinkle is an independent Smalltalk consultant and writer. His
current focus is the improvement of existing tools and the cre-
ation of new tools to revitalize the Smalltalk environment. He can
be reached at hinkle@primenet.com.

Ralph Johnson learned Smalltalk from the Blue Book in 1984. He
wrote his first Smalltalk program in the fall of 1985 when he
taught his first course on object-oriented programming and
design. He has been a fan of Smalltalk ever since. He is the only
author of “Design Patterns: Elements of Reusable Object-Oriented
Software” to regularly program in Smalltalk, and continues to
teach courses on object-oriented programming and design at the
University of Illinois.

Deep in the Heart of Smalltalk

The active life is the
life for me!

Ralph E. JohnsonBob Hinkle

* Source code for the active variables package is available by anony-
mous ftp from st.cs.uiuc.edu. Look for the file ActiveVariables20.st
in pub/st_vw.

May 1996 15http://www.sigs.com

#value: is sent to the ActiveVariable. They are three-argu-
ment blocks, whose parameters are the ActiveVariable, its
current value, and its old, over-written value:

Method for ActiveVariable

value: anObject
“This method needs to return the new (i.e., being set)
value, so the behavior is consistent when an
ActiveVariable set replaces a := expression.”

| oldValue |
oldValue := value.
value := anObject.
writeDependents do: [:each | each value: self value:
value value: oldValue].
^value

ActiveVariables are added to an object using #instVarAt:put:,
the primitive method that gives direct access to object
state. While this method is a gross violation of encap-
sulation, it’s required for Smalltalk programming tools
written in Smalltalk, such as the Inspector. We use the
phrase “activating an object” to describe the process of
adding ActiveVariables to the object’s slots, and similarly
define an “activated object” to be an object that has
ActiveVariables implicitly stored in some of its slots. Once
an object has been activated, its class must be changed,
and ideally the slot conversion and class change should
happen atomically, to prevent access errors. The object’s
new class has methods re-compiled to send #value and
#value: to access any activated slots. We show how to
create such a class in the next two sections.

ACTIVATED OBJECTS NEED ACTIVE CLASSES
Since an activated object needs specially compiled meth-
ods, it also needs a special class to store those methods.
Furthermore, this class must be distinct for different
objects, so that you can activate one of a class’s instances
without activating all of them. This kind of class, which
is distinct for individual objects, is called a lightweight
class, which we showed how to implement in Debugging
Objects.2 Activated objects are instances of ActiveClass,
which is a new subclass of LightweightClass that adds
specialized support for ActiveVariables. In addition, each
ActiveClass needs some information for each of its vari-
ables that is activated. A new object called ActiveVariable-
Specification maintains this information for the ActiveClass.
These two new classes are specified by

Class: ActiveClass
Superclass: LightweightClass
Important instance variables:
baseClass <Class>
activeVariables<Collection of ActiveVariableSpecifications>
Important instance methods:
activateObject: <Object>
Create and install ActiveVariables in slots of the Object corre-
sponding to the receiver’s ActiveVariableSpecifications.

activeVariables
activeVariableIndexes
Return respectively the collection of names and indexes of
this ActiveClass’ activated variables.
allActiveVariables
allActiveVariableIndexes
Return respectively the collection of names and indexes of all
activated variables in this ActiveClass and all of its transitive
superclasses.
convertInstancesTo: <ActiveClass> addedIndexes:
<Collection of SmallIntegers> from: <Behavior>
Convert any instances of the receiver to have the input
ActiveClass as their class. This involves changing their class,
adding ActiveVariables to any slots numbered in the input col-
lection, and recompiling methods that reference those slots.
noteNewActiveVariables: <Collection of

ActiveVariableSpecifications>
Stores any new ActiveVariableSpecifications in the active-
Variables instance variable and converts the receiver’s in-
stances to support these specifications.

Important class methods:
destroyAllActiveClasses
Eliminates all active classes and their instances
Class: ActiveVariableSpecification
Superclass: Object
Important instance variables:
name <String>

index <SmallInteger>
globalReadDependents <OrderedCollection of 2-argument

BlockClosures>
globalWriteDependents <OrderedCollection of 3-argument

BlockClosures>
localReadDependents <IdentityDictionary mapping

objects to 2-argument
BlockClosures>

localWriteDependents <IdentityDictionary mapping
objects to 3-argument
BlockClosures>

Important instance methods
addDependentsFrom: <ActiveVariableSpecification>
Merges the ActiveVariableSpecification’s dependents lists
into the receiver’s.
setDependentsOf: <Object>

Adds dependent blocks to the ActiveVariable in the Object’s
slot indicated by the receiver’s index instance variable. All
blocks from the global lists are added, as well as any associ-
ated with the Object in the local dictionaries.

setReadDependents: <Collection of 2-argument
BlockClosures>

setWriteDependents: <Collection of 3-argument
BlockClosures>

Respectively set the read- and write-dependent
collections for this specification.

ActiveClasses create a new distinction between two kinds of

LightweightClass. Originally, a LightweightClass acted as an
extension of an object’s original class. The LightweightClass
stood between the object and its original class, allowing
the object to inherit methods from the original class as
long as they weren’t over-ridden in the LightweightClass.
Most ActiveClasses will not be extensions of the original
class, but instead they will completely replace the original
class in the object’s look-up chain.

Figure 1 illustrates these two different arrangements.
In this example, aSet1 and aSet2 were both instances of
Set, whose superclass is Collection. An extension
LightweightClass named ExtensionToSet was created for
aSet1 and inserted between aSet1 and Set. A replacement
LightweightClass named ReplacementForSet was created for
aSet2 and inserted between it and Collection, effectively
removing Set from aSet2’s lookup chain. aSet1 responds to
#size using the method defined in Set, its original class,
since that method is not over-ridden in ExtensionToSet.
However, it responds to #isEmpty using the method
defined in ExtensionToSet (which could still refer to Set’s
method #isEmpty by a super send). On the other hand,
aSet2 responds to #size using the method from Collection.
It responds to #isEmpty using the method defined in
ReplacementForSet, which cannot access Set’s method
#isEmpty since Set is nowhere on Replacment ForSet’s
superclass chain.

There are two reasons why ActiveClasses are best imple-
mented as replacement LightweightClasses. First, significant
space can be saved when objects are activated from several
classes in one class hierarchy. If ActiveClasses were exten-
sions, and a DependentPart object and a CompositePart object
were activated, the DependentPart’s ActiveClass and the
CompositePart’s ActiveClass would bothhave recompiled ver-

sions of methods from their common superclasses. With
ActiveClasses implemented as replacements, though, the
two ActiveClasses would both inherit from an ActiveClass for
VisualPart, eliminating that method duplication. The sec-
ond justification is that extension classes must change the
way they compile methods that use super. Using the same
example, if a VisualPart method referencing super were
naively recompiled in the DependentPart’s ActiveClass, super
would refer to VisualPart and not Object. Using replace-
ments, the ActiveClass hierarchy parallels the original class
hierarchy, guaranteeing thatthemeaning ofsuperinrecom-
piled methods will remain correct.

Using replacements instead of extensions doesn’t re-
move all technical difficulties, of course. For example,
suppose three objects with the same class are activated,
only each activates a different subset of the class’s vari-
ables. How many ActiveClasses should be created? On one
extreme, we could create three ActiveClasses, one for each
object. Should another object of the same class be ac-
tivated in exactly the same slots, it could share the
ActiveClass of one of these three, but otherwise a new
ActiveClass would be required. This answer guarantees
that each ActiveClass minimally matches its instances’
needs for activation, but also has the potential to waste
space. On the other extreme is the solution we’ve adopt-
ed, which uses only one ActiveClass for every class. In the
above scenario, this ActiveClass will activate all slots need-
ed by any one of its activated instances. As a result, some
objects will have variables activated unnecessarily. This
will not cause any incorrect behavior, though it will
unnecessarily (but insignificantly, in our opinion) slow
the objects’ access to their variables. As another result, a
new instance variable named activeVersion is added to
Behavior, and thus to every existing and added class in the
system. This variable will either hold the Behavior’s
unique active version or nil if it has none. In addition,
we’ve added a number of new methods to Behavior. These
new additions are summarized by

Class: Behavior
Added instance variables:
activeVersion <nil | ActiveClass>
Added instance methods
activateObject: <Object>
variableIndexes: <Collection of SmallIntegers>
readDependents: <Collection of 2-argument
BlockClosures>
writeDependents: <Collection of 3-argument
BlockClosures

Installs ActiveVariables in all slots of the Object indicated in
the #variableIndexes: parameter. Adds the given read- and
write-dependents to these ActiveVariables. Changes the
Object’s class to an appropriate ActiveClass.

activeSuperclass

If the Behavior’s activeVersion isn’t nil, returns the active
Version’s superclass. Otherwise returns the Behavior’s
superclass.

The Smalltalk Report16

DEEP IN THE HEART OF SMALLTALK

http://www.sigs.com

Collection

Defines:
#size, #isEmpty

A normal Class

Set

aSet1 aSet2

Defines:
#size, #isEmpty

A normal Class

superclass

superclass

superclass

dispatchingClass

dispatchingClass

ReplacementForSet

Defines:
#isEmpty

A replacement LightweightClass

ExtensionToSet

Defines:
#isEmpty

An extension LightweightClass

Figure 1. The difference between extension and replacement
LightweightClasses.

buildActiveClassForVariables: <Collection of
ActiveVariableSpecifications>

buildActiveClassForVariables: <Collection of
ActiveVariableSpecifications>
from: <Behavior>

Do whatever work is necessary, which can sometimes be
quite a lot, to build an ActiveClass that activates all slots
indicated by the input collection.

buildActiveSuperclassForVariables:
<Collection of ActiveVariableSpecifications>

Obtains an ActiveClass for the Behavior’s superclass that ac-
tivates any variables in the input collection that are de-
fined in that superclass or higher.

You activate an object by sending it #activateVariables:
readDependents:writeDependents:. The first parameter is a
collection of variable names to be activated, and the last
two respectively are collections of read- and write-depen-
dent blocks to be registered for all the slots being activat-
ed. The implementation in Object forwards the message to
Behavior, which implements it as:

Method for Behavior
activateObject: object variableIndexes: indexCollection
readDependents: readBlocks writeDependents:
writeBlocks

| specs activeClass names |
names := self allInstVarNames.
specs := indexCollection collect: [:each |

self activeVariableSpecClass new
name: (names at: each) index: each;
setReadDependents: readBlocks for: object;
setWriteDependents: writeBlocks for: object].

activeClass := self buildActiveClassForVariables: specs.
activeClass activateObject: object

This method has three major steps, corresponding to its
last three statements. The #collect: loop creates an Active
VariableSpecification for each slot. A dependent registered
with an ActiveVariableSpecification can be associated with
one particular activated object, as is done above, or it can
be registered globally. With the latter option, you can
monitor all accesses to a particular variable across a
group of activated objects. The second step sends
#buildActiveClass ForVariables: to create an ActiveClass that
re-compiles all methods referencing variables in index
Collection. The final statement sends #activateObject: to the
active class, which is defined as:

Method for ActiveClass
activateObject: object

| oldActiveVariableIndexes newActiveVariableIndexes
names |

oldActiveVariableIndexes := object dispatchingClass
allActiveVariableIndexes.

(newActiveVariableIndexes := self
allActiveVariableIndexes)

removeAll: oldActiveVariableIndexes.
names := baseClass allInstVarNames.
newActiveVariableIndexes do: [:each |

object instVarAt: each put:
(self activeVariableClass

name: (names at: each)
initialValue: (object instVarAt: each))].

object changeClassToThatOf: self basicNew.
self allActiveVariables do: [:each |

each setDependentsOf: object]

The bulk of this message (up to the #changeClassToThatOf:
send) creates and installs ActiveVariables in the newly acti-
vated slots of the input object. It’s important to install
ActiveVariables only in newly activated slots, since other-
wise the code could produce limitless chains of nested
ActiveVariables. The initial value for each new ActiveVariable
is the old (non-active) value for the corresponding slot.
After the ActiveVariables are installed, the receiver be-
comes the activated object’s new class (and, as we men-
tioned before, this should ideally happen atomically with
the slot conversion).Finally, the ActiveVariableSpecifications
help initialize the newly activated object by copying their
read- and write-dependents for that object, as well as all
global dependents.

Behaviors respond to the #buildActiveClassForVariables:
message used above by sending themselves #buildActive
ClassForVariables:from: with the second parameter equal to
self. This method constructs an ActiveClass for a given set
of ActiveVariableSpecifications, which may require creating
ActiveClasses for superclasses or converting existing
ActiveClasses to support newly activated slots. Converting
an existing ActiveClass may require work on its subclasses,
since newly activated slots require the installation of
ActiveVariables and the re-compilation of all referencing
methods in the class’s instances and also in the instances
of any classes that inherit from it. Thus, the method that
does the conversion (which has the longish name
#convertActiveClassWithSuperclass:addNewActiveVariables:fr
om:) calls back to #buildActiveClassForVariables:from: again.
The sendingClass is passed in to ensure that every class
gets converted only once.

Method for Behavior
buildActiveClassForVariables: variableSpecs from:
sendingClass

| newActiveSuperclass |
newActiveSuperclass := self buildActiveSuperclass

ForVariables: variableSpecs.
self activeClass notNil

ifTrue: [self convertActiveClassWithSuperclass:
newActiveSuperclass
addNewActiveVariables: variableSpecs
from: sendingClass]

ifFalse: [self buildActiveClassWithSuperclass:
newActiveSuperclass

withVariables: variableSpecs].
^self activeClass

May 1996 17http://www.sigs.com

#buildActiveSuperclassForVariables: generates an ActiveClass
for the superclass if it defines any of the activated slots. It
does so with another send of #buildActiveClassForVariables:
from:, passing in the receiver as the sendingClass. The
superclass needs to know who originated the recursive
message to eliminate redundant operations during its
activation.

Method for Behavior
buildActiveSuperclassForVariables: variableSpecs

| superclassActivatedSlots |
superclassActivatedSlots :=

variableSpecs select: [:each | each index between:
1 and: self superclass instSize].

^superclassActivatedSlots isEmpty
ifTrue: [

self activeSuperclass]
ifFalse: [

self superclass
buildActiveClassForVariables:

superclassActivatedSlots
from: self]

The method #convertActiveClassWithSuperclass:addNewActive
Variables:from: is called from #buildActiveClassForVariables:
from: when the receiver already has an activated version.
It builds a new ActiveClass, figures out exactly which var-
iables are newly activated, and then converts instances
of the old ActiveClass to the new format using #convert-
InstancesTo:addedIndexes:from:.

Method for Behavior
convertActiveClassWithSuperclass: newSuperclass
addNewActiveVariables: variableSpecs from: sendingClass

| myActivatedSlots activeClass newActiveClass
addedIndexes |

myActivatedSlots :=

variableSpecs select: [:each | each index between:
self superclass instSize + 1 and: self instSize].

activeClass := self activeClass.
myActivatedSlots := myActivatedSlots, (newSuperclass

variableSpecsNotIncludedIn: activeClass superclass).
newActiveClass := activeClass copy.
newActiveClass

assignSuperclass: newSuperclass;
noteNewActiveVariables: myActivatedSlots.

addedIndexes := myActivatedSlots asOrderedCollection
collect: [:each | each index].

addedIndexes removeAll: activeClass
allActiveVariableIndexes ifAbsent: [].

activeClass
convertInstancesTo: newActiveClass
addedIndexes: addedIndexes
from: sendingClass.

activeVersion := newActiveClass

The variable myActivatedSlots contains the activated vari-
ables that are defined in the receiver, plus any newly
activated slots in newSuperclass. We need to allow for
active superclasses that activate more variables than we
request since every Class has just one ActiveClass version.
For example, suppose we activate the variable “icon” in
a ScheduledWindow and later activate the variables
“application” and “label” in an ApplicationWindow.
ApplicationWindow defines “application”, but its superclass
ScheduledWindow defines “label”, so the activation
process has to obtain an ActiveClass for ScheduledWindow
using #buildActive SuperclassForVariables:. This ActiveClass
will activate “label”, as desired, but it will also activate
“icon” because of the previous request. This technical
point is an easy one to overlook in an implementation.
(Or so we’d like to think, since we missed it in our earli-
est efforts!)

Figure 2 illustrates how activation spreads around the
class hierarchy and why it’s important to
identify the source of the
#buildActiveClassForVariables:from: mes-
sage. In the diagram, the dashed arrows
represent the superclass relationship, and
the thick arrows represent message sends.
If “widgetFlags”, “components”, and “con-
tainer” are activated for aBorderDecorator,
activation must spread up from
ActiveBorderDecorator to
ActiveCompositePart, where “components”
is defined, and to ActiveVisualPart, where
“container” is defined. When
ActiveCompositePart recompiles methods
to activate “container” and “components”,
it must also update all of its instances and
all of its transitive subclasses’ instances.
However, these activation echoes must
spread away from the
ActiveBorderDecorator ActiveCompositePart-
ActiveVisualPart branch, since their meth-
ods and instances will be converted as a

The Smalltalk Report18

DEEP IN THE HEART OF SMALLTALK

http://www.sigs.com

Defines variables:
model

ActiveDependentComposite
Defines variables:

controller

ActiveView

buildActiveClassForVariables:
from: ActiveCompositePart

buildActiveClassForVariables:
from: ActiveBorderDecorator

convertVarsToActive: convertVarsToActive:

convertVarsToActive:

buildActiveClassForVariables:

Defines variables:
container

ActiveVisualPart

Defines variables:
component, widgetFlags,

policy

ActiveBorderDecorator

aBorderDecorator

Defines variables:
components,

preferredBounds

ActiveCompositePart

Defines variables:
model

ActiveDependentPart

Figure 2. How activation spreads throughout the class hierarchy.

result of #buildActiveClassForVariables:from: sends active for
each of them. Thus, when ActiveCompositePart activates
“container” and“components”, it will send #convertVarsToA

ctive: to ActiveDependentComposite but not to Active-
BorderDecorator. Similarly, when ActiveVisualComponent
activates “container”, it will send #convertVarsToActive: to
ActiveDependentPart (and thus indirectly to ActiveView) but
not to ActiveCompositePart.

The method #convertInstancesTo:addedIndexes:from: is
used when an existing ActiveClass is changed by the addi-
tion of new ActiveVariables. It converts all the instances of
the old ActiveClass to the new one. The argument index-
Collection indicates the newly activated variables.

Method for ActiveClass
convertInstancesTo: newActiveClass addedIndexes:
indexCollection from: sendingClass

| templateObject instances |
(instances := self allInstances) isEmpty

ifFalse: [
templateObject := newActiveClass basicNew.
self convertIndexesToActive: indexCollection in:

instances.
instances do: [:each |

each changeClassToThatOf: templateObject].
newActiveClass updateInstanceDependentsIn:
instances].

self subclasses do: [:each |
each baseClass == sendingClass

ifFalse: [
each assignSuperclass: newActiveClass.
each withAllSubclasses do: [:sub |

sub updateInstancesForActivatedIndexes:
indexCollection]]]

The message #convertIndexesToActive:in: cycles through
the passed-in collection and creates an ActiveVariable for
each newly activated slot. Each instance then has its class
changed to the new ActiveClass. The #updateInstance-
DependentsIn: message iterates over the old ActiveClass’s
instances and adds the dependents from its ActiveVariable
Specifications. Finally, the old active class moves its sub-
classes (except for sendingClass) to the new ActiveClass. It
changes their superclass, and then has them and all of
their subclasses acti-vate the appropriate slots and
recompile methods that reference any newly activated
slots. This step, finally, is where the sendingClass parame-
ter is used. The sendingClass shouldn’t be converted, but
only other subclasses of the old ActiveClass. The
sendingClass subclass itself is processed in a
#activeClassForVariableSpecs:from: context lower down in
the execution stack. When that context resumes, that
sendingClass will be converted appropriately, so it’s vital
(to avoid duplicate ActiveVariables, for example) that it not
be converted here. Thus, as figure 2 showed, when class
activation flows up the class hierarchy, any activation
echoes flowing back down the hierarchy must flow away
from classes passed up as sendingClass parameters.

The method #buildActiveClassWithSuperclass:withVariables:
is called from #buildActiveClassForVariables:from: when the
receiving Behavior doesn’t already have an active version.

Method for Behavior
buildActiveClassWithSuperclass: newSuperclass
withVariables: variableSpecs

| myActivatedSlots |
myActivatedSlots := variableSpecs select: [:each |

each index between: self superclass instSize + 1
and: self instSize].

activeVersion := (ActiveClass newWithBase: self)
copyAllMethods.

myActivatedSlots := myActivatedSlots, (newSuperclass
variableSpecsNotIncludedIn:
activeVersion).

activeVersion
assignSuperclass: newSuperclass;
noteNewActiveVariables: myActivatedSlots

In ActiveClass>>copyAllMethods, the new ActiveClass copies
all methods defined in the receiving Class, which is its
base class. The new ActiveClass inherits from the super-
class determined earlier. In #noteNewActiveVariables:, the
newActiveClass stores ActiveVariableSpecifications in its
activeVariables instance variable and recompiles methods
accessing activated slots to use #value and #value:.

THE ACTIVE COMPILER
The process of converting active classes relies on the
#recompileMethodsReferencing: message, which is called
whenever an ActiveClass’ set of ActiveVariableSpecifications
changes.

Method for ActiveClass
recompileMethodsReferencingAny: indexCollection

| m |
self selectors do: [:each |

m := self compiledMethodAt: each.
(m usesAny: indexCollection)

ifTrue: [self recompile: each]]
This method recompiles any method of the receiver that
uses, by reading or by writing, any named slot whose
index is in the parameter indexCollection. This recompila-
tion ensures that all activated slots are accessed only by
#value and #value: sends. These #value and #value: access-
es are inserted by a special object called ActiveProducer.

ActiveProducer subclasses from the MethodProducers we
discussed in our previous two columns. It introduces a
new name scope, ActiveNameScope, which in turn creates
an instance of ActiveLocalScope for any ActiveClass. During
compilation, local name scopes create instances of sub-
classes of class Variable for each name in a parse tree. The
choice of subclass affects the code generated to access
the variable. For example, InstanceVariable emits primi-
tive bytecodes for direct instance access. StaticVariable,
which is used for global names, emits more specialized
code. When the compiler encounters a write to a vari-
able, it sends #emitStorePop:value:from: to the corre-

May 1996 19http://www.sigs.com

sponding Variable object. StaticVariable implements this
method as:

emitStorePop: codeStream value: value from: assignment
“Emit code to assign a value to the variable.”

self checkStore: codeStream from: assignment.
codeStream pushConstant: binding.
value emitValue: codeStream forAssignment:
assignment.
codeStream noteSourceNode: assignment.
codeStream sendNoCheck: #value: numArgs: 1.
codeStream pop

The underlined statements are the ones that actually gen-
erate code. The first generates bytecodes to push the
StaticVariable’s binding, which will be an Association, onto
the stack. The next causes the assigned value to generate
its own bytecodes. The third statement generates a #value:
message send, which will store the assigned value into the
Association’s value instance variable. ActiveLocalScope in-
stantiates a new class, ActiveInstanceVariable, to represent
active named slots. ActiveInstanceVariable overrides the
load- and store-emitting messages in a way similar to
StaticVariable. For example:

emitStorePop: codeStream value: value from: assignment
“Emit code to assign a value to the variable.”

self checkStore: codeStream from: assignment.
codeStream putLoadInst: index scope: scope.
value emitValue: codeStream forAssignment:

assignment.
codeStream noteSourceNode: assignment.
codeStream sendNoCheck: #value: numArgs: 1.
codeStream pop

This is the same as StaticVariable’s implementation except
for the underlined statement. In contrast to the Static-
Variable above, the ActiveVariable is accessed using the nor-
mal load for an instance variable. Since this method gen-
erates a #value: send, the #value: message will be sent
to the ActiveVariable at run-time, allowing it to store the
new value in its value instance variable and to alert its
writeDependents.

Because StaticVariables are compiled specially, they also
require special handling in the Decompiler. ActiveInstance-
Variables don’t require this as implemented, since they are
only supported by ActiveClasses, which never decompile
their methods. If you are interested in supporting
ActiveVariables on Classes, you will have to add analogous
special handling for ActiveVariables to the Decompiler.

CONCLUSION
The implementation we’ve described can be used to mon-
itor instance variable accesses on a per-object basis. That’s
useful in its own right, and in addition we’ll use active vari-

ables in our next column to implement watchpoints. Our
watchpoints will be arbitrary expressions you can enter
into a Debugger, which will then alert you if and when the
value of the watchpoint expression ever changes.

There are a few limitations of our implementation
that bear further investigation. Most notably, once an
active version of a class is created, there is no connec-
tion between methods in the Class and its ActiveClass.
Thus, you might change methods in or add methods to
the class, but these changes would not be reflected in
the ActiveClass. As a result of this limitation, you will
have to purge ActiveClasses periodically after you’ve
made programming changes. Some day we hope there
will be a detailed dependency mechanism that would
alert interested parties whenever a class’ definition
changes. (In fact, such a mechanism is one of the many
potential projects for a future column.) In that case, we
could use the dependencies to keep ActiveClasses in
synch with their base class. Another extension that you
may find interesting to attempt is to support the activa-
tion of indexed instance variables as well as named
instance variables. In some ways this is an easier prob-
lem, since indexed variables can only be accessed via
messages, but there are still some interesting issues
that must be resolved to integrate indexed variables
into our scheme.

We have three main goals when writing these columns.
First, we try to present projects that can help improve the
quality and productivity of Smalltalk programmers, and
we hope that you find these ActiveVariables useful for ex-
ploring and debugging your code. Second, we try to do
some interesting and perhaps unusual Smalltalkprogram-
ming, to give you an idea of the things that are possible. In
this column we leveraged the LightweightClasses and
MethodProducers of our previous articles to implement
ActiveVariables. We also showed another way to specialize
the compilation process for a very particular need. We
want to delve into the heart of the Smalltalk environment
to help you understand it better and see possible ways to
extend it for your own benefit. This month we spent most
of our time discussing new code, but in the process we
hope you learned a little about Behaviors and the compila-
tion process. Finally, we are interested in hearing from you
if you have comments or questions. Are we achieving our
goalsas far as you are concerned? Are there particularareas
of the environment you’d like to understand, or advanced
projects you’d like to see implemented? If you have any
thoughts or feedback, please send them to Bob Hinkle by
email at hinkle@primenet.com.

References
1. Messick, S. L. and K. L. Beck. “Active Variables in Smalltalk-80.”

Technical Report CR-85-09. Computer Research Lab, Tektronix,
Inc. 1985.

2. Hinkle, B., V. Jones, and R. E. Johnson. “Debugging Objects.” The
Smalltalk Report, (2) 9, July-Aug. 1993.

`
`

The Smalltalk Report20

DEEP IN THE HEART OF SMALLTALK

http://www.sigs.com

May 1996 21http://www.sigs.com

I , I’ve described major functional and perfor-
mance differences between client Smalltalk and server
Smalltalk. The client Smalltalk virtual machine oper-

ates as a single process that manages objects in virtual
memory. Server Smalltalk, on the other hand, operates
in a multi-process architecture where the domain of
objects can extend beyond the range of virtual memory.
Server Smalltalk must coordinate the creation, synchro-
nization, and termination of multiple processes that per-
form such tasks as: execute a user’s Smalltalk code, per-
form background garbage collection, coordinate multiple
users transaction activity, serve disk
pages to clients across a network,
and manage shared page caches. To
provide the needed performance,
server Smalltalk is implemented to
take advantage of the features of
server-class machines, such as
shared memory, asynchronous IO, raw disk partitions,
and SMP CPU configurations.

Obviously, configuring and tuning multi-user, server
Smalltalk systems is very different from tuning single-
user, client Smalltalk applications. In client Smalltalk
applications, the main considerations when tuning are
execution speed, runtime memory footprint, and image
size. When tuning server Smalltalk systems, additional
considerations are system-wide transaction throughput,
amount of data transfer to clients, and disk IO rates. The
design of the overall system configuration must consider
different hardware and operating system parameters,
such as the amount of swap space, file system buffers,
availability of raw disk partitions, the number of sema-
phores, or the amount of shared memory.

Due to the multiprocess nature of server Smalltalk, sys-
tem designers have a number of options when configuring
applications to run in a client/server environment. One
configuration option is deciding where to execute the
behavior of server objects. Each session that is logged into
the server has its own virtual machine process to execute
server object behavior. Therefore, applications can be con-
figured to create that process on whatever machine it
wants. One option is to link the session into the same

process as the client virtual machine. This means that both
virtual machines are executing within the same virtual
memory address space.

Another option is to have the session reside in its own
separate process, and communicate with the client
Smalltalk through remote procedure calls. This allows a
system designer to configure the system so that some ses-
sion processes reside on client machines, some on the
server machine, and others on a third machine. Note that
none of these configuration choices impact application
code. Application code does not need to know where the

execution of server object behavior
takes place, and the configuration
can be changed with no modifica-
tions to application code.
Figures 1—3 illustrate some possi-
ble configurations for the location
of the session processes. In Figure

1, a single session process is linked with the client process.
This makes for fast replication of server objects in the cli-
ent Smalltalk, but might cause much data transfer over
the network when many server objects are read or written.
In Figure 2, the session process is separate and resides
on the same machine as the client Smalltalk. This con-
figuration enforces data integrity because server objects
and client objects reside in different virtual memory ad-
dress spaces. If a bug in the client application should cause
random memory locations to be written with bad data
(sometimes called “wild stores”), the server objects are
protected by operating system features that prevent one
process from writing over another. Depending upon the
application, this configuration might sufferfrom too much
data transfer over the network as well.

In Figure 3, multiple session processes reside on the
same server machine. One client application has a sin-
gle session logged into the object server, while the oth-
ers have multiple
sessions logged in.
This configuration
enforces data in-
tegrity also, and
data access is faster
since the session
processes are on
the same machine
where the disks re-

Getting Real

Jay Almarode

Using Smalltalk since 1986, Jay Almarode has built CASE tools, in-
terfaces to relational databases, multi-user classes, and query sub-
systems. He is currently a Senior Software Engineer at GemStone
Systems Inc., and can be reached at almarode@gemstone.com.

Configuring server Smalltalk

Without the ability to
to gather statistics, tuning

is a shot in the dark.

Figure 1. Server and client virtual
machines linked.

Server Smalltalk
Virtual Machine

Client Smalltalk
Virtual Machine

side. The key advan-
tage of this configu-
ration is that many
sessionscan take ad-
vantage of a shared
page cache of ser-
ver objects. In most
applications, a large
percentage of ob-
jects are read only,
and fewer are actu-
ally written. In many
cases, multiple users
are reading the iden-
tical objects. Classes

and methods are prime examples of objects that are read
only during normal application execution. When multiple
sessions can share objects in the shared page cache, it saves
space and decreases access time, since common objects
remain in the cache. A shared page cache can exist on oth-
er machines as well; a shared page cache can be created on
any machine where a session process is to execute. In gen-
eral, it is goodpractice to createa shared pagecache on any
machine where more than one machine will execute.

There are a number of parameters to tweak when con-
figuring the multiple processes that make up server
Smalltalk. The three main kinds of processes in which to
configure memory requirements are the server process, the
shared page cache and its monitoring process, and the ses-
sion processes. For each kind of process, various statistics
are available to monitor and observe the effects of chang-
ing configuration parameters. In GemStone, you can get
statistics about various processes that make up the system
by executing the expression “SystemcacheStatistics:aProcess
Slot”. This message returns an array of information accord-
ing to the kind of process being described. To get a descrip-
tion of each element in the array, you can execute “System
cacheStatisticsDescription”. For statistics gathering purposes,
each process is assigned a process slot, and a process exe-
cuting Smalltalk code can get its own process slot by send-
ing System myCacheProcessSlot. Among the information that
you can retrieve for every kind of process is its process
name, process ID, session ID, page reads and writes, and

cache hits and misses. For the remainder of this column
I will discuss the configuration parameters of the three
main kinds of processes and describe the relevant cache
statistics for tuning performance.

The server process has a number of responsibilities,
including synchronizing the transactions of the clients,
arbitrating the locking of objects, and allocating object
identifiers for clients to use when creating new objects.
As the server allocates resources such as transaction rec-
ords, locks, or object identifiers to each session, it stores
this information in its private page cache. The size of this
private page cache should be adjusted according to the
number of sessions that are typically logged into the serv-
er most of the time. If the server’s private page cache is
filled up, then it overflows into the shared-page cache,
affecting the performance of other sessions.

There are a number of statistics that help measure sys-
tem throughput. For the server process, one can look at
the #TotalCommits statistic to get the total number of trans-
actions committed since the server process started. This
can be used to measure systemwide transaction through-
put. Another relevant statistic is the #NumberOfCommit
Records. This is the number of outstanding transaction
records that are currently being maintained by the server
process. A large number could mean that there is a long-
lived transaction that is preventing the server from re-
claiming resources allocated for sessions created later.

The shared-page cache is where multiple sessions share
pages of objects. When a session process needs to access
an object, it first checks to see if the page containing that
object is already in the cache. If so, it reads the page directly
from shared memory. If the page is not present, the process
reads it from the disk into the cache, where it becomes
available to other processes. When configuring the shared-
page cache, a system designer considers the total size of
the object repository, as well as the number of sessions
that will utilize the shared page cache simultaneously.

There are a number of statistics one can look at to mon-
itor the activity of the shared page cache. One statistic that
provides some indication of the utilization of the cache
is the #NumberOfFreeFrames. This is the number of unused
page frames in the shared page cache. Another statistic,
#SharedAttached, is the number of pages that are being uti-
lized by more than one process. This indicates the amount
of sharing in the cache.When pages in the shared cache are
written, they are scheduled to be written to disk when the
transaction commits. The statistic #GlobalDirtyPage Count
gives the number of pages in the shared cache that have
been modified, but are not eligible for writing to disk be-
cause they have not been committed yet. If this value is
large, then large transactions that write a lot of objects may
be taking up space in the cache, or the server’s private page
cache may be too small (so it is using the shared page cache
for the overflow). This statistic can be compared against
#LocalDirtyPageCount, which is the total number of pages
that have been modified and are eligible for writing to disk.

As described earlier, each session executes the behavior
of server objects with its own

The Smalltalk Report22

GETTING REAL

http://www.sigs.com

Figure 2. Server and client virtual
machines separate.

Server Smalltalk
Virtual Machine

Client Smalltalk
Virtual Machine

RPC

Figure 3. Server virtual machines sharing pages.

Client Smalltalk
Virtual Machine

Client Smalltalk
Virtual Machine

Server VM
Client VM

Server Smalltalk
Virtual Machine

Server Smalltalk
Virtual Machine

Server Smalltalk
Virtual Machine

Server Smalltalk
Virtual Machine

Shared
Page
Cache

continued on page 28

decide, ‘Why don’t we use something less complicated,
like C++.’”

The study STIC released last year found that compa-
nies adopting Smalltalk were more likely to have followed
a formal process in choosing a programming language. “If
we can get people to do real comparisons, then Smalltalk
has a significant advantage,” Phillips concluded.
“Smalltalk seems to have to fight its way into an organiza-
tion, but once it’s there, it does pretty well.” Smalltalk pro-
jects also were twice as likely to achieve their expected
goals. “The Smalltalk industry has the opportunity to
grow and prosper be cause of the successes that are there.
It’s a matter of getting the word out,” Phillips said.

To Adele Goldberg, the issue is not just teaching
Smalltalk, but teaching systems building as opposed to
programming. “Too many university computer science
curriculums stop at teaching data structures and algo-
rithms,” she said. It’s not surprising it so hard to recruit
people capable of building extensible, adaptable sys-
tems. “The most significant part about a system is that
once we start it up, there’s a maintenance issue. You want
it to run indefinitely.” And while people can learn the
syntax for programming in Smalltalk in an afternoon,
“they don’t get the systems building part,” Goldberg said.

Her solution is LearningWorks, a modified version of
the Smalltalk implementations she used to teach pro-
gramming to 12-year-olds. Its interface is organized into

a neat binder of several “books” used for system plan-
ning, experimentation, and development, and it feeds
students the modern Smalltalk class library a little at a
time. Using the internet as a medium for distributing
this free tool, she plans to have Open University students
collaborate on building LearningWorks systems as class
projects.

Students can start by experimenting with rehearsal
worlds that illustrate key concepts and provide a context
for exercises in organizing behaviors and allocating re-
sponsibilities, Goldberg said. Businesses could train their
employees by having them create LearningWorks books
that represent the essence of the company’s framework.

Reg Krock of the Ontario manufacturing firm Maksteel
was one of the people who approached Goldberg after her
talk to express interest in obtaining a copy of Learn-
ingWorks. “One reason is that we have a 67-year-old pres-
ident of our company. I could give that to him, and he
would actually play with it.”

Computer systems are the only part of the business that
Maksteel’s president doesn’t fully understand, which makes
it harder for him to manage, Krock said. “There’s always
been a language gap between the CEO and the CIO. What
I’d like to do is take some of the mystique out of it.”

David Carr is a freelance writer specializing in the object-oriented
programming industry.He can be reached at davecarr@pcnet.com.

`
`

The Smalltalk Report28

CONFERENCE OVERVIEW

http://www.sigs.com

virtual machine. Each session process has two caches in
which to access objects, in addition to the shared page
cache. One cache, called the temporary object cache, is
where new objects are created. As the execution of server
Smalltalk code causes new objects to be created, they are
created in a section of memory carved out just for that
purpose. This area of memory is garbage collected by gen-
erational scavenging techniques, since many newly creat-
ed objects die early and can be garbage collected soon
after their creation. If this cache should become full, then
some objects from it must be written to disk, where gar-
bage collection is more expensive. To determine the ap-
propriate size for the temporary object cache, a system de-
signer must consider the total size of all new objects
created during a single transaction.

The other cache utilized by the session is the private
page cache. This cache is a private area in which to read
and write pages of objects. This cache is usually small, since
the session primarily uses the shared page cache to read
and write objects. If the system is configured not to allocate
a shared page cache on the machine where a particular ses-
sion is executing, then its private page cache size should be
increased accordingly.

A session’s process can get a variety of information
about itself. To monitor garbage collection activity in
the temporary object cache, a session can get the #Time

InScavenges statistic to find out the CPU time spent per-
forming in-memory garbage collection, #NumberOf
Scavenges to find out the number of times the in-memory
garbage collector has been executed, or #NumberOfMake
RoomInOld Space to find out the number of times the oldest
generational space filled up (a large number may indicate
that the session’s temporary object cache size is too small).
A session can also find out how well it is using the shared
page cache. It can get the #NumberAttached statistic to find
out the number of pages that the process is currently using
in the shared page cache, and #LocalPageCacheHits and
#LocalPageCache Misses to find out how many times a page
was found or not in either the shared page cache or the
private page cache. A session can measure its transaction
activity by looking at the #NewObjs Committed statistic to
find out the number of newly created objects committed
by the most recenttransaction, and#NumberOfCommits and
#NumberOfFailed Commits to get a cumulative number of
successful or failed transactions since the session began.

The statistics described above are but a sampling of the
kinds of information to look at when configuring a multi-
user Smalltalk system. The key to successfully configuring
and tuning such systems is understanding the multi-
process nature of clients and servers, and how different
memory spaces and caches are used. Fortunately, tools
are available to gather these statistics over long periods of
time and then graph the results to analyze overall system
performance. Without the ability to gather statistics about
each process in system, tuning is a shot in the dark. `

`

GETTING REAL
continued from page 22

http://www.sigs.comMay 1996 23

W visit to MegaCorp the other day to see
how Aaron Blake’s new Smalltalk project was get-
ting on. We didn’t have much time with Aaron

before a major requirements meeting. There was some
small talk about the weather as we walked from reception
to the departmental meeting room, then Barbara asked,
“So, is everything fine with the project these days?”

“We’ve been attacked by octopi,” Aaron exclaimed,
shaking his head and throwing his hands in the air in
exasperation. He reacted to our puzzled looks only by say-
ing, “In a few minutes, you’ll see what I mean!”

MEGACORPUS CENTRALITIS
MegaCorp MIS Director Andrea Saunders, had just intro-
duced the first speaker, an owlish-looking accounting
type. He put a slide on the overhead. (See Fig. 1.)

“…and so in closing, I must stress that it is essential
that objectification of the central MegaCorp information
function must continue to support the Master Records
Processor module and the key report generational sub-
systems.” Several bobbing heads snapped to dazed atten-
tion as the lights came on.

“We will certainly keep the needs of Accounting in
mind as we proceed with the transition plan,” said An-
drea, “perhaps Jake can give us an idea on legacy mainte-
nance planning?”

“Accounting is certainly important, but it’s only one
piece of the picture,” Jake began as he placed his opening
slide on the overhead projector. (See Fig. 2.)

“I knew I was coming on after Linus, so I highlighted
accounting’s important part in this by coloring it red,”
Jake continued.

“Did you know the octopus turns red when it is angry?”
Aaron whispered during the presentation. “Linus and Jake

are always battling over what function is more central to
MegaCorp. It started a few years ago during down-sizing,
but it’s continued even through the good times.”

“The bottom line is that the MIS Infrastructure’s cen-
tral role in MegaCorp best enables it to be of service to all
departments during this period of transition to object-
oriented technology.” Jake returned to his seat as the
lights once again came on.

“Well, if there are no more questions for Jake,” Andrea
said, “I believe he has someone from his technical staff
here to show us some more detail—Jake?”

Jake half-rose from his seat, saying “Yes, Denny Hicks
is here today to show us the architecture we’re planning to
use during transition—take it away, Denny!”

Denny was your typical bright, but introverted, com-
puter nerd. He bashfully shuffled forward with his slides

Jan Steinman and Barbara Yates are cofounders of Bytesmiths, a
technical services company that has been helping companies
adopt Smalltalk since 1987. Between them, they have over 20
years Smalltalk experience. They do not bill for hours their cat,
Smalltalk, helps them with clients. They can be reached by
email at Barbara@Bytesmiths.com or Jan@Bytesmiths.com, or via
http:// www.bytesmiths.com.

Managing Objects

Beware the octopus
Barbara YatesJan Steinman

Accounting

Purchasing

Market
Research

Risk
Management

MIS
Infrastructure

Sales &
Orders

Figure 2. MegaCorp information systems requirements.

Accounts
Receivable

Accounts
Payable

Payroll

Employee
Records

Master
Records

Processor

Federal
Reports

Figure 1. MegaCorp accounting requirements.

in one hand and a trembling coffee mug in the other. Jake
helped him put his first slide on the screen. (See Fig. 3.)

“First, entry of a sale creates a sales record object,” be-
gan Denny with quavering voice, “which CIMPR” (Denny
pronounced it “simper”) “sends to the weekly receivables
report object and marketing report object, and logs it
againstthesalesman’semployeerecord object for commis-
sion tracking.”

“Look out, dofleini* everywhere!” whispered Aaron.
“I don’t know,” hissed Trigger Larsen, Aaron’s best tech-

nical whiz “It looks pretty vulgarus†
to me!” Aaron and Trigger shared an
interest in marine biology, but unfor-
tunately Trigger did not share Aaron’s
sense of polite discretion, nor was
he always able to leave things on
the racquetball court. Denny had
trounced him yesterday, and he was
still smarting.

“If those are objects, what kind of
behavior do they have?” Trigger
piped up. Heads turned, Jake
scowled, and Denny stammered and trembled, spilling
the cafeteria’s inky-black coffee on the diagram.

“Looks like our octopus is trying to hide,” murmured
Trigger, completely without remorse.

“Hush up and listen!” scolded Aaron, “You’ll be in the
hot-seat in a few minutes, and you’d better be prepared for
the issues these people are raising, which are just as valid
as they would be if they had a clue about objects!”

Denny actually managed to do quite well now that his
slides were ruined. The lights came on, he put his hands
in his pockets, stared at the ceiling, and briefly, simply
described the transitional system he and Jake had cooked
up. The key point was that they had struggled to decouple
data from processing. The legacy systems being phased
out were mazes of spaghetti, with in-line database calls
scattered everywhere.

“Looks good!” said Andrea, as she shot an icy glance at
Trigger. “Now Aaron is going to give us a run-down on the
end architecture that we’re shooting for.”

A CURE FOR CENTRALITIS
Aaron walked empty-handed to the front of the room
and turned off the slide projector. He began in a quiet
voice, and side discussions hushed as people strained
to listen.

“... are not best served by highly centralized functions,
but rather by a society of collaborating objects,” Aaron
began. “Objects are specialists, and we’re going to have to
change not only our technology, but our whole way of
thinking about our business functions and processes.

Linus, your reports are vital to you
and the departments you serve, but
we must learn to think of them as
transient artifacts—mere side-
effects of the communication be-
tween objects.”

“Jake, you know the PC revolution
is turning things up-side down. We
will need to distribute data process-
ing for marketing, sales, purchasing,
and accounting over a variety of
platforms in different departments.

You’ve already taken the first step, by separating the what
from the how, but now we’re going to have to put them
together again in much smaller pieces, so MegaCorp isn’t
dependent on a central MIS group. Don’t worry about
jobs, though— there’s going to be plenty of work to do!
But we’re going to be much more effective at doing it
by using Smalltalk for distribution of right-sized com-
ponents.”

“How many salesmen don’t have a pretty good idea
what their commission is? Denny, wouldn’t it be nice if
the SalesAgent object made the sale, and told a
MarketWatcher object about it, who would go around
gathering up similar data from other SalesAgents? Then
all you’d have to do is query the MarketWatcher whenever
you wanted to, even if the machine that runs CIMPR
happens to be down!”

“We’re all making good progress here—sometimes it
takes many little steps to make a big change. But remem-
ber that the weaknesses of centralized processes are what
caused us to look at Smalltalk in the first place!”

“Thank you, Aaron!” Andrea smiled. She was glad she
put him on last, even though everybody came to the
meeting wanting to find out what all this Smalltalk stuff
was all about. Leading with the new would have been dis-
aster, because people view the new through old biases,
but by letting them voice their concerns early, she was
able to assure them that there was a path forward.

The meeting broke up, and Barbara, Jan, Aaron, and
Trigger headed over to the nearby Red Coach (affection-
ately called the “Dead Roach” among MegaCorp cogno-
scente) for lunch.

“What’s the special today,” Aaron asked the waitress.
“Calamari,” she replied. “No thanks!” we all shouted in

unison, then burst out laughing. She looked at us as if we
were from Mars, saying “Why don’t you take a few more
minutes to decide; I’ll be right back.” `

`

The Smalltalk Report24

MANAGING OBJECTS

http://www.sigs.com

Payment
Record

Marketing
Report

Sales
Record

Employee
Record

CIMPR

Receivables
Report

Figure 3. Central information management processing resources.

“We’re going to have
to change not only our

technology, but our whole
way of thinking about
our business functions

and processes.”

* Octopus dofleini is the giant North Pacific octopus.

† Octopus vulgarus is the much smaller common octopus.

The Smalltalk Report2

A
 PP-D merger, Small-

talkers could be forgiven for looking forward
to a period of relative quiet and stability in
the industry. Not so! In a move that fur-

ther demonstrates IBM’s commitment to Smalltalk,
IBM acquired Object Technology International (OTI).
OTI will become an independent subsidiary of IBM
Canada.

IBM has been dependent on OTI technology since
the introduction of its VisualAge
for Smalltalk product. The prod-
uct uses OTI’s Smalltalk and also
OTI’s Envy technology for config-
uration management and ver-
sion control. So is this acquisition
good news for Smalltalk? Yes!
IBM now owns the technology on
which its product depends. More-
over, IBM gains access to one of
the leading groups of Smalltalk
researchers and innovators in the world. In partner-
ships with organizations like Siemens, Tektronix,
Texas Instruments, and Lockheed, OTI has demon-
strated that Smalltalk technology can succeed in do-
mains from banking to embedded systems. We expect
that OTI’s leadership will be very influential in setting
IBM’s future Smalltalk strategy. As one attendee at
Smalltalk Solutions put it, “Did IBM take over OTI or
did Dave Thomas take over IBM?” Either way,
Smalltalk is the winner!

Is there a downside to IBM’s acquisition? Possibly.
Many Parcplace–Digitalk customers, whether they
use VisualWorks or Visual Smalltalk, depend on OTI’s
Envy/Developer technology. Although ParcPlace-
Digitalk has announced its intention to incorporate
Team/V into its merged product, many long standing
clients will likely not wish to move to Team/V in the
short term. Envy support will be a requirement for
these folks for some time to come. In the spirit of
“competition but collaboration”, there seems every
indication from IBM that continued Envy support will
be forthcoming.

We have just returned from Smalltalk Solutions

’96 in New York City. We will be featuring reviews of
the conference from David Carr in this issue and
Alan Knight in the next issue, but here are a few per-
sonal observations. Attendance was up compared to
last year and the conference facilities were much
better. Plans are afoot for a European version of
Smalltalk Solutions to be held in 1997. The use of
Smalltalk is growing throughout many parts of
Europe but is particularly strong and mature within

the German-speaking countries.
A “Smalltalk-Abend” or birds-of-
a-feather session held during
OOP ’96 in Munich was attend-
ed by 320 conference attendees.
We’ll keep you informed as the
plans for Smalltalk Solutions
Europe unfold.

The sessions that attracted
the biggest attention dealt with
subjects like the Web (predict-

ably), distributed object computing, and server-
based computing with Smalltalk. Skip McGaughey
from IBM kicked off the conference with a keynote
describing the opportunities that exist for Smalltalk
as we enter the world of electronic commerce. A con-
stant theme throughout the talk was the message
that “We shouldn’t try to match the competition (Vis-
ual Basic, Delphi, PowerBuilder, Java, Forte) feature
for feature but rather concentrate as a Smalltalk in-
dustry on delivering business value to our custo-
mers.” The call for a low-end, cheap, less resource-
hungry, entry-level Smalltalk was one that resonated
throughout the conference. IBM, or at least Skip
McGaughey, seemed to have got the message.

Finally, some good news for readers of the Small-
talk Report: we will be expanding the number of edi-
torial pages in upcoming issues, which will allow us
to include more product reviews, book reviews, and
product news in addition to features and columns.
At Smalltalk Solutions, we conducted a reader feed-
back survey—thanks to those of you who con-
tributed. Expect to see some of your ideas appear in
future issues.

Editors’ Corner
Paul WhiteJohn Pugh

Did IBM take over OTI
or did Dave Thomas take

over IBM? Either way,
Smalltalk is the winner!

http://www.sigs.com

May 1996 27http://www.sigs.com

T S reconvened in New York this
March after a year of dramatic change. Since last
year’s Smalltalk Solutions, ParcPlace and Digitalk

merged, Easel became part of VMark, and OTI became a
wholly-owned subsidiary of IBM. Meanwhile, the Web
emerged as a potentially significant application devel-
opment tool, propelling Java into
position to challenge Smalltalk.
These changes and challenges fig-
ured in the keynote talks of IBM’s
VisualAge Marketing Manager Skip
McGaughey and STIC’s Executive
Director Reed Phillips, while Parc-
Place founder Adele Goldberg dis-
cussed Smalltalk as a teaching tool
for college students and computer
professionals.

Smalltalk is gaining worldwide
market acceptance as a solution for
serious business problems, according to McGaughey.
No other technology is as scalable and robust, “But
we’ve got to translate this rich technology into business
value.”

Global economic commerce is accelerating the pace
of change enormously. The trend is most obvious on the
World Wide Web, where fortunes are being made over-
night. McGaughey feels the value of that opportunity
is “almost unimaginable. It’s going to radically alter our
management, and how we live, how we work, and how
we play. Look what happened to Netscape.” The ex-
plosion of interest in the Web, in turn, has transformed
Java into a serious contender. “Java is going after not just
market; it’s going after mindshare,” McGaughey said;
Smalltalk needs to keep moving to stay competitive.

There are great opportunities overseas, McGaughey
said, citing projects in Turkey, Brazil, China, and the for-
mer Soviet Union. Another huge opportunity is a vast
number of legacy systems. In one bank alone, IBM found
54,000 date routines that need to be changed. “We esti-
mate there is $400 billion in code that needs to be rewrit-

ten between now and the year 2,000. Here is the chal-
lenge: why not rewrite them in Smalltalk?”

“IBM is absolutely, fundamentally, wholeheartedly
committed to Smalltalk,”McGaughey asserted. About
OTI’s acquisition: “We’ve set it up as a wholly-owned
subsidiary, but all the Smalltalk people in IBM now report

to (OTI President) Dave Thomas.
So maybe it’s the other way around
—that OTI acquired IBM.”

IBM recognizes that it needs
more successful partnerships like
the one with OTI, which produced
IBM Smalltalk. “We want to have
1,000 vendors out there building
parts and creating components, and
they have to know where we’re going.
For instance, Object Share is taking
out our visual programming envi-
ronment and putting in their own on

top of IBM Smalltalk.We have to enable our competitors
because they provide value.”

Smalltalk is going through a period of transition, enjoy-
ing unprecedented success at the same time that it is “be-
ing attacked from the bottom by Visual Basic, Delphi, and
Java,” he said. Different strategies are required now that
Smalltalk is coming into the mainstream. “We need to
send different kinds of messages to make different kinds
of sales. Instead of selling competitive advantage, we need
to sell, ‘This is safe, this will scale.’”

“We’re beginning to sell to a different kind of cli-
entele,” Reed Phillips agreed. “They don’t really like
technology, and they don’t like taking risks.” Those pro-
moting Smalltalk for corporate systems now point to
prominent success stories and provide more references,
he said.

Still, misperceptions persist. Outsiders see Smalltalk’s
performance as a major weakness, while only 2% of
Smalltalkers agree, he said. And many corporate pro-
grammers know so little about the language that it seems
too exotic to be a practical choice, “So a lot of people

Conference overview:

Smalltalk Solutions ’96:
Progress and new challenges

David Carr

The study STIC released
last year found that
companies adopting

Smalltalk were more likely
to have followed a formal

process in choosing a
programming language.

decide, ‘Why don’t we use something less complicated,
like C++.’”

The study STIC released last year found that compa-
nies adopting Smalltalk were more likely to have followed
a formal process in choosing a programming language. “If
we can get people to do real comparisons, then Smalltalk
has a significant advantage,” Phillips concluded.
“Smalltalk seems to have to fight its way into an organiza-
tion, but once it’s there, it does pretty well.” Smalltalk pro-
jects also were twice as likely to achieve their expected
goals. “The Smalltalk industry has the opportunity to
grow and prosper be cause of the successes that are there.
It’s a matter of getting the word out,” Phillips said.

To Adele Goldberg, the issue is not just teaching
Smalltalk, but teaching systems building as opposed to
programming. “Too many university computer science
curriculums stop at teaching data structures and algo-
rithms,” she said. It’s not surprising it so hard to recruit
people capable of building extensible, adaptable sys-
tems. “The most significant part about a system is that
once we start it up, there’s a maintenance issue. You want
it to run indefinitely.” And while people can learn the
syntax for programming in Smalltalk in an afternoon,
“they don’t get the systems building part,” Goldberg said.

Her solution is LearningWorks, a modified version of
the Smalltalk implementations she used to teach pro-
gramming to 12-year-olds. Its interface is organized into

a neat binder of several “books” used for system plan-
ning, experimentation, and development, and it feeds
students the modern Smalltalk class library a little at a
time. Using the internet as a medium for distributing
this free tool, she plans to have Open University students
collaborate on building LearningWorks systems as class
projects.

Students can start by experimenting with rehearsal
worlds that illustrate key concepts and provide a context
for exercises in organizing behaviors and allocating re-
sponsibilities, Goldberg said. Businesses could train their
employees by having them create LearningWorks books
that represent the essence of the company’s framework.

Reg Krock of the Ontario manufacturing firm Maksteel
was one of the people who approached Goldberg after her
talk to express interest in obtaining a copy of Learn-
ingWorks. “One reason is that we have a 67-year-old pres-
ident of our company. I could give that to him, and he
would actually play with it.”

Computer systems are the only part of the business that
Maksteel’s president doesn’t fully understand, which makes
it harder for him to manage, Krock said. “There’s always
been a language gap between the CEO and the CIO. What
I’d like to do is take some of the mystique out of it.”

David Carr is a freelance writer specializing in the object-oriented
programming industry.He can be reached at davecarr@pcnet.com.

`
`

The Smalltalk Report28

CONFERENCE OVERVIEW

http://www.sigs.com

virtual machine. Each session process has two caches in
which to access objects, in addition to the shared page
cache. One cache, called the temporary object cache, is
where new objects are created. As the execution of server
Smalltalk code causes new objects to be created, they are
created in a section of memory carved out just for that
purpose. This area of memory is garbage collected by gen-
erational scavenging techniques, since many newly creat-
ed objects die early and can be garbage collected soon
after their creation. If this cache should become full, then
some objects from it must be written to disk, where gar-
bage collection is more expensive. To determine the ap-
propriate size for the temporary object cache, a system de-
signer must consider the total size of all new objects
created during a single transaction.

The other cache utilized by the session is the private
page cache. This cache is a private area in which to read
and write pages of objects. This cache is usually small, since
the session primarily uses the shared page cache to read
and write objects. If the system is configured not to allocate
a shared page cache on the machine where a particular ses-
sion is executing, then its private page cache size should be
increased accordingly.

A session’s process can get a variety of information
about itself. To monitor garbage collection activity in
the temporary object cache, a session can get the #Time

InScavenges statistic to find out the CPU time spent per-
forming in-memory garbage collection, #NumberOf
Scavenges to find out the number of times the in-memory
garbage collector has been executed, or #NumberOfMake
RoomInOld Space to find out the number of times the oldest
generational space filled up (a large number may indicate
that the session’s temporary object cache size is too small).
A session can also find out how well it is using the shared
page cache. It can get the #NumberAttached statistic to find
out the number of pages that the process is currently using
in the shared page cache, and #LocalPageCacheHits and
#LocalPageCache Misses to find out how many times a page
was found or not in either the shared page cache or the
private page cache. A session can measure its transaction
activity by looking at the #NewObjs Committed statistic to
find out the number of newly created objects committed
by the most recenttransaction, and#NumberOfCommits and
#NumberOfFailed Commits to get a cumulative number of
successful or failed transactions since the session began.

The statistics described above are but a sampling of the
kinds of information to look at when configuring a multi-
user Smalltalk system. The key to successfully configuring
and tuning such systems is understanding the multi-
process nature of clients and servers, and how different
memory spaces and caches are used. Fortunately, tools
are available to gather these statistics over long periods of
time and then graph the results to analyze overall system
performance. Without the ability to gather statistics about
each process in system, tuning is a shot in the dark. `

`

GETTING REAL
continued from page 22

The Smalltalk Report30 http://www.sigs.com

VISUALWAVE SERVER
ParcPlace-Digitalk announced the shipment of its
VisualWave Server, an internet application server for
deploying client/server/web applications, and a corre-
sponding training course. Applications created with the
VisualWave Development Environment can be instantly
deployed across the enterprise in a client/server environ-
ment or to the World Wide Web. The product enables
deployment of mission-critical applications to the Web,
and reliable management of Web applications including a
fully dynamic environment, application management,
configuration and performance tuning, session manage-
ment, and support for standard Web servers. Features
include the capability to install or update applications
without interruption of service; the capability to maintain
session information for a unique user over many page
interactions; customizable URLs; and a wide variety of
configuration options for optimizing performance.

The VisualWave Server is available for Windows NT,
SunOS, Solaris, HP-UX, AIX, and DigitalUNIX and is priced
at $4,995. The 3-day training course is available for $1,275
per person in Sunnyvale, Portland, Chicago, and NewYork.
ParcPlace-Digitalk Inc., 999 E. Arques Ave., Sunnyvale,
CA 94086-4593, (v) 800. 759.7272 or 408.481.9090,
f: 408.481.9095; http://www.parcplace.com.

WINDOWBUILDER PRO/V 3.1
Objectshare Systems, Inc. announced WindowBuilder
Pro/V 3.1 forVisualSmalltalk 3.1. Highlightsof the new fea-

tures include support for Windows 95 controls, unlimited
undo/redo, support for model objects, pool dictionary
management, a portable window and font system, and
much more. WindowBuilder Pro/V 3.1 is now shipping for
VisualSmalltalk 3.1 for Windows (3.1, 95, and NT) and
OS/2.
Objectshare Systems,Inc., 5 Town and CountryVillage,
Ste. 773, San Jose, CA 95128-2026, 408.970.7280,
f: 408.970.7282

CORBA-COMPLIANT SMALLBROKER
IONA Technologies Ltd. and DNS Technologies Inc.
announced that IONA will distribute SmalltalkBroker, a
Smalltalk-based CORBA 2.0–compliant object request
broker and supporting development tools jointly devel-
oped by the two companies. SmalltalkBroker provides
interoperability between Smalltalk objects and other
objects such as C++ and Java.
IONA Technologies, Inc., 55 Fairbanks Blvd., Marlboro,
MA 01752,800.672.4948, f: 508.460.6099,
info@iona.com, http://www.iona.com

Product News

Product News are not reviews.They are abstracted from press releases provided by vendors, and
no endorsement is implied.
Vendors interested in being included in this feature should send press releases to The Smalltalk
Report, Product Announcements Dept., 885 Meadowlands Drive, #509, Ottawa, ON K2C 3N2,
Canada, 613.225.8812 (v), 613.225.5943 (f)

June 1996 1

Table of Contents
June 1996 Vol 5 No 8

Features
Smalltalk SQA: What to test? 4
Jeff McKenna
The need to develop processes and tools for software without sacrificing
high productivity is discussed.

A strategy for using instance variables 7
Bobby Woolf
Bobby presents some guidelines for using instance variables cleanly and
effectively. This helps improve commonly written code for initialization,
accessing, equality, persistence, and application layers.

Controlling image size when using GemStone 12
John Bentley
Controlling image size is important. These various replication schemes
can aid in performance optimization.

Tactical patterns for the real world: 18
Optimization patterns
Darrow Kirkpatrick
The third and final article in the series on patterns for working with domain
models presents patterns for dealing with optimization issues—handling
Smalltalk objects that must perform well, while incorporating extra levels of
indirection to be persistent or transient.

Managing Objects 20
Documents on the Web
Jan Steinman & Barbara Yates
The Web can be a powerful communication
tool, but like all tools, it can be misused.
Steinman & Yates demonstrate techniques

for offline HTML from your “hot” Smalltalk documentation.

The Best of comp.lang.Smalltalk 24
Smalltalk Solutions
Alan Knight
Knight reviews the recent Smalltalk Solutions Conference
and his impressions of the Smalltalk industry.

Getting Real 27
Multi-user canonicalization
Jay Almarode
Almarode demonstrates one approach for solving the
problem of canonicalization of objects using multi-user
Smalltalk.

Departments
Editors’ Corner 2

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, monthly except in Mar–Apr, July–Aug, and Nov–Dec. Published by
SIGS Publications Inc., 71 West 23rd St., 3rd Floor, New York, NY 10010. © Copyright 1996 by SIGS Publications. All rights reserved.
Reproduction of this material by electronic transmission, Xerox or any other method will be treated as a willful violation of the US
Copyright Law and is flatly prohibited. Material may be reproduced with express permission from the publisher. Bulk rate U.S. postage
paid Lancaster, PA, permit 161. Canada Post International Publications Mail Product Sales Agreement No. 290386.

Individual Subscription rates 1 year (9 issues): domestic $89; Mexico and Canada $114, Foreign $129; Institutional/Library rates:
domestic $199, Canada & Mexico $224, Foreign $239. To submit articles, please send electronic files on disk to the Editors at 885
Meadowlands Drive #509,Ottawa,Ontario K2C 3N2,Canada,or via Internet to streport@objectpeople.on.ca.Preferred formats for figures
are Mac or DOS EPS,TIF,or GIF formats.Always send a paper copy of your manuscript, including camera-ready copies of your figures (laser
output is fine).

POSTMASTER: Send domestic address changes and subscription orders to: The Smalltalk Report, P.O. Box 5050, Brentwood, TN 37024-
5050. For service on current domestic subscriptions call 1.800.361.1279 or fax 615.370.4845. Email: subscriptions@sigs.com. For foreign
subscription orders and inquiries phone +44(0)1858.435302. PRINTED IN THE UNITED STATES.

Columns

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS Publications Advisory Board
Tom Atwood, Object Design
François Bancilhon, O2 Technology
Grady Booch, Rational
George Bosworth, ParcPlace-Digitalk
Jesse Michael Chonoles, Lockheed Martin ACC
Stuart Frost, SELECT Software
Adele Goldberg, ParcPlace-Digitalk
Thomas Keffer, Rogue Wave Software
R. Jordan Kriendler, IBM Consulting Group
Thomas Love, Consultant
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Cliff Reeves, IBM
Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

The Smalltalk Report
Editorial Board

Jim Anderson, ParcPlace-Digitalk
Adele Goldberg, ParcPlace-Digitalk
Reed Phillips
Mike Taylor, ParcPlace-Digitalk
Dave Thomas, Object Technology International

Columnists
Jay Almarode, GemStone Systems Inc.
Kent Beck, First Class Software
Juanita Ewing, ParcPlace-Digitalk
Bob Hinkle, Consultant
Tim Howard, FH Protocol, Inc.
Ralph E. Johnson, University of Illinois
Alan Knight, The Object People
Mark Lorenz, Hatteras Software, Inc.
Jan Steinman, Bytesmiths
Rebecca Wirfs-Brock, ParcPlace-Digitalk
Barbara Yates, Bytesmiths

SIGS Publications Group, Inc.
Richard P. Friedman, Founder, President, and CEO
Hal Avery, Group Publisher
John McCormick, Editorial Director

Editorial/Production
Kathleen M. Major, Managing Editor
Elisa Varian, Director of Manufacturing
Seth J. Bookey, Assistant Managing Editor
Dan Olawski, Production Editor
Sue Mycka, Desktop Designer and Cover Design
Margaret Conti, Advertising Production Coordinator

Circulation
Elayne Glick, Circulation Director
Lawrence E. Hoffer, Director, New Business Development
Byron Scarlett, Assistant Circulation Manager

Advertising/Marketing
Gary Portie, Advertising Manager, East Coast/Canada/Europe
Elisa Marcus, Advertising Manager,Central US
Michael W. Peck, Advertising Representative
Kristine Viksnins,West Coast Exhibit Sales
Sarah Olszewski, East Coast Exhibit Sales

212.242.7447 (v), 212.242.7574 (f)
Diane Fuller & Associates, Sales Representative,West Coast

408.255.2991 (v), 408.255.2992 (f)
Nancy Beuschel, Promotions Manager for Magazines

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Senior Accounting Manager
Bibi Budhram, Accounts Payable

Publishers of JOURNAL OF OBJECT-ORIENTED
PROGRAMMING, OBJECT MAGAZINE, C++ REPORT,
THE SMALLTALK REPORT, THE X JOURNAL, JAVA
REPORT, OBJECT CURRENTS (ONLINE), THE X SPOT
(ONLINE), OBJECT EXPERT (UK), and
OBJEKTSPEKTRUM (GERMANY)

SIGS
PUBLICATIONS

http://www.sigs.com The Smalltalk Report4

A Smalltalk more frequently to de-
velop production systems, the quality of Smalltalk-
based applications has become an important issue.

This is the first of a series of articles on Smalltalk SQA,
the goal of which is to discuss the issues of SQA in the
Smalltalk development environment. Each article will fo-
cus on a specific aspect of Smalltalk
SQA. Note that Software Quality
Assurance in Smalltalk is not a solved
problem. This series hopes to con-
tribute to the solution.

Many of the points to be made in
these articles apply to software
developed using any development
environment. However, the use of Smalltalk makes the
impact of not “taking care of business” more visible
because of the high development productivity. We need to
develop processes and tools to help us develop robust
software without sacrificing high productivity.

THE TOP QUESTION
When considering SQA, the first question we ask is this:
What do we test? The first answer is easy: The software.
This answer is insufficient. For any real project there will
be insufficient time or resources to completely test the
software. This means that we must decide how to deploy
those resources most effectively.

For applications with a GUI, the answer seems easy:
Test the interface. The need for such testing is real and the
success of GUI testing tools attest to that reality. The GUI
testing tool vendors are working to make sure that their
tools work with the dialects of Smalltalk. Many projects
are using GUI testing as their sole method of testing.

This reminds me of quality control activity in the
automotive industry in the 50s and 60s. TV ads from
that time show hordes of white-coated, quality techni-
cians poring over a car fresh off the assembly line. The
technicians assured us that they would find every defect
before it reached us.

Unfortunately, those technicians did not find enough
of the defects. The automotive industry went through a
very traumatic time over quality. The industry finally
came to the same conclusion that other industries have.
In short, it is not possible to insure sufficient quality with
only inspections at the end of the manufacturing process.

This is exactly what we are doing
when we test only by using GUI test-
ing tools.

In our experience, the GUI is the
least stable part of an application.
Typically, it is the last part finished. If
we are to have the SQA work proceed
with speed that we have come to

expect in development, we must do more work in parallel.
Basing all testing on the GUI means that little testing can
occur until near the end of a development cycle. Since the
GUI may change as well, GUI based tests will tend to be
unstable.

GUI-based testing is necessary but it is not sufficient. If
it was, software would be of much higher quality than we
experience. In addition, when the software is “headless,”
GUI-based testing is not even possible. I am not saying
here that GUI-based testing should not be done. If my
resource constraints are so severe to limit my testing tech-
nique to a single one then GUI testing would be it.

The automotive industry solved its quality problems by
utilizing a number of techniques. One common thread of
these techniques is that they maintain quality at each
stage of production. The automotive worker can stop the
assembly line if cars of “bad” quality are being produced.
Component vendors ship components of top quality, that
is, no defects. We hear the result of these changes in the
language of the advertising: “Quality is Job #1” or “Quality
is built in.”

“What to test?” is now a question that has a clearer
answer. We must test the final product and the compo-
nents that make up that product. We must build the
quality in.

Smalltalk SQA:
What to test?

Jeff McKenna

We must build
the quality in.

COMPONENTS
Before we can discuss how to build quality in, we must
first establish our definition of a component. In automo-
tive manufacturing, example components are the screw,
the bolt, the starter and the transmission. In transmis-
sion manufacturing, example components are the gear,
the switch, the screw and the bolt. Higher “level” compo-
nents contain lower level components. Different higher
level components often share the same lower level com-
ponents. Both the starter and the transmission may use
1/4 6-32 screws and bolts. We see in the automotive
industry two of the component constructs we find in our
industry: Encapsulation and Aggregation. A bill of mate-
rials illustrates the use of these constructs.

Initially most of us felt that the class was the lowest
level component in Smalltalk, the lowest level of reuse. We
now know that the class is not typically the lowest level
component. The lowest component is a combination of
classes and methods with a clear purpose and intent. An
example of multiclass capsulation into a component is
the Graphics Component of many textbooks:

Graphic
Ellipse

Circle
Rectangle

Square
Line

Taken together, these classes form a logical grouping. If
the class Graphic implements a method Graphic>>isGraphic,
we should also define Object>>isGraphic. If we do so, the
Object method is part of the Graphics Component.

The major code control systems used with Smalltalk
today acknowledge the levels of components under dif-
ferent names. Team/V calls low level components pack-
ages and higher level components clusters. ENVY does
not map directly in this way. It calls low level components
applications or subapplications depending on the reuse
strategy and the high level components configurations or
applications.

My view is that these are all components and that a sin-
gle construct is sufficient. Low-level components just do
not contain any subcomponents. ENVY could drop the
distinction between application and subapplication
while Team/V could merge cluster and packages.

The decomposition of an application into compo-
nents is not an easy task and there is no right answer.
Having too many is confusing and costly and having too
few inhibits parallel development. The criteria to be con-
sidered in defining a component are very similar to those
used in defining classes. Does the component do one
thing? Is it maintainable by one person? Is it cohesive?
Does it have a narrow interface?

SQA uses a component differently than development
uses that component. We suggest that the component is
the unit of acceptance and rejection. This moves SQA
activities into the production process. These activities
must determine the quality of each component.

SOFTWARE COMPONENT
We define a software component as code encapsulated
with documentation and tests. The key concept is that the
code itself is not verifiable or reusable without its docu-
mentation and its tests.

If this sounds very old, it is. As an industry we have
known this for a long time. We have not acted on that
knowledge. The question in my mind is how to build pro-
cess and structure that encourages the practice. If both
documentation and tests are an active part of the devel-
opment then the practice is encouraged. In particular,
components are reusable only when they include docu-
mentation and tests.

From the point of view of testing, the primary goal of
documenting the software component is to present the
public interface. This should include message definitions
including the returned objects, required message se-
quences and error conditions. A major SQA task is to de-
termine if the component tests cover the component
public interface. The vehicle for this is the documentation.

My experience is that the process of writing the docu-
mentation improves the code, if the developer corrects
errors, renames methods and fleshes out behavior as part
of the documentation effort.

At a minimum, component tests must exercise the com-
ponent public interface (verification). More complete test-
ing will do a number of things: (1) test to determine if all
code is executed (coverage); (2) test to determine if reach-
ing limits does not fail (stress); (3) test the error handling
(failure analysis); or (4) test the internal details (implemen-
tation). A primary SQA task is to make sure that the com-
ponent tests are sufficient to determine if the component
meets the project quality standards.

In the past, we often found the developers writing the
lowest level tests, unit tests, and leave the fleshing out of
tests to SQA, system tests. With Smalltalk that divide
should be less clear. I view the SQA tasks as work to be
done to delivery a quality software component. Who
exactly performs those tasks is not too important.

My experience is when developers write and use tests,
their code improves, exactly the same as when they write
documentation. Testing will uncover errors. The availabil-
ity of tests also makes incremental development work bet-
ter. Developers will know when their rework is complete.

The automotive worker now knows that quality is an
issue for him or her to address directly. Quality is built in.
Development ofsoftware inSmalltalk needs todothesame.

In the next article, I will take up the public/private
problem and discuss regression testing.

Jeff McKenna is Founder and President of MCG Software, Inc. of
Wilsonville, OR. MCG Software offers testing frameworks for
Smalltalk. Jeff has been involved with software for more than 33
years and been involved with Smalltalk since 1982. Jeff was chair-
man of OOPSLA ‘94. He may be reached at mckenna@acm.org.

`
`

The Smalltalk Report6

SMALLTALK SQA

http://www.sigs.com

June 1996 7http://www.sigs.com

I a strategy for using instance
variables that you might find helpful. This strategy pro-
vides guidance for several common programming

tasks, such as properly initializing instance variables and
providing accessors to use them. It shows how to imple-
ment equality methods and helps guide the initial deci-
sions in making an object persistent. Finally, it explains
why the instance variables in various application layers
tend to behave differently.

Although this strategy probably isn’t perfect, it is one
that I find useful. The strategy doesn’t consist of hard and
fast rules you should always obey, just suggestions you
should consider and trends you can look for. I can’t guar-
antee that following these guidelines will make you a bet-
ter programmer, but they should help.

TYPES OF INSTANCE VARIABLES
I’ve noticed that not all instance variables are created
equal. Some seem to be more important than others.
When using instances of a particular class, I notice that
I’m constantly inspecting certain instance variables to
make sure their values look reasonable, yet I consistent-
ly ignore other instance variables. So I’ve been trying to
figure out how to distinguish the important ones from
the unimportant ones.

In looking at how I use instance variables, I’ve found
that there are three types, which I call identity, status,
and cache. When looking at a new class, I try to distin-
guish these types to help figure out how the class works.
When one of my own classes doesn’t work well, I look at
how I’m using these types; often I find inconsistencies;
when I clean those up, the class works better. As I help
other people develop their classes, I look for these types.
If possible, I encourage the developers to identify each
instance variable’s type and use it “correctly.”

I describe the three types in the following subsections.

Identity variables
Identity variables are how you distinguish two instances

of a class. If both objects have the same identity values,
they represent the same entity. Once an identity value is
set, it usually doesn’t change. After all, if you recognize an
object because it has a certain identifier, and that identi-
fier changes, how will you recognize it again next time? An
object’s identity values must be set for the objects’ state to
be valid. Also, there are usually no good default values for
identity variables. Multiple objects with the same default
values would be indistinguishable. Examples of typical
identity variables include uniqueID, name, and a tree
node’s parent.

Status variables
When developers talk about instance variables—the vari-
ables that maintain an object’s state and are accessed
through getter and setter methods—they’re usually talking
about what I call “status variables.” Status variables main-
tain an object’s internal state and its relationships to other
objects. These relationships may be aggregate or asso-
ciative. Whereas identity values don’t change, status val-
ues change constantly to reflect the object’s changing
state. Like identity variables, status variables must be set
in order for the object’s state to be valid; otherwise its
internal state is undefined and inconsistent. If a status
value is lost (set to an invalid value such as nil), the
object’s state cannot be recovered. Finally, status variables
have suitable default values. (If nothing else, nil can be
used as the default value, but that’s often not a very good
one. See my previous discussion on the Null Object pat-
tern.1) Taken together, these default values describe the
object’s initial state. Examples of status variables include
address, employer, and a tree node’s children, as well as
the various settings represented on a GUI using check
boxes, radio buttons, etc.

Cache variables
Cache variables cache the results of expensive calcula-
tions. Their values are derived from the values of iden-
tity and status variables. When those values change, the

A strategy for using
instance variables

Bobby Woolf

The Smalltalk Report8

INSTANCE VARIABLES

http://www.sigs.com

cache values must be recalculated. So cache values
change as frequently as the values they are based on
change. Cache values are optional; the object’s state is
still valid without them. If a cache value is lost, it can
easily be recalculated. A cache variable’s default value is
usually uncalculated, a flag indicating that the value
hasn’t been calculated yet. The most common flag for
uncalculated is nil, but there can be other such flags.
For an example of a cache variable in VisualWorks, see
CompositePart>>preferredBounds. A composite calculates
its preferred bounds by merging those of its compo-
nents; it caches the result for efficiency.

RAMIFICATIONS
These definitions are comforting, but they alone don’t
make your code any better. Yet you can improve your
code by recognizing these types and writing your code
accordingly.

Initialization
There are three approaches to initialize a variable:
1. Let a collaborator set its value explicitly.
2. Set its value to a default constant.
3. Set its value to the result of a calculation.

Each of these approaches is used to initialize a differ-
ent type of instance variable:
1. Identity initialization—Initializes the identity vari-

ables.
2. Creation initialization—Initializes the status variables.
3. Lazy initialization—Initializes the cache variables.
Identity variables are initialized by the collaborator which
creates the object. The collaborator should accomplish
this via an instance creation method on the class side.
Two examples of instance creation methods in Vis-
ualWorks—besides the standard ones like new, basicNew,
and new:—are Point class>>x:y: and Dependent Partclass>>
model:. An instance creation method on the class side
should be implemented via a corresponding identity ini-
tialization method on the instance side. For example,
Point class>>x:y: uses the identity initialization method
Point>>setX:setY: to create the new instance:

Point class>>x: xInteger y: yInteger
^self basicNew setX: xInteger setY: yInteger

Point>>setX: xPoint setY: yPoint
x := xPoint.
y := yPoint

The instance creation methods in Circle and Interval are
implemented the same way. I prefer to name this identity
initialization method init..., so the name I would have
used for Point>>setX:setY: would have been initX:y:. I put
these methods in the “initialize-release” protocol.

Status variables should be initialized to their default
values when the new instance is created. The standard
name for the method that performs creation initializa-
tion is “initialize”. VisualWorks has tons of examples of

this, such as SortedCollection>>initialize. Another ex-
ample is OrderedCollection>>setIndices; it isn’t called “ini-
tialize” but it should be because it serves the same
purpose.

Cache variables do not need to be initialized until
they are used. In fact, initializing them is usually expen-
sive and should be avoided until you know the values are
needed. The easiest way to do this is to build lazy initial-
ization into their accessors. VisualWorks doesn’t use this
technique much, but two examples are Composite-
Part>>preferredBounds and SliderView>>marker. You might
implement Circle with radius as an identity variable and
diameter and area as cache variables:

Circle>>radius
^radius

Circle>>diameter
diameter isNil ifTrue: [self computeProperties].
^diameter

Circle>>area
area isNil ifTrue: [self computeProperties].
^area

Circle>>computeProperties
| r |
diameter := radius * 2.
r := self radius asLimitedPrecisionReal.
area := r class pi * r * r

Developers often use lazy initialization with variables that
are not caches, but I avoid this. Although caches are ex-
pensive to initialize, other variables usually aren’t, so I see
no compelling advantage in using lazy initialization on
those other variables.

Often status variables are initialized in terms of iden-
tity variables, which means that an identity initializa-
tion method (in the form of initA:b:...z:) has to be run
before the creation initialization method. Here’s a hypo-
thetical example of an instance creation method that
will do this:

Example class>>x: newX y: newY
^(self basicNew initX: newX y: newY) initialize

HelpBrowser class>>on: is implemented this way because
HelpBrowser>>initialize ends-up using the value of on:’s
parameter.

Accessing
Developers often automatically create getter and setter
methods for all of their instance variables and put them in
a public protocol like “accessing.” I prefer to be a little
more selective and only create accessors for certain types
of instance variables.

Identity variables need getters but no setters. The getters
may be public or private. Setters are usually not necessary
because the identity variables’ values typically don’t
change. The only “setter” that is required is the identity
initialization method (initA:b:...z:). Any setters you do

provide should definitely be private. Status variables use
getters and setters in the conventional manner. These
methods can be public or private.

Cachevariables havegetters butnosetters.Thegetters,
which can be public or private, contain lazy initialization. I
prefer to implement the lazy initialization via a compute...
method, as shown earlier in
Circle>>computeProperties. If the cal-
culations for one cache variable cal-
culate others in the process, group the
initialization for
all of those variables together in one
compute... method. Don’t implement
setters; they could be used to set the
caches to values that are inconsistent
with the object’s
state. Instead of setters, I implement
flush... methods
which reset the variables back to their uncalculated state
(usually nil). If one change invalidates a number of caches,
I flush them all in one method.

For example, let’s say that the Circle described earlier
caches both diameter and area and that radius can
change. Some more of the code would be

Circle>>radius: newRadius
radius := newRadius.
self flushProperties

Circle>>flushProperties
diameter := nil.
area := nil

The compute... and flush... methods are private ones. The
cache getter methods with the lazy initialization send the
compute... methods (seeCircle>>diameter).The setter meth-
ods for the status (and identity) variables send the flush...
methods (like Circle>>radius:). A particular setter does not
need to flush all
of the object’s cache variables, only the ones that were cal-
culated from it.

Equality versus identity
In my previous article, I talked about the difference
between object identity and object equality. Object iden-
tity is very clear cut. If two variables contain identical
objects, they are double-equal, which means that they
both point to the same address in memory. Thus the two
variables actually contain the same object.

Object equality is not so straightforward. If two vari-
ables’ values are equal but not identical, they contain sep-
arate objects that are equivalent. The question is: What
makes objects equivalent? In theory, they represent the
same value. In practice, for Smalltalk, it means that a Set
considers them to be duplicates.

I contendthat two objectsare duplicates if their identity
variables are equal; their status and cache values are ir-
relevant. Because identity values rarely/never change, this
meansthattwoobjectsthataresometimesequalarealways

equal. Changes in their status don’t affect their equal-
ness. Thus if one object is a duplicate of another, it will be
so through its entire lifetime, which is how it should be.

Just as implementors of equal (=) use identity variables,
so do implementors of hash. If two objects are equal, their
hash values need to be the same. So the same variables

which are used for determining
equality are also used for calculating
hash values.

Persistence
When an object needs to store itself
persistently, it shouldn’t necessarily
store all of its instance variable val-
ues the same way. Some instance
variable types are persistent, others
are not.

When storing an objectin a relationaldatabase, its iden-
tity values belong in the database table’s key columns. Just
as identity variables should uniquely identify an object, a
row’s key column values should be unique from other rows.
Status variables that represent state have simple values
that are stored directly in table columns. Those maintain-
ing relationships to other objects become database joins.
There is generally no need to store cache values persistent-
ly. Rather than consume database space, just recalculate
them after reading the object out of the database.

The storage issues for an object database are similar to
those of a relational one. An object’s identity values serve
as its keys for retrieving it from the database. Status val-
ues are simply stored with the object. And cache values
do not need to be stored at all, although they can be for
completeness.

Database proxies also make use of instance variable
types. A proxy must contain the identity values for its real
object. That way it will be able to load the real object out of
the database. Because a proxy is supposed to be light-
weight, it shouldn’t contain status or cache variables.
Ideally, as much of the proxy’s behavior as possible will be
implemented just using the identity values. This will help
maximize the amount of work the proxy can perform and
minimize the number of real objects that need to be read
from the database.

Dictionaries, Smalltalk objects that act somewhat
like simple databases, also make use of instance variable
types. Each element is stored in a Dictionary by a key that
must be unique. That key is often an identity variable.
That variable’s value must not change while the element
is stored in the Dictionary. Thus an identity variable makes
a much better key than a status variable does.

Application layering
A Smalltalk program contains four main layers: view,
application (mediator), domain, and infrastructure.2

Most of the variables in application models and view
objects are status variables. Identity variables are concen-
trated in domain objects. Infrastructure objects tend not
to contain much state at all; they mostly point to domain

June 1996 9http://www.sigs.com

I see no compelling
advantage in using
lazy initialization.

objects in some way (which can be an identity or status
relationship).

Exceptions
These guidelines are not rules that are engraved in stone.
Identity values can change during an object’s lifetime. It’s
sometimes helpful for an instance creation method to ini-
tialize some status variables. A proxy may want to contain
certain status values because they’re used so often. How-
ever, I try to stick to these guidelines when possible. When
I make an exception, I like to have a good reason.

Here are some interesting excep-
tions to these guidelines that I’ve
found in VisualWorks.

Set’s tally variable—Its behavior is
a cache. If its value were ever lost, it
could easily be recalculated.
However, it’s implemented as a sta-
tus variable. That is because its value
only changes by ±1 each time, a sim-
ple and well-defined transformation on the old value. For
a large Set, it is much easier to add or subtract 1 than to
flush the value and recalculate it from scratch.

Model’s dependents variable—It’s behavior is a typical
status variable. However, when storing a Model persistently,
thisvariable mustbe treated specially. Dependents are usu-
ally transient and thus are not stored when their parent is.

Point’s x and y variables—Are these identity variables or
status? Oncea Point is created, canitsx andy values change?
Generally, changing their values is a bad idea, but there are
plenty of examples where it works just fine. The same goes
for the instance variables in Rectangle, Circle, Date, etc.

OBJECTIONS
As I discuss these ideas with other developers, I hear cer-
tain objections repeatedly. Here are some of them and my
replies:

“Initialize is expensive”—Not if it’s used properly. I use
it to initialize status variables, ones which have readily
available default values. If an implementor of initialize is
expensive, it’s probably doing more than just initializa-
tion. Which leads to…

“This status variable is expensive to initialize”—Then
it’s a cache variable. Cache variables require calculation to
initialize; that’s why they’re lazy initialized. Status vari-
ables are initialized with simple default values that need
no calculation.

“This status variable is hardly ever used”—Then get it
out of that object! Every time you instantiate an instance of
that class, you’re sucking up memory for variables that
probably won’t be used. If there are a number of these vari-
ables, you’re wasting a lot of memory. Refactor the class
into two or more classesthat separate the variables that are
usually used from those that usually aren’t. By the way,
each of the pointers to these optional separate objects is a
status variable, but it can be implemented as a cache.

“Lazy initialization is more efficient”—Not for identity
and status variables. They’re only initialized once. Why

have the getters check every time to make sure they’re ini-
tialized? They already have been. Lazy initialization is fine
for cache variables because they get flushed periodically.
But for identity and status variables, you always use them,
so initialize them once and get it over with.

A WELL-DESIGNED OBJECT
Let’s take a look at how you would use these guidelines to
design a class. First of all, we assume that the class’ imple-
mentation requires a number of instance variables.

• Some of their values are computed from the values of
others. These are cache variables.
• Some are required as part of the
object’s state and have suitable
default values. These are status
variables.
• Some others are also required
but do not have good default values.
The object’s collaborators must set
these values when they create the

object. These are identity variables.
Once you’ve established these designations for your vari-
ables, follow the other guidelines to help implement the
class properly. The identity values should not change.
They should be used in implementors of equals and hash
and as database keys. The cache variables should have
lazy getters as well as flush and compute methods. The sta-
tus variables should be used to maintain the object’s cur-
rent state.

CONCLUSIONS
Here are the main points in this article:

• There are three types of instance variables: identity,
status, and cache.

• Identity values don’t change, status do, and cache are
calculated from identity and status.

• Each type is initialized differently: identity initializa-
tion from collaborators, creation initialization, and
lazy initialization.

• Identity variables are used for =, hash, and as diction-
ary and database keys.

• Status variables store an object’s state and relation-
ships to other objects.

• Cache variables require flush and compute methods.
• These are guidelines only; there are exceptions.

In my next article, I’ll talk about how to display an object
as a String. It turns out that identity variables are very
helpful for doing this.

References
1. Woolf, B. “A Hierarchy that Acts Like a Class,” The Smalltalk

Report 5(4), Jan. 1996: 4–10.
2. Brown, K. “Remembrance of things past: Layered architectures

in Smalltalk applications.” The Smalltalk Report 4(9), July–Aug.
1995: 4–7.

Bobby Woolf is a Member of Technical Staff at Knowledge Sys-
tems Corp. in Cary, NC. He mentors Smalltalk developers in the use
of VisualWorks, ENVY, and Design Patterns. Comments are wel-
come at woolf@acm.org, or at http://www.ksccary.com.

`
`

The Smalltalk Report10

INSTANCE VARIABLES

http://www.sigs.com

Object identity is
very clear cut.

Object equality is not
so straightforward.

The Smalltalk Report12 http://www.sigs.com

I applications, controlling the image
size is an important goal. Larger images require more
memory for execution, which can degrade perfor-

mance. When using an object-oriented database (ODB),
controlling the image size can be challenging. This chal-
lenge comes from the manner in which objects are stored
and retrieved in an ODB.

One of the main advantages cited for using an ODB is
the ODB’s capability to preserve the object relationship
web. Each object is stored with its relationship web intact.
When an object is retrieved from the ODB, the related
objects are also retrieved without having to manually
reconstruct the relationship web (see Fig. 1).

In contrast, in a relational database paradigm when an
object needs to be retrieved the developer must recon-
struct the object being retrieved from a table. Then, the
developer must also find and reconstruct the related
objects, and finally, re-establish the relationship web. So,
when considering the cost of manually rebuilding the
object web, it is easy to see that using an object-oriented
database can save a great deal of effort.

When retrieving an object from an ODB, related
objects are retrieved automatically. The application devel-
oper no longer has to know which related objects are
needed. This also means that the application developer

does not necessarily know how many objects are being
retrieved. This could be a problem. For example, if the
application’s equivalent of the Smalltalk dictionary was
retrieved, then all objects in the database would be
copied into the image. It would be possible to retrieve
most, if not all, of the objects in the database. This can be
a real problem as the database usually holds more objects
than an individual Smalltalk image can handle.

To prevent overloading the image with objects it is
important to understand the mechanisms provided for
the retrieval of related objects. While preventing the
extreme case is vital, it is not the only reason. Another rea-
son to control the retrieval of related objects is to keep the
image size minimal. It is possible to create an application
that does not retrieve any related objects until they are
accessed. This set up would keep the image size small but
could also make the application’s performance bound to
database access. It is important to retrieve enough related
objects to perform the task at hand. The control mecha-
nisms for retrieval gives the application developer the
ability to balance image size versus database access.

Each ODB vendor provides different mechanisms for
controlling object retrieval. For this reason, it is easiest to
discuss the control mechanisms in the context of a partic-
ular object-oriented database implementation. In this
case, the database used as an example is GemStone, from
GemStone Systems, Inc. The Smalltalk listings are in ref-
erence to GemStone 4.0 and VisualWorks 2.0.

All listings refer to a typical employee payroll system.
The payroll systems’ object model is shown in Figure 2.
The application calculates employees’ salaries and
addresses envelopes for distribution. The application also
provides estimates at the company level for weekly and
yearly payroll. The purpose of this example is to illustrate
concepts and is not meant to be representative of typical
ODB applications.

REPLICATION CONTROL
When an object is retrieved from GemStone, the object is
“replicated” in the Smalltalk image. The replicated object,
referred to as a replicate, is a copy of the GemStone object
with a “link” to its database counterpart. The replicate

Controlling image size when
using GemStone

John Bentley

Smalltalk ODB

Object
being
retrieved

Figure 1. When using an OODb, related objects are automatically
retrieved.

maintains the link to its database counterpart so that
updates may occur between the database and the image.
In GemStone, this controlling of the retrieval of related
objects is referred to as replication control.

The GemStone Smalltalk Interface (GSI) provides two
techniques to control replication. One of these tech-
niques is “replication tuning.” Replication tuning allows
the developer to control how objects and their relations
are replicated in the image. The other technique is avoid-
ing replication. In most cases, objects are replicated into
a Smalltalk image to perform behavior. GemStone is an
active database, allowing behavior to be defined and
executed in the database. The behavior is defined using
the GemStone Smalltalk dialect which is called Smalltalk
DB. Using behavior defined in Smalltalk DB, database
objects can respond to messages without being replicat-
ed into the client image thus eliminating the need for
replication.

REPLICATION TUNING
There are three common approaches to tune replication
using GemStone. The first approach is to change the
GemStone to Smalltalk-replication level. This defines the
level of relationship replication for the image. The second
approach is class mapping. This provides a variety of ways
to control how GemStone and Smalltalk instance vari-
ables relate. The final approach is to tune replication by
changing the “no stub level.” This controls relation repli-
cation levels on database updates.

When an object is initially retrieved from the database,
it is represented by a proxy. A proxy is merely a Smalltalk
object that references a database object. To replicate the
object in Smalltalk, the message #asLocalObject is sent to
the proxy. The result is a Smalltalk duplicate of the data-
base object that maintains a reference to the database
object. Listing 1 shows how the global MyCompany would
be retrieved and replicated.

When the proxy replicates itself, it checks to see how
many levels of relationships need to be replicated. This is
known as the GemStone to Smalltalk replication level. If
the level is two, the proxy replicates itself and the objects

referenced by the object’s instance variables. If the level is
three, the objects referenced by the instance variables of
the objects referenced by the primary object’s instance
variables are replicated as well. If the level is zero, all relat-
ed objects are replicated. Any related objects not replicat-
ed are represented by stubs. A stub is a stand-in object
that replicates itself when sent a message.

The GemStone to Smalltalk replication level is defined
in an instance method in the GSSession class. The
GSSession class defines behavior associated with a data-
base session. The replication level is defined in the
#defaultGSToSTLevel method. GSSession sets the replication
level for the entire application and sets the default repli-
cation level for the application.

Defining the replication level in a method provides
flexibility. For example, in one application, it might be
appropriate for #defaultGSToSTLevel to unconditionally
answer three. In another application, it might be appro-
priate to provide a different level depending on the plat-
form being used. The #defaultGSToSTLevel could be
defined as is shown in Listing 2.

In addition, there are special cases where a more spe-

June 1996 13http://www.sigs.com

Salary

rate

period

payForHours:

Employee

name

address

salary

payForHours:

addressLabel

Address

street

city

state

zipCode

addressLabel

Company

employees

weekPayroll

yearPayroll

employees

Figure 2. The payroll tracking system’s object model.

| proxy replicate |
“Retrieve the GemStone global MyCompany.”
proxy := GSI currentSession at: #MyCompany.
“proxy references the GemStone global MyCompany.”

“Replicate MyCompany.”
replicate := proxy asLocalObject.
“replicate is a copy of the GemStone global
MyCompany.
It maintains a link to its GemStone counterpart.”

Listing 1. Retrieving and replicating.

“The following methods allow the default replication
level to be varied on a platform basis.”

“Methods for GSSession.”

defaultGSToSTLevel
“Answer the appropriate level for the current
platform.”

^self platformLevels at: CurrentPlatform

platformLevels
“Answer the platform level dictionary. If unset,
initialize.”

(platform is Nil)
ifTrue: [(platform := (Dictionary new))

add: #windows->3;
add: #macintosh->2;
add: #unix->5.

].
^platform

Listing 2. Platform-dependent replication level.

cific replication level is required. In these cases,
#asLocalObjectToLevel: is used instead of #asLocalObject.
The #asLocalObjectToLevel: is sent to a proxy to replicate
the object to the level specified as the argument.

In Listing 1, MyCompany was replicated using the
default level. If the default replication level was three then
MyCompany, its employees collection and all contained
employees would be replicated. However, if all of the con-
tained employees are not needed, it might be better to
only replicated two levels, as is shown in Listing 3. With
the replication level set to 2, each employee object would
not be replicated until accessed.

Thus far replication has been tuned at the instance
basis. Replication can also be tuned on a class basis. This is
done using the second replication tuning mechanism,
class mapping. Class mapping allows Smalltalk and
GemStone classes to have different structures. In the gen-
eral case, Smalltalk and GemStone classes will have identi-

cal structure. In the example application, the Employee
class has three instance variables: name, address, and
salary. Both GemStone and Smalltalk would have Employee
classes with these same three instance variables defined.

In some cases, there may be an instance variable in the
GemStone class that should not appear in the Smalltalk
class, or vice versa. For example, the GemStone Employee
class might have an instance variable called allEmployees
which references the collection of all employees in the
system. This means when a single instance of Employee is
replicated, every employee in the database would also be
replicated. To prevent allEmployees from being replicated
in the image, the Smalltalk class would not have the
allEmployees instance variable. In this case, the Smalltalk
class’s instance variables would need to be mapped such
that allEmployees was not replicated into Smalltalk.

The GSI adds methods to the class Object to handle class
mappings. The methods, #stValues and #stValues:, handle
the mapping of instance variables between Smalltalk and
GemStone. #stValues is used when an object is being stored
in GemStone. #stValues stores the instance variables intoan
array and answers that array. #stValues: is used when repli-
cating an object being retrieved from GemStone. It takesan
argument of an Array and copies this array’s values into the
instance variables. Both of these methods directly map the
instance variables to an array, such that the instance vari-
able stored at n is stored in the array at n.

Whenever a class’ instance variables are defined differ-
ently in Smalltalk and GemStone, the #stValues and
#stValues: methods must be redefined in the Smalltalk
class to properly map the instance variables. For example,
to remove allEmployees from the Smalltalk Employee class,
the #stValues: would need to map name, address, and
salary from the array, but not acknowledge allEmployees.
The Smalltalk code for this is shown in Listing 4.

The final method of replication control addresses the
case in which a replicated object is being updated to
reflect changes made in its GemStone counterpart. When
the database object is changed, the associated Smalltalk
replicate object is “stubbed.” The replicate object is then
transformed into a stub instead of being reloaded. This
“stubbing” provides a performance enhancement that
allows laissez-fare loading of updated objects.

The behavior of a stub object is to replicate itself when
accessed. The database object is replicated in its place.
When replicated, it also replicates its related objects.
Replication is still controlled using the #defaultGStoSTLevel
defined in GSSession.

There are certain circumstances in which stubs are
inappropriate. In this context, the most interesting cir-
cumstance deals with performance. If an object is
stubbed, it will be replicated using the default replication
level for the application. But, if an object was initially
replicated using a custom level, this default behavior is
undesirable. In this case, it is better to prevent the object
from being stubbed.

Stubbing is controlled by the #noStubLevel method
defined by GemStone in the class Object. The “no stub”

The Smalltalk Report14

CONTROLLING IMAGE SIZE

http://www.sigs.com

In GemStone

Object subclass: Employee
instVarNames: #(‘name’ ‘address’ ‘salary’)
classVars: #()
poolDictionaries: #()
inDictionary: Payroll
constraints: #[]
instancesInvariant: false
isModifiable: false

In Smalltalk:

Object subclass: #Employee
instanceVariableNames: ‘name address salary’
classVariableNames: ‘
poolDictionaries: “
category: ‘Payroll’

stValues: anArray
“anArray contains four proxies for the GemStone
instance variables.
Note that only the first three, name, address, and
salary, are referenced.”

name := anArray at: 1.
address := anArray at: 2.
salary := anArray at: 3.

Listing 4. Custom mapping employee.

| proxy replicate |
proxy := GSI currentSession at: #MyCompany.

replicate := proxy asLocalObjectToLevel: 2.
“This bypasses the default level and only replicates
MyCompany and the collection. Employees are not
replicated until accessed.”

Listing 3. Replicating to a specific level.

level defines the levels at which stubbing is not allowed. A
“no stub” level of zero, the default, indicates that the
receiver can be stubbed. A “no stub” level of one, prevents
the receiver from being stubbed. A “no stub level” of two
prevents the receiver and the objects referenced by its
instance variables from being stubbed, and so on.

In Listing 2, MyCompany was replicated to level two. This
was done because the default replication level of three
would have also replicated the employees. If MyCompany
was stubbed, then on the next access, MyCompany would
be replicated using the default replication level of three,
replicating all contained employees. To prevent this, the
#noStubLevel method is overridden in the Smalltalk
Company class to answer 2, as is shown in Listing 5.

AVOIDING REPLICATION
In general, objects are retrieved from a database to inter-
act in the client. In most cases, these objects can only
answer messages when replicated in the client image.
However, in GemStone, database objects can respond to
messages without being replicated in the image. This
removes the requirement for objects to be replicated into
the client environment when needed to perform a task.
These objects can respond according to the behavior
defined in the database.

In GemStone, behavior can be defined in two places;
the image and the database. This duality is often referred
to as the two-space model. The two-space model is pow-
erful but complex. Behavior in the image can be the same
or different than the database. If the same method needs
to exist in both the image and database, the developer
must define the method in the image’s dialect as well as in
Smalltalk DB (see Fig. 3).

The two-space model is more complex than using a
“non-active” database but does provide much greater
flexibility to the application developer. For example, a
query needs to be performed to find all the employee that
make more than $800 a week. In a non-active database,
the behavior for calculating pay would need to be in
Smalltalk. To perform the query, every employee object
would need to be replicated in the image to find those
who make more than $800. An active database provides
the ability to define salary calculation in the database.
Only those employees that made more than $800 would
need to be replicated.

Many non-active database provide the ability to per-
form queries against instance variables in the database.
To optimize the query, an instance variable called
weeksPay could be added to Employee to store the value.

However, in this example, if the query changed to use a
month’s pay, the database schema would need to be
changed and the current instance of Employee would need
to be migrated. In the active database, only changes to
behavior are needed.

GemStone’s Smalltalk DB is a Smalltalk dialect that has
been specialized for database functionality. Smalltalk DB
is similar to the VisualWorks, Visual Smalltalk, and IBM
Smalltalk dialects but is not syntactically equivalent to any
of these. Smalltalk DB provides the Common Language
Data Types as defined in the original Smalltalk language
specification. SmalltalkDB does not specifyany user inter-
face classes. However, Smalltalk DB does provide exten-
sions to optimize queries and handle large collections.

To access behavior defined in Smalltalk DB, messages
can be sent to a database object via its proxy. Proxies

June 1996 15http://www.sigs.com

“Sending the message to a proxy using
remotePerform.”
| proxy |
proxy := GSI currentSession at: #MyCompany.
proxy remotePeform: #yearPayroll

“Sending the message to a proxy using the gs prefix.”
| proxy |
proxy := GSI currentSession at: #MyCompany.
proxy gsyearPayroll

“Sending the message to a replicate using the gs
prefix.
Convert the result to a replicate.”
| replicate |
replicate := (GSI currentSession at: #MyCompany)
asLocalObjec
replicate as GSObject gsyearPayroll asLocalObject
“replicate asGSObject answers a proxy”

Listing 6. Sending messages via proxies.

“Methods for Company class”

noStubLevel
“This prevents Company and the employees collection
from being stubbed.”

^2

Listing 5. Changing Company’s “No Stub” level.

Employee

name

address

salary

addressLabel

Company

employees

weekPayroll

yearPayroll

employees

Smalltalk GemStone

Company

employees

weekPayroll

yearPayroll

employees

Employee

name

address

salary

payForHours:

Figure 3. Behavior can be defined in both GemStone and Smalltalk.

understand a set of messages similar to the #perform: set
of messages defined in the class Object. These messages
are #remotePerform:, #remotePerform:withArgs, #remote-
Perform:with:, #remotePeform:with:with:, etc. In addition to
the #remotePerform: series, a proxy also sends messages
prefixed with “gs” to its database object. When a message
is sent to a database object via a proxy, the resulting object
is also a proxy (see Fig. 4).

Database behavior is usually used when the receiver
needs to collaborate with several other database objects
that are not replicated in the image. Executing this behav-
ior in the database eliminates the overhead of replicating
objects when only the results are needed. In the example
application, estimated payroll for the year could be calcu-
lated in the database. By using database behavior, all of
employees for the company do not need to be replicated.
Listing 6 contains the Smalltalk code needed to accom-
plish this.

Using #remotePerform: provides access to database
behavior but at the price of dealing with proxies through-

out the application. While proxies are Smalltalk objects,
they are merely reference points to database objects. The
GSI provides a more seamless method for accessing data-
base behavior, namely forwarders.

Forwarders are Smalltalk objects that forward mes-
sages to their database object counterparts. When a mes-
sage is sent to a forwarder, the forwarder sends a
#remotePerform:withArgs: to the proxy for the database
object. The behavior is executed by the database object
and returns the result. By default, the result of a message
sent to a forwarder is a replicate. Forwarders allow the
application to access database behavior without having
to deal with intermediary objects (see Fig. 5).

In general, forwarders are used to represent the princi-
pal access points of the system. These access points con-
tain the major collections that are used to find specific
instances of objects. First, the search message is forward-
ed into the database. Then, only the resulting set of
objects are replicated, removing a lot of overhead.

Forwarders can be used to virtually eliminate the use of
replicates. This can be very useful when dealing with under-
powered client machines. By default, messages sent to a for-
warder result in a replicate. By appending messages with
“fw”, the forwarder will answer with forwarders instead of
replicates. In an application that only uses forwarders, the
#doesNotUnderstand: message on the forwarder class could
be modified to return forwarders by default.

In the example application, replication tuning was used
to minimize the number of replicated objects related to
MyCompany. Payroll messages are being sent to the data-
base objectsto avoid replication. Since MyCompany is only a
container for employee objects, it is best to reference
MyCompany with a forwarder. This prevents all of
MyCompany’s employees from being replicated. Payroll
messages can be sent to MyCompany without regard to
proxy conversions. Some samplecode is shown is Listing7.

When using forwarders, it is important to remember
there is a trade off. A forwarder saves space in the image
by avoiding replication. The messages often have to trav-

Smalltalk GemStone

fwweekPayroll

| weekPayroll |

weekPayroll := MyCompanyFwdr

fwweekPayroll.

MyCompanyFwdr

MyCompany

1357.27
Forwarder for:

1357.27

weekPayroll

Figure 6. Messages sent to forwarders can be prefixed with a “fw” which
causes the resulting object to be a forwarder.

The Smalltalk Report16

CONTROLLING IMAGE SIZE

http://www.sigs.com

Smalltalk GemStone

gsweekPayroll

| weekPayroll |

weekPayroll := MyCompanyProxy

gsweekPayroll.

MyCompanyProxy

MyCompany

1357.27Proxy for: 1357.27

weekPayroll

Figure 4. Messages can be sent to database objects via proxies. The
resulting object is a proxy.

Smalltalk GemStone

weekPayroll

| weekPayroll |

weekPayroll := MyCompanyFwdr

weekPayroll.

MyCompanyFwdr

MyCompany

1357.271357.27

weekPayroll

Figure 5. Messages sent to a forwarder are automatically sent to the
database object. The resulting object is a replicate.

el across the network to be answered. Network latency
could cost more than replicating the object. Also, there is
the concern of overloading the server with user requests.
Essentially, forwarders are not a “silver bullet.” As with
anything else in software development, it takes trial and
error along with educated guesses to determine the opti-
mal solution for each implementation.

CONCLUSIONS
In general, controlling the size of the image is an impor-
tant goal with respect to system performance. This is
especially true when using on object-oriented database
such as GemStone. Object-oriented databases provide

mechanisms for controlling the flow of objects between
database and image. In GemStone, image size control is
provided by the ability to tune and avoid replication.

While limiting replication helps control image size, it is
also important to consider database access time. Objects
can be retrieved without replicating any related objects.
This would prevent image growth but each subsequent
access would require a database access, negatively
impacting the user’s performance. Replication control
allows you to balance controlling image size while provid-
ing object caching for performance.

In summary, when building a Smalltalk application
using GemStone, consider carefully the two-space model.
When deciding where to execute behavior, look to see
where the objects reside. If most of the objects needed to
perform the operation are in the database, then define that
behavior in the database. This minimizes the need for
replication. If the object is needed for heavy interaction in
client, replicate the object. This minimizes network latency.

Of course, there are no simple answers. Every applica-
tion has a different object model and different hardware
constraints. Plan to spend time trying out a variety of
replication schemes as a part of performance optimiza-
tion. The “right” solution is the one that works for you.

John Bentley is Member, Technical Staff at JumpStart Systems,
Inc., Raleigh, NC. He can be reached via e-mail at jbentley@jmp-
start.com or by phone at 919.832.0490.

`
`

June 1996

“Get the estimate for the weekly payroll.”
| forwarder |
forwarder := (GSI currentSessiona at: #MyCompany) as
Forwarder.
forwarder weeklyPayroll

“Find all employees that live in Raleigh.
Keep the resulting collection as a forwarder.”
| forwarder |
forwarder := (GSI currentSessiona at: #MyCompany)
asForwarder.
forwarder employees fwselect: [:emp| emp address
city = “Raleigh’

Listing 7. Forwarder examples.

The Smalltalk Report18 http://www.sigs.com

T final article in a three-part series on pat-
terns for efficiently implementing and managing
domain models. The first article presented a family of

instantiation patterns—patterns that aid in creating or
initializing objects.

The second article presented a family of patterns for
dealing with validation issues. Safeguard showed where to
put complex validation logic; and how to prevent invalid
domain objects from being used. Deflector showed how to
prevent attributes of certain classes from ever taking on
illegal values. And Validater showed how to provide default
validation of domain attribute values, while allowing end
users to modify default validation logic safely. The second
article also presented a family of patterns for dealing with
informational issues. Verdict showed how to manage the
results of a complex and expensive validation across a
series of domain objects so that their status or validity
may be queried at a later time. And Ticker Tape showed
how to collect status information from a lengthy domain
operation involving thousands of objects, none of which
have visibility to the user interface.

This final article presents a family of patterns for deal-
ing with optimization issues—handling domain models
that must perform well while incorporating extra levels of
indirection in order to be persistent or transient. So far,
the patterns presented have been language-neutral.
Although the following two optimization patterns require
a specific Smalltalk dialect to implement as described, the
principles they embody are generic.

OPTIMIZATION PATTERNS

Avatar (Soft Schema Evolution)
Problem: How do you efficiently implement a persistent
object that must be able to add attributes without causing
a file shape change, yet must be very fast to access?

Motivation: (Background: The Visual Smalltalk ObjectFiler
is able to save and load collections that contain only prim-
itive objects like strings and numbers without requiring a
file shape change as the collections change in size. Thus by

implementing a property dictionary inside a higher-level
domain object you can add simple state to the domain
object after it is designed without having to provide code
for schema evolution. Unfortunately, because access to a
dictionary is via hashed lookup, the access speed for these
additional properties is several times slower than for
attributes kept in instance variables.)

You are designing an object that holds various calcula-
tion parameters that must be accessed efficiently inside
tight loops, and must be stored persistently within each
project. It is likely that this object will add parameters over
time as additional calculation constants are made avail-
able for user editing, yet you do not wish to force a file
schema change each time a parameter is added. To solve
this problem you create two classes with the same inter-
face: one optimized for persistence and one optimized for
access, and you design a mechanism to automatically con-
vert between them as required. Avatar is the transient
incarnation of a faster memory form of a flexible persis-
tent object.

Applicability: Use this pattern when you need to imple-
ment a simple, persistent object with the following char-
acteristics: it needs to be able to add and hold properties
without explicitly mutating shape, yet access to the prop-
erties must be extremely fast, not paying the overhead of
generalized property dictionary access.

Though the implementation of this pattern presented
here is Smalltalk-specific, the general principle of mutat-
ing between a flexible persistent representation and a
fast memory representation of an object should be
applicable in any language that provides object persis-
tence mechanisms.

Solution: Implement a pair of classes with the same inter-
face. One uses a property dictionary to store attributes,
the other uses instance variables. The property dictionary
object is persistent and has an activation method that
mutates it into the instance variable object when it is read
from disk. The instance variable object is always used for
the in-memory representation of the object. It has a sur-

Tactical patterns for
the real world:
Optimization patterns

Darrow Kirkpatrick

rogate creation method that answers the property dictio-
nary version of itself for save operations.

Implementation: TheVisual Smalltalk ObjectFiler adds two
important methods to the Object class: fileInActivate: and
fileOutSurrogate:, as hooks for transforming an object at
load and dump time, respectively. To implement the Avatar
pattern, the property dictionary object’s fileInActivate:
method instantiates the instance variable object; the
instance variable object’s fileOutSurrogate: method instan-
tiates the property dictionary object. As new attributes are
added to the object over time, lazy initialization in access-
ing methods allows new code to work for older files con-
taining objects that lack those attributes. Note that it may
be possibleto share the interface of these two classes using
inheritance: generally the instance variable class would
subclass the property dictionary class—using its interface
but not its dictionary.

Consequences: Application of this pattern results in two
class implementations that must be maintained in paral-
lel. This is only justified when profiling indicates a perfor-
mance-critical situation.

Related Patterns: This pattern is related to Bridge1 in that
it provides multiple implementations for the same inter-
face. However, where Bridge provides parallel interface
and implementation hierarchies that can vary indepen-
dently, Avatar simply provides two subclasses whose
instances are swapped back and forth.

SPEEDWAY (FAST LIBRARY INTERFACE)
Problem: How do you minimize the cost of referencing a
class within a demand-loaded library component?

Motivation: You maintain a library of mathematical class-
es for performing numerical methods. Because memory
is precious and this library is needed only during calcula-
tions it is referenced indirectly and loaded on demand at
the first reference to a mathematical class. The indirect
reference consists of a symbolic class reference via the
Smalltalk dictionary, plus a search through a collection of
library interfaces to find the library containing the class.
This indirection is relatively slow compared to numerical-
ly intensive code, especially when it appears inside itera-
tive calculations. To optimize the reference you encapsu-
late and cache it inside an object that provides a speedy
gateway to the library.

Applicability: Use this pattern whenever you indirectly
reference a component from within performance-critical
code, and the indirection is prohibitively expensive.

Solution:Write a class to act as a fast gateway to the library.
The class implements one instance variable for each pub-
lic class in the library. In performance-critical code,
instead of embedding indirect library references, send a
message to the Speedway object. The corresponding

method in the Speedway initializes its appropriate instance
variable to point to the actual class, first triggering a library
load if necessary. Thus in future references the indirection
previously in the code is optimized to a single message
send which requires a single lazy initialization test.

Implementation: The Speedway is typically a Singleton
object managed by a parent class of the domain model, so
it can easily be accessed by any domain object. When
preparing a runtime application you need to flush the
cached library references to avoid statically binding the
library component to the image.

Rather than lazy initializing a single variable at the first
library reference it may be desirable to populate the entire
Speedway.This may provide a slight performance enhance-
ment and allow consolidating some initialization code.

Consequences: This pattern requires maintaining an
additional class. Since the library indirection described
here is not slow relative to most code, this technique is
justified for performance reasons only in critical code.
However Speedway has another benefit—it objectifies and
documents the public interface to a library subsystem, as
far as that interface is limited to symbolic class references.

Related Patterns: Speedway is similar to Facade in that it
provides a public interface to a subsystem. But the intent
is different: Speedway provides an optimization whereas
Facade usually provides some additional thin layer of
behavior to make high-level use of the subsystem easier.
Note that it may be useful to implement a Facade that
incorporates Speedway’s caching behavior.

Another approach to solving the library interface prob-

June 1996 19http://www.sigs.com

aPropertyObject
anObjectFiler

fileInActivate:
anInstanceClass

new

anObjectFiler

anInstance
Object aPropertyClass

fileOutSurrogate: new

Figure 1. Avatar objects transforming from and to disk.

Domain
Model

Speedway

Root
Finder

Matrix

caches

 caches

Math
Library

uses

interfaces
for

 loads

Figure 2. Class hierarchy of math library speedway and client.

continued on page 34

lem is to implement class Proxy objects. When a class Proxy
is referenced it loads the necessary library and then be-
comes the real class object. This approach requires a more
sophisticated and intrusive implementation, but results in
complete transparency for clients who use library classes.

CONCLUSION
This series documented families of implementation pat-
terns used by our development group for creating domain
models in engineering applications. In presenting a partic-
ular “handbook” of tactical patterns for a specific domain,
these articles are examples of a management or docu-
mentation pattern. The application of this higher-level
management pattern results in a pattern language—a con-
cise narrative of the principles pervading a body of code.

Pattern languages are useful at different levels of ab-
straction in different domains by different teams.
Through pattern languages Alexander, Beck, Gamma,
Helm, Johnson, Vlissides, and others have given us a pow-
erful tool for communicating the craft of software engi-
neering to each other. I hope these articles will encourage
other engineers to discover and publish handbooks of
domain-specific patterns that have helped them to deal
with the demands of creating real-world software.

Reference
1. Gamma, et al. Design Patterns, Addison-Wesley, Reading, MA,

1994.

`
`

The Smalltalk Report

OPTIMIZATION PATTERNS continued from page 19

The Smalltalk Report20 http://www.sigs.com

O , we launched this column with an essay
on project documentation. We followed up in
September 1995 with some code sketches for imple-

menting a hyperliterate documenting system for Visual-
Works under Envy.

Now the World Wide Web has taken the planet by
storm. This is both a crisis and an opportunity. Those who
ignore the Web risk ending up as roadkill on the infobahn.
On the other hand, those who approach the Web with a
thoughtless, knee-jerk reaction are just as likely to fail.

The latter approach can significantly reduce produc-
tivity. “MegaCorp’s goal is to have all project documenta-
tion available on the Web,” sounds nice, until it is fol-
lowed with “therefore, all programmers will immediately
attend HTML training, so they can create their documen-
tation for the Web.” This makes it very difficult to fulfill
our first principle of hyperliterate programming:

The documentation for a thing must be on the same
conceptual level as that thing.

The developers will have to “shift mental gears” to get
out of Smalltalk mode and into HTML mode. Knuth’s
initial concept of literate programming required pro-
grammers to learn and use a complex textual mark-up
language, which muddled their conceptual space. Even-
tually, tools for LaTeX emerged, but literate programming
never quite reached the masses, largely because of the
cognitive dissonance between coding programs and cod-
ing documentation.

“No problem, we’ll invest in Web authoring tools to
make the HTML part easy.” This also kills productivity,
which is now a victim of ignoring our second principle of
hyperliterate programming:

The documentation for a thing must constantly and
accurately describe that thing.

If developers are leaving Smalltalk to write Web pages,

no matter how good their Web authoring tools, neither
their code nor their documentation is going to be as good
as it would be if they combined the two activities in one
environment. One or the other will suffer, and it is almost
always the documentation that is not “constantly and
accurately” describing the code.

In reality, the only principle of hyperliterate program-
ming that Web authoring partially fulfills is the third one:

The documentation for a thing must be accessible; by
creators, their peers, reusers, reviewers, end-user docu-
menters, and the merely curious.

But wait, who does Web authoring give improved ac-
cess to? Certainly not the creator or their peers, who must
now have both Smalltalk and a Web browser running in
order to do their job. Probably not reusers, once they
make the initial Web query and then need deeper access.
Probably not all reviewers, some of whom will want de-
tailed information from within Smalltalk.

So, Web authoring provides increased access to end-
user documenters and the merely curious, at the expense
of the two usage roles most involved with development—
creators and their peers!

Finally, our fourth principle of hyperliterate program-
ming states:

The documentation for a thing must be measurable,
quantitatively and especially qualitatively.

Anyone who can type “du -s” in the root directory of a
UNIX Web tree will get a gross measure of the documen-
tation, but what will that tell us? Web authoring is inap-
propriate for hyperliterate programming because it is
file-based—you will need an entire new suite of tools to
do quantitative and qualitative analysis. If you’ve got a
perl guru in your group, that might work, but why not
leverage the Smalltalk talent you’ve been carefully grow-
ing? It’s unlikely that files of HTML code will ever be mea-
sured as part of a repository-centric metrics program.

THE WEB IS AN EXPORT TARGET
Just because we don’t believe “Web authoring” is appro-
priate for hyperliterate Smalltalk development doesn’t
mean we think the Web useless. “Web authoring” means

Jan Steinman and Barbara Yates are co-founders of Bytesmiths,
a technical services company that has been helping compan-
ies adopt Smalltalk since 1987. Between them, they have more
than 22 years of Smalltalk experience. They can be reached
at Barbara@Bytesmiths.com or Jan@Bytesmiths.com, or via
http://www.bytesmiths.com.

Managing Objects

Documents on the Web
Barbara YatesJan Steinman

June 1996 21http://www.sigs.com

the creation of Web documents by humans, which is great
if you want to create a “cool site” or impress others with
your HTML prowess, but it is at odds with the principles
of hyperliterate programming, which require keeping
documentation as close to the code as possible, in terms
of granularity of concept, as well as physical location.

The knee-jerk problems happen when some vice-pres-
ident says “We gotta get on the Web!” and the ripple effect
causes otherwise bright people to do stupid things, such
as dictate that all Smalltalk documentation will be in
HTML.

Fortunately, HTML is easy to generate from your
Smalltalk-resident documentation. If you followed the
implementation sketch for Smalltalk hypertext we pre-
sented in September 1995, you already have a good start.

That implementation used a special emphasis for Vis-
ualWorks Text that allowed it to treat Smalltalk expres-
sions specially. This was but a small step from “real”
hypertext. We have since extended so it has a notion of
both an anchor, or visible text with human-meaningful
presentation, and an action, which is a block of Smalltalk
source code. To distinguish this, we call it a “clickAction.”

VisualWorks has been criticized for being divorced
from platform capabilities, but its Text class provides an
abstraction for styled text that is much more powerful
than thoughtlessly abdicating all presentation to platform
widgets. Text has an efficient tagged-character facility that
allows you to associate arbitrary objects with runs of char-
acters. Three common tag types are:

• A simple emphasis Symbol, such as #bold or #italic,
• a compound emphasis Array of other emphases, such

as #(#bold #italic),
• a parameterized emphasis Association between a

Symbol and an arbitrary object.
This last capability is used for things like colored text and
different fonts or font sizes.

We defined a new parameterized emphasis for Text
that contains the Symbol #clickAction associated with
Smalltalk source code for a block. We made changes to
ParagraphEditor so that double-clicking one of these
“clickActions” causes the block to be evaluated—instant
hypertext! To enable this, you need a “global method” that
can discriminate clickActions:

Object
isClickAction

“When used as an emphasis in a Text, do I function as
a hyper link? Hardly!!”

^false

SequenceableCollection
isClickAction

“When used as an emphasis in a Text, do I function as
a hyper link? I do if any of my contents does.”

^self
detect: [:object | object isClickAction]
transform: [:ignored | true]
ifNone: [false]

CharacterArray
isClickAction

“When used as an emphasis in a Text, do I function as
a hyper link? Strings and Symbols are never
considered active emphases. This override keeps the
superclass method from examining each of my
Characters to see if they are hyper links.”

^false

Association
isClickAction

“When used as an emphasis in a Text, do I function as
a hyper link? I do if my key is #clickAction, in which
case my value better be block-like, but I don’t check
that here.”

^#clickAction == key

Text
hasClickAction

“Do I contain any hyper links?”

^runs values
detect: [:emph | emph isClickAction]
transform: [:ignored | true]
ifNone: [false]

hasClickActionAt: characterIndex
“Do I have a hyper link at the given
<characterIndex>?”

^(self emphasisAt: characterIndex) isClickAction

You may notice the strange method #detect:transform:-
ifNone:, which is like #detect:ifNone:, except that when the
first block answers true, the value is passed through the
second block. We discovered that we usually use the result
of #detect:ifNone: this way, and so made it a bit easier to do:

Collection
detect: booleanBlock transform: transformBlock ifNone:
exceptionBlock

“Evaluate <booleanBlock> with each of the receiver’s
elements as the argument. Pass the first element for
which <booleanBlock> evaluates to true through
<transformBlock> and answer the result, or answer
the evaluation of <exceptionBlock> if no elements
assert <booleanBlock>.”

^transformBlock value: (self detect: booleanBlock
ifNone: [^exceptionBlock value])

You should combine one or more simple presentation
emphases with a clickAction for it to display differently,
rather than deciding that all clickActions are going to be
presented a particular way. We defined a simple empha-
sis #link as a blue underlined style, to make it familiar
to those with Web experience. We don’t have room for
that code today, but you’ll need to make new instance
creation methods for both CharacterAttributes and Text-
Attributes.

BUT WHERE’S THE HTML?
Once you have the foundations—a proper object model
for hypertext—spitting out HTML is almost trivial. We use
a distributed responsibility pattern familiar to anyone
who has examined how #printString works:

Object
asHtml

“Answer a representation of myself that is suitable for
use in a Web page. Subclasses should not override this
method; rather, they should override htmlOn:.”

| stream |
stream := (String new: 100) writeStream.
self htmlOn: stream.
^stream contents

Object
htmlOn: aStream

“Place on <aStream> a representation of myself that is
suitable for use in a Web page. The default
representation for objects is a #storeString
representation in ‘code’ style. Answer <aStream>.”

^aStream nextPutAll: ‘<CODE>’;
store: self;
nextPutAll: ‘</CODE>’;
yourself

At this point, different objects are free to render them-
selves into HTML as they see fit. Of course, the one we’ve
been concentrating on is Text, and so we have the requi-
site big, ugly method. Much of this complication is be-
cause of the desire to preserve some of the presentation of
lines that begin with tabs. Since HTML presentation is
normally driven by emphasis rather than content, treat-
ing tabs as presentation required an awkward, double-
pass treatment:

Text
htmlOn: aStream

“Place on <aStream> a representation of my contents
suitable for use in a Web page. Answer <aStream>.

For each emphasis found, write beginning and ending
HTML tags.
For each special HTML Character, write the appropriate
HTML character entity.
For lines beginning with tabs, write the proper
indented definition list.”

| turnOff |
turnOff := (String new: 16) writeStream.
^self class subscriptOutOfBoundsSignal

handle: [:ex |
aStream nextPutAll: turnOff contents.
ex returnWith: aStream]

do: [| here tabLevel prevTabLevel thisEmphasis
endEmph char characterEntity |

“Handle initial tabs properly.”

Tab == self first ifTrue: [^(Text with: CR), self
htmlOn: aStream.].

here := 1.
prevTabLevel := tabLevel := 0.
“Repeat the following until I have no more data.”
[here >= self size ifTrue: [^aStream].

“For each emphasis, build up a proper tag and an
untag.”

thisEmphasis := self emphasisAt: here.
thisEmphasis class == Array ifFalse:
[thisEmphasis := Array with: thisEmphasis].
1 to: thisEmphasis size do: [:i | | emph tags |

tags := (emph := thisEmphasis at: i)
isClickAction

ifFalse: [HtmlTags at: emph ifAbsent:
[HtmlNoTag]]
ifTrue: [emph value asHref -> ‘’].

aStream nextPutAll: tags key.
turnOff nextPutAll: tags value].

“For lines that begin with one or more tabs, build
a proper level of indentation.”

endEmph := here + (self runLengthFor: here).
[here < endEmph] whileTrue:

[char := self at: here.
char == CR ifTrue:

[tabLevel := 0.
[tabLevel := tabLevel + 1.
Tab == (self at: here + tabLevel)]
whileTrue: [].
tabLevel := tabLevel - 1.
tabLevel = prevTabLevel ifFalse:

[char := Tab. “to suppress <P>”
(prevTabLevel - tabLevel) abs
timesRepeat:

[aStream nextPutAll: (tabLevel >
prevTabLevel ifTrue: [‘<DL>’] ifFalse:
[‘</DL>’])]].

tabLevel > 0 ifTrue: [aStream nextPutAll:
‘<DD>’].
prevTabLevel := tabLevel].

“For each character with a given emphasis,
write the character or its HTML-legal
equivalent.”

characterEntity := HtmlCharacterEntities at:
char ifAbsent: [].
characterEntity == nil

ifTrue: [aStream nextPut: char]
ifFalse: [aStream nextPutAll:
characterEntity].

here := here + 1].
aStream nextPutAll: turnOff contents.
turnOff reset.
here := endEmph] repeat.

aStream]

The Smalltalk Report22

MANAGING OBJECTS

http://www.sigs.com

If you simply feed this method to Smalltalk, it will com-
plain bitterly, because we’ve added new class variables
to Text. We don’t like to change the definition of classes,
but luckily, you don’t need to if you’re only adding class
variables. We have all this code in a common ENVY
application called HyperTextBytesmiths, with a #loaded
method that adds the needed class variables to Text on
the fly, and of course, a #removing method that removes
those class variables when we’re done:

HyperTextBytesmiths
characterEntityTable

“Answer a Dictionary that associates non-ASCII
characters with their HTML character entities.”

^IdentityDictionary new
at: Character cr put: ‘<P>’;
at: Character tab put: ‘’;
at: $” put: ‘"’;
at: $& put: ‘&’;
at: $< put: ‘<’;
at: $> put: ‘>’;
at: (Character value: 160) put: ‘ ’;
at: (Character value: 161) put: ‘¿’;
at: (Character value: 162) put: ‘¢’;
at: (Character value: 163) put: ‘£’;
at: (Character value: 165) put: ‘¥’;
at: (Character value: 167) put: ‘§’;
at: (Character value: 171) put: ‘«’;
at: (Character value: 176) put: ‘°’;
at: (Character value: 177) put: ‘±’;
at: (Character value: 181) put: ‘µ’;
at: (Character value: 182) put: ‘¶’;
at: (Character value: 183) put: ‘·’;
at: (Character value: 187) put: ‘»’;
at: (Character value: 210) put: ‘®’;
at: (Character value: 211) put: ‘©’;
at: (Character value: 225) put: ‘Æ’;
at: (Character value: 225) put: ‘Æ’;
at: (Character value: 233) put: ‘Ø’;
at: (Character value: 241) put: ‘æ’;
at: (Character value: 249) put: ‘ø’;
at: (Character value: 251) put: ‘ß’;
yourself

loaded
“Add to TextConstants.”

TextConstants
at: #HtmlNoTag put: ‘’->’’;
at: #HtmlTags put: self tagTable;

at: #HtmlCharacterEntities put: self
characterEntityTable

removing
“Take away what I added to TextConstants.”

TextConstants

removeKey: #HtmlNoTag ifAbsent: [];
removeKey: #HtmlTags ifAbsent: [];
removeKey: #HtmlCharacterEntities ifAbsent: []

tagTable
“Answer a Dictionary that associates a Text emphasis
symbol with an Association of two Strings; the key is a
tag used to turn on the emphasis, the value is used to
turn off the emphasis.”

^IdentityDictionary new
at: #bold put: ‘’ -> ‘’;
at: #underline put: ‘’ -> ‘’;
at: #Heading1 put: ‘<H1>’ -> ‘</H1>’;
at: #Heading2 put: ‘<H2>’ -> ‘</H2>’;
at: #Heading3 put: ‘<H3>’ -> ‘</H3>’;
at: #Heading4 put: ‘<H4>’ -> ‘</H4>’;
at: #Heading5 put: ‘<H5>’ -> ‘</H5>’;
at: #Heading6 put: ‘<H6>’ -> ‘</H6>’;
at: #italic put: ‘<I>’ -> ‘</I>’;
at: #strikeout put: ‘<S>’ -> ‘</S>’;
yourself

Now we can generate HTML from any Text, but it is
necessarily “embeddable” HTML only suitable for the
“body” part of a Web page. We have numerous ways of
producing a complete page, but the most useful way
works from any ParagraphEditor, because it is the foun-
dation text editing class in VisualWorks. (The Stream
implementation of #htmlFor: is left as an exercise for
the reader!)

ParagraphEditor
htmlOn: aStream

“Place on aStream a representation of my contents
suitable for use in a Web page.”

^aStream
nextPutAll: ‘<HTML><HEAD><TITLE>’;
print: sensor window label;
nextPutAll: ‘</TITLE></HEAD><BODY>’;
htmlFor: self text;
nextPutAll: ‘</BODY></HTML>’; cr;
yourself

CONCLUSION
The Web can be a powerful communication tool, but
like all tools, it can be misused. Just as a screw driver or
an ice pick can kill a person, mandating inappropriate
use of the Web can kill a project.

We’ve demonstrated some techniques for exporting
off-line HTML from your “hot” Smalltalk documenta-
tion. Next month, we’ll show you how to serve your hot
documentation “on-line,” so that a Web browser can
view up-to-the-minute project documentation. This
should be enough to silence any VP who comes storm-
ing in, shouting “What are you guys doing about the
Web?” `

`

June 1996 23http://www.sigs.com

The Smalltalk Report24 http://www.sigs.com

T ’ going to be discussing the Smalltalk
Solutions conference that took place in New York at
the beginning of March. This isn’t my usual territory,

since it hasn’t got much to do with the Internet, so I’ll
break with tradition and discuss some of the topics I gen-
erally avoid: rumors, impressions, and products I haven’t
used. Obviously, you shouldn’t be basing important deci-
sions on my first looks at a product, or on unsubstantiat-
ed rumors. In fact, just to make things more interesting, I
made up one of the rumors myself. See if you can spot it
yourself before turning to the end for the solution.

In general, the thing that impressed me most about
this conference was the maturing of the Smalltalk indus-
try. The number and variety of different applications was
remarkable, and they weren’t confined to traditional busi-
ness systems. For example, I was surprised to learn that
the driver’s license kiosks in Ontario (where I live) are pro-
grammed in Smalltalk.

It’s no longer the case that everyone is talking about
small pilot projects and introducing Smalltalk into the
organization. An increasing number of organizations
have delivered mission-critical systems in Smalltalk and
realized significant gains from them. There’s more con-
cern with “business value” and how to make the transi-
tion to the “early majority” of users than there is with the
latest cool features.

NEWS AND RUMORS
Speaking of cool features, Java is heavily in the news these
days, and often cited as a threat to Smalltalk. In fact, many
advocates of Java seem to believe that it instantly makes
all existing languages and operating systems obsolete. I
admit to knowing some people who feel that way about
Smalltalk, but the Java zealots are doing a remarkable job
of worrying people who really ought to know better. This
leads to a couple of interesting Java rumors.

One, which appeared in comp.lang.smalltalk suggest-
ed that ParcPlace-Digitalk was in the process of making a
Java VM which would be several times faster than Sun’s.
This is technically plausible, since current Java imple-

mentations are abysmally slow, and it shouldn’t be that
difficult to adapt a Smalltalk VM to run Java. On the other
hand, I’ve seen no confirmation of this, especially not
from PPD.

Microsoft is reacting to the Java hysteria, and although
they have licensed it for use in their own web browser,
they’re also at work on a product to rival Java, leveraging
their existing technology. In accordance with the emerg-
ing standards for naming conventions of such products
(bad puns based on coffee) the new product will be
named “au lait.”

One of the strengths of Java is that implementations
are quite cheap, and often free. There have been numer-
ous complaints from the community that, in the pursuit
of the corporate market, Smalltalk vendors have priced
themselves out of range of individuals and small compa-
nies. Anyone who feels this way should be happy to hear
the latest from Skip McGaughey (market manager for
VisualAge). Responding to a question on his keynote
speech, he said that we “absolutely need” a cheap
Smalltalk that runs on an 8- to 16-MB machine and comes
with multimedia instructional software so that users don’t
need expensive training. “Are we there today? No. Will we
be there a year from now? We have to be.”

Getting back into the factual and the present, the
draft X3J20 report on the ANSI standard Smalltalk is now
available for review. The initial informal review period
ended April 30, but review and revisions continue. To
get a copy, contact Lynn Barra at 202.626.5738 or
lbarra@itic.nw.dc.us. There’s also an X3 web page at
http://www.x3.org. The ANSI committee has done some
very interesting work, and obviously put a lot of thought
into defining the language without overconstraining
future implementations. They have decided not to define
a standard for namespaces, not because they don’t think
they’re important, but because they think standardization
now would be premature. Although I’m a little dis-
appointed that vendors won’t be forced to implement
namespaces, I have to agree with their reasons.

A big part of this column turned out to be about IBM
and OTI. That’s partly because there was interesting news
on that front and partly for another reason. It’s been quite
a while since the merger and there’s still very little infor-

Alan Knight is a Smalltalk guru with The Object People. He can be
reached at 613.225.8812 or by email as knight@acm.org.

The Best of comp.lang.smalltalk

Smalltalk Solutions
Alan Knight

June 1996 25http://www.sigs.com

mation on PPD’s future plans, which are of critical impor-
tance to anyone working in Smalltalk. I had prepared a
modest diatribe on the subject and it had already been
typeset when the information finally started to flow. It’s
still a trickle, but it’s enough that I’m willing to hold back
my wrath a little while, especially since the trickle con-
tains encouraging words like “no runtime fees.”

IBM BUYS OTI
When IBM became a Smalltalk vendor it marked a signifi-
cant milestone in the evolution of the language, giving it
legitimacy in the eyes of many major corporations. IBM
had licensed their underlying Smalltalk technology from
OTI, and now they have acquired that technology outright.

Given the close relationship between the two compa-
nies lately this wasn’t a complete surprise, but it did worry
a number of people. One worry, for fans of OTI, is that
being part of IBM might destroy their unique corporate
culture. The other worry, for fans of VisualWorks/Envy, is
the long-term outlook for that product. Skip McGaughey
tried to dispel these fears in his keynote address.

He re-affirmed that OTI would act as an independent
subsidiary of IBM, and that it would continue to be run by
Dave Thomas. In fact, he said that all Smalltalk activity
within IBM now reports to Dave, so that “in a very real
sense, Dave Thomas acquired IBM.” He also emphasized
the idea of both competing and collaborating. One exam-
ple of this collaboration was that OTI will continue to sup-
ply VisualWorks Envy, enabling their competition, but
allowing everyone to win by growing the market. That
takes care of one side of the equation, but it remains to be
seen how ParcPlace-Digitalk feels about having such an
important system component provided by a competitor.
Whether or not we see a version of Envy for VisualWave
will be a very strong signal of their future direction.

One area where OTI’s culture is already being affected
is in the relaxation of their vows of silence. OTI staff are
known for never letting any information slip before some-
thing is officially announced. Skip McGaughee instead
emphasized the need for clear communications, even
with competitors. For example, he said that IBM will let
anyone see their plans for the next version without sign-
ing a non-disclosure agreement.

EMBEDDED/SERVER SMALLTALK
OTI’s tools for doing embedded and server programming
in Smalltalk are one of the most interesting bits of tech-
nology I’ve seen in a while. Although it’s an area which
is unfamiliar to most of the Smalltalk community, I
believe that they will be very important to the future of
Smalltalk.

Smalltalk is generally considered to be very resource-
intensive. Development environments typically suggest
16 to 32 MB RAM and executables have trouble running in
4 to 8 MB. You certainly wouldn’t think of using Smalltalk
for a real-time system with only 512 K, would you? OTI
would, and they’ve been doing it for quite a long time.
Now they’ve come out with their second generation of

THE BEST OF COMP.LANG.SMALLTALK

SIGS Publications, Inc., 71 West 23rd Street, 3rd Floor, New York, NY
10010; 212.242.7447; Fax: 212.242.7574

ARTICLE SUBMISSION
To submit articles for publication,please contact:
John Pugh & Paul White, Editors, 885 Meadowlands Dr.#509,Ottawa,
Ontario,K2C 3N2 Canada; email: streport@objectpeople.on.ca

PRODUCT REVIEWS AND ANNOUNCEMENTS
To submit product reviews or product announcements, please
contact the Editors at the address above.

CUSTOMER SERVICE
For customer service in the US, please contact PO Box 5050,
Brentwood, TN 37024-5050; 800.361.1279; Fax: 615.370.4845;
in the UK, please contact Subscriptions Department, Tower
Publishing Services, Tower House, Sovereign Park, Market
Harborough, Leicestershire, LE16 9EF, UK; +44.(0)1858.435302;
Fax: +44.(0)1858.434958

SIGS BOOKS
For information on any SIGS book, contact: Don Jackson, Director of
Books, SIGS Books, Inc., 71 West 23rd Street, New York, NY 10010;
212.242.7447; Fax: 212.242.7574; email: donald_jackson@sigs.com

SIGS CONFERENCES
For information on all SIGS Conferences, please contact: SIGS
Conferences,71 West 23rd Street, 3rd Floor, New York, NY 10010;
212.242.7515; Fax: 212.242.7578; email: info@sigs.com

BACK ISSUES
To order back issues, please contact: Back Issue Order Department,
SIGS Publications, 71 West 23rd Street, 3rd Floor, New York, NY
10010; Phone: 212.242.7447; Fax: 212.242.7574

REPRINTS
For information on ordering reprints, please contact:
Reprint Management Services, 505 East Airport Road, Box 5363,
Lancaster, PA 17601; Phone: 717.560.2001; Fax: 717.560.2063

ADVERTISING
For ad information for any SIGS publication, please contact:
East Coast/Europe: Gary Portie
Central US: Elisa Marcus
Recruitment: Michael Peck
Exhibit Sales, West Coast: Kristin Viksnins
Exhibit Sales, East Coast: Sarah Olszewski
Phone:212.242.7447; Fax: 212.242.7574; email: sales@sigs.com
West Coast: Diane Fuller
Phone:408.255.2991; Fax: 408.255.2992; email: dhfsigs@hooked.net

INTERNATIONAL OFFICES
SIGS Conferences Ltd., Brocus House, Parkgate Road, Newdigate,
Surrey RH5 5AH, United Kingdom. Phone: 011.44.1.306.631.331;
Fax: 011.44.1.306.631.696; email: 100131,3500@compuserve.com.

SIGS France, 105 rue Jules Guesde, 92532 Levallois Perret Cedex,
Paris, France. Phone: +33 (1) 41 06 18 00; Fax: +33 (1) 41 06 18 19;
email: 100631,1050@compuserve.com.

SIGS Conferences GmbH, Odenthaler Strasses 47, D-51465 Bergisch
Gladbach, Germany. Phone: 011.49(0).2202.936.810;
Fax: 011.49(0).2202.936.812; email: 100634,2070@compuserve.com.

SIGS HOME PAGE AND ONLINE MAGAZINES
Access the SIGS Home Page at http://www.sigs.com;
Object Currents at http://www.sigs.com/objectcurrents; and
The X Spot at http://www.sigs.com/xspot.

INFO@SIGS

embedded tools and they’re starting to promote them
more aggressively.

In getting such small footprints, they have an advan-
tage over most of us because they’re typically writing for
systems that don’t have screens, mice, keyboards, or disk
drives. All these things need code to control them, which
takes spaces. On the other hand, these absences make
developing and debugging with these machines extreme-
ly difficult. OTI’s toolset tries to make it more like regular
development. Here’s a quick summary of the features I
found most interesting.

You develop on a workstation, but with a difference. In
regular Smalltalk your development and execution envi-
ronments are the same. You write code, then execute it in
the same environment that runs your browsers, compil-
ers, and so forth. When you’re ready to deliver, you strip
out what you’re not using. In Envy/Embedded you create
a specification of an image to run on the embedded sys-
tem, and you write code to execute in that environment.
The class libraries you use can be entirely different than
what’s on your workstation.

When you’re ready to run, your code is transferred
(through a serial port or network interface) to the real
machine and run. You have full interactive debugging
facilities, it’s just that the debugger is on your workstation
and the code being run is on the target system. You have
remote inspectors and workspaces, single-stepping, and
the ability to save code and continue.

For packaging, there are a number of very interesting
features. The entire virtual machine is re-entrant, so it can
be put in ROM and shared between multiple images. The
same thing can be done with large parts of the image. On
some real-time operating systems Smalltalk can use the
operating system threads instead of the normal Smalltalk
processes.

It’s these last two that seem to me to have the most sig-
nificant implications for desktop environments. Better
separation of development and delivery environments is
important, but the ability to share most of the environ-
ment in read-only mode could easily lead to truly share-
able Smalltalk DLL’s. This would let me run many fine-
grained Smalltalk applications simultaneously without
the memory overhead of starting a separate VM for each
one. I don’t think that the use of real operating system
threads is critical if you have a non-blocking API capabil-
ity, but it’s something for which Smalltalk is often criti-
cized, so it’s nice to see a real implementation.

A lot of these features are very similar to IBM’s forthcom-
ing MVS Smalltalk, and this is no coincidence. Brian Barry
of OTI, in presenting the embedded product, described
MVS as a really, really large embedded system. Many of the
characteristics of embedded systems are shared with
servers, and many of the same features are important.

PROGRAMMING EPISODES
Ward Cunningham gave a talk on a model of the develop-
ment process, subtitled “Finding and Exploiting Great
Objects WhenYou Barely Have Time to Think.” Ward works

in the financial world, with very demanding customers
and very tight deadlines. This is his model of how to devel-
op in that environment and still produce great code. I guess
it’s a development method, but it’s a lot looser and willing
to rely on people’s competency than most of the methods
I’ve seen. That makes it appealing to me as a programmer,
but it still has enough structure that I can believe it would
help meet deadlines. That’s quite an accomplishment.

First, a bit of background, in case you’re unfamiliar
with Smalltalk theology. Ward Cunningham is a very long-
time Smalltalker, who worked at Tektronix in close collab-
oration with Kent Beck. They did a lot of cool stuff togeth-
er, like designing the HotDraw graphical editing frame-
work and inventing CRC cards. They were also among the
first to look at applying patterns to software, and although
this talk was not described in terms of patterns, the influ-
ence was clear.

He started with a very simple structure for software
development, which was successively elaborated with
more detailed ideas, applicable in particular situations.
It’s hard to describe, so I’ll just give a bit of flavor by para-
phrasing a couple of the ideas.

Spike Solution
You’ve got an informal labor plan and you want to move
towards implementation. You need to do some prelimi-
nary coding to make sure you understand the require-
ment and its implications, but you don’t want to get
bogged down in dealing with the complexities of existing
code. So, write the smallest possible code to perform that
requirement, independent of the existing mechanisms.

For example, take a clean image and implement the
absolute basics of that requirement, as fast as possible.
This is called a “Spike Solution” because it’s like driving a
spike into a wall. You do it to find out how thick the wall is
and where you’ll come out. You stop driving the spike as
soon as the tip comes out the other side. Later on you’ll
drive the nails for real.

Motivated Consolidation
Consolidation is important, but your consolidation will
be better the longer you put it off. Also, in the normal
course of things you will never consolidate, because this
is an environment where you barely have time to think.
Therefore, you consolidate when, and only when, it’s
the shortest route to getting something out the door.
Fixing the code and adding the new feature will take
less time than just hacking in the new feature, and you
only do it for regions of the code where it’s motivated
(i.e., funded). One of the essential elements for consoli-
dation is regression tests. They’re incredibly liberating,
because they let you change something radically and
still know if it works or not.

If this looks interesting, you can find more informa-
tion, including the “Episodes” pattern language on which
this is based, on Ward’s web site at http://c2.com.

The solution to the rumor puzzle is, read from right to
left: “romur tial ua eht pu edam I” `

`

The Smalltalk Report26

THE BEST OF COMP.LANG.SMALLTALK

http://www.sigs.com

June 1996 27http://www.sigs.com

D , it is sometimes
useful to guarantee that your code does not create

two objects that are logically equivalent. Instead,
you would like the attempt to create a new object to actu-
ally return an existing, equivalent object, if it should exist.

Otherwise, the new object can be created and registered
in such a way so that subsequent attempts to create an
equivalent object will return this one. This technique,
calledcanonicalization, makes your code more efficientby
eliminating redundant objects and allowing you to take
advantage of object identity. For example, if you know that
there will only be a single object to represent some logical
entity, you can use identity comparisons (== or ~~) when
scanning for the presence of the object in some collection.
Identity comparisons are usually more efficient to use
because they are typically in-lined by the compiler, and do
not require fetching the objects to return an answer.

Most Smalltalkers are already familiar with the concept
of canonicalization with the use of symbols. By definition,
symbols are guaranteed to be unique, so that any symbol
with the same sequence of characters will have the same
identity. This means that no matter where or how a sym-
bol is created, an identity comparison of two equivalent
symbols always returns true. In fact, the implementation
of = for class Symbol is the same as ==.

The uniqueness of symbols allows them to be used in
fast identity-based collections, such as a key in an identi-
ty dictionary, while preserving the semantics of equality
look-up. This is one reason why method selectors are
symbols rather than strings, since they are used as keys in
a method dictionary.

A common usage for canonicalization is to imple-
ment a smart cache of objects whose state is derived
from an external system. For example, if objects are
being materialized from a relational database, then a
cache typically maps a relational primary key value to its
corresponding Smalltalk object. If some part of the

application needs an object with a particular key value,
the cache is consulted first. If there is already an entry in
the cache for that particular key, then the application
can avoid having to execute time-consuming code to
communicate with the relational database and perform
the relational-to-object mapping, since it has already
been done before (of course, if the relational data has
been modified since the initial caching occurred, then
the cache must somehow be updated or invalidated, but
that is a different problem).

Building your own canonicalization mechanism is fair-
ly straightforward in a single-user Smalltalk system. A typ-
ical implementation is to override the instance creation
method to check for the presence of an existing, equiva-
lent object before creating a new one. A common imple-
mentation is to maintain a dictionary in a class variable,
where the keys of the dictionary are the logical values
upon which equivalence is determined, and the values of
the dictionary are instances of the class that have already
been created. I suggest using a class variable, rather than
a class instance variable, so that creating instances of sub-
classes consults the same dictionary. Another advantage
of this implementation is that it is very easy to get all
instances of a class and its subclasses.

To illustrate this technique, here is the implementation
of an instance creation method for class Employee. In
addition to having instance variables for name and social
security number, Employee has a class variable called
“CanonDictionary” that is initialized to a dictionary. In this
model, social security number is the primary key upon
which equivalence is based, i.e. we never want object
memory to contain more than one instance of Employee
with the same social security number. Since we always
want an Employee to have a social security number, we
override the “new” method to raise an error, and require
instance creation to occur with the “name:ssn:” method
listed here:

classmethod: Employee
name: aName ssn: aSSN
“Return an instance with the given name and ssn. If one

Getting Real

Jay Almarode

Using Smalltalk since 1986, Jay Almarode has built CASE tools, in-
terfaces to relational databases, multi-user classes, and query sub-
systems. He is currently a Senior Software Engineer at GemStone
Systems Inc., and can be reached at almarode@gemstone.com.

Multi-user canonicalization

does not exist in the canonicalization dictionary, create
a new one; otherwise, return the existing one.”

^ CanonDictionary at: aSSN ifAbsent: [| emp |
emp := self basicNew name: aName; ssn: aSSN.
CanonDictionary at: aSSN put: emp.

]

This technique works fine in single-user Smalltalk sys-
tems, since only one user is creating objects in this
image. But in multi-user Smalltalk, there may be concur-
rent users who are creating objects in a shared image.

This opens the door to the possibility that users will
experience concurrency conflicts on the canonicalization
dictionary. In addition, since each user operates with
their own transactionally consistent view of objects, there
may be more than one user who thinks he or she is creat-
ing the first instance of an Employee with a particular
social security number. This is because neither user will
see the other’s modifications until his or her transaction is
committed. At the very least, one of the users could expe-
rience a concurrency conflict, but it could be worse if
both users were allowed to create logically equivalent
instances of Employee and the application code depended
upon their uniqueness.

Fortunately, by subclassing an existing specialized
multi-user class, this situation can be handled correctly. In
GemStone Smalltalk, the class RcHashDictionary provides
concurrency semantics that are close to what is needed
(see my column in the March–April 1995 issue of the
Smalltalk Report for a description of reduced conflict
classes). This multi-user dictionary allows concurrent
updaters and removers from the dictionary to perform
their operations without conflict, as long as they are using
different keys. For example, two concurrent users who
are performing at:put: operations with non-equivalent
keys will not experience concurrency conflicts. But in our
example, concurrent users might try to create instances
with the same social security number, so they would ex-
perience conflict. What is needed is the ability to recog-
nize these conflicts, choose one of the instances to be the
canonical Employee with that social security number, and
to replace all references to the noncanonical Employee with
references to the canonical Employee (allowing the non-
canonical Employee to be eventually garbage collected).

To solve this problem, I created a subclass of RcHash-
Dictionary, called RcCanonicalDictionary. This class only
needs to override one method to provide the desired
behavior; however, to implement this method requires an
understanding of how reduced conflict behavior is
achieved. When a user attempts to commit a transaction,
the underlying system detects if there are physical con-
flicts on objects, for example, checking if this transaction
wrote an object that another concurrent transaction had
already written and committed. For most objects, a phys-
ical conflict means the transaction cannot succeed.
However, for special reduced conflict objects, they are
given a second chance to determine if the physical con-
flict can logically be resolved.

This involves selectively updating the view of these
objects so that the committed modifications of other
users are visible, and then replaying the modifications of
the current transaction on the reduced conflict objects. If
the modifications can be replayed without failing, then
the transaction is allowed to commit successfully.

For RcHashDictionaries, the method that replays up-
dates to the dictionary is _replayAt:put:oldValue:. This
method is similar to at:put:, except that the third argu-
ment is the original value at the given key before the
update occurred (this argument is nil if the entry was
added for the first time).

This allows the replay method to check if the value
before the update is the same during replay as it was
when the operation was originally invoked during the
transaction. When the operation is replayed, if the current
value is not the same as the old value, then we know some
concurrent user has updated the dictionary at this key
and we should fail the attempt to commit the transaction.

For our new RcCanonicalDictionary, rather than fail the
transaction when another user commits a new entry at
the same key, we would like to forget the value we were
going to insert, and use the value that another user
already inserted. This involves swizzling all references to
the value we were about to insert to the new value insert-
ed by a concurrent user. Fortunately, this is not very hard
to do, since we can get a collection of all objects that were
written during the transaction, and scan them to find ref-
erences to our value. This avoids having to scan all of
object memory to find references, which is prohibitive for
a large scale number of objects.

One thing that must be accounted for when swizzling
object references is to correctly update collections where
the position of an object in the collection is dependent
upon the identity of the object.

In GemStone Smalltalk, Bag and its subclasses use the
identity of its elements to determine their positions in the
internal implementation structures. Consequently, rather
than overwriting the reference to the old value in these
collections, the swizzling method first removes the old
value and then adds the new value to the collection.
Below are the methods to replay the insertion into an
RcCanonicalDictionary when a physical conflict is detected,
and the methods to swizzle references in general objects
and for Bags.

method: RcCanonicalDictionary
_replayAt: aKey put: aValue oldValue: oldValue
“Stores the key/value pair in the dictionary. If there is
already a value for the given key, then this method
swizzles references to refer to the existing value.”

| existingVal |
“see if there is now an existing entry (added by a
concurrent user) “

existingVal := self at: aKey otherwise: nil.
“if there is no existing entry, update the dictionary;
otherwise swizzle “

existingVal isNil

The Smalltalk Report28

GETTING REAL

http://www.sigs.com

June 1996 31http://www.sigs.com

ifTrue: [self at: aKey put: aValue]

ifFalse: [
“ for each object written during this transaction,
swizzle references “

(System _hiddenSetAsArray: 9) do: [:obj |
obj _swizzleReferencesFrom: aValue to:
existingVal

]
].

“ return true to indicate that the transaction can proceed “
^ true
%

method: Object
_swizzleReferencesFrom: obj1 to: obj2
“Scan the named instance variables and indexable portion
of the receiver, looking for references to obj1. For any
that are found, replace the reference with obj2.”

“ first scan named inst vars “
1 to: self class instSize do: [:j |

obj1 == (self instVarAt: j)
ifTrue: [self instVarAt: j put: obj2]
].
“ scan indexable portion if necessary “
self class isIndexable

ifTrue: [
1 to: self _basicSize do: [:j |

obj1 == (self _at: j) ifTrue: [self _at: j put: obj2]
]

]
%

method: Bag
_swizzleReferencesFrom: obj1 to: obj2
“If obj1 is contained in the receiver, remove all
occurrences of it, and add the same number of
occurrences for obj2.”

“ invoke superclass method for named instance variables “
super _swizzleReferencesFrom: obj1 to: obj2.

(self includes: obj1)
ifTrue: [

(self occurrencesOf: obj1) timesRepeat: [
self remove: obj1.
self add: obj2.

]
]

%

Canonicalization of objects is a useful technique with
many applications. In a multi-user environment, canoni-
calization mechanisms must take into account concur-
rent users creating equivalent objects.

This column has demonstrated one approach for solv-
ing this problem using the power and extensibility of
multi-user Smalltalk. `

`

The Smalltalk Report2

C
 been demonstrated over the
past few years the merits of using Smalltalk for
application development in a wide variety of
disciplines. It has successfully been deployed

in areas as diverse as banking, insurance, telecom, and
utilities, and the list goes on.With that given, it is amaz-
ing the number of times we still end up having to justify
Smalltalk as a valid choice for software development
projects.Themisconceptions withrespect tospeed, dif-
ficulty of development, the proprietary nature of the
software and so on still persist. It still seems impossi-
ble to avoid the “why should I even consider Smalltalk
for my application development?” type of questions.

It’s never quite clear why these
misconceptions cannot be eradi-
cated. Perhaps it’s just the nature
of the software industry, and en-
gineering in general. Many of
the often stated shortcomings of
Smalltalk of course have long
been addressed. Dynamic compi-
lation, for example, provided a big boost in execution
speed, and puts Smalltalk very close in execution speed
to C++, when it is used as a fully object-oriented sys-
tem. Garbage collection is another criticized feature
even though today’s implementations are so well tuned
that these criticisms are for the most part unfounded.

The reason for writing is not to complain about the
unfair criticisms, but instead to highlight the work we
all have left to do if we’re to take Smalltalk to the next
level. If we really believe Smalltalk is worth sharing
with the rest of the software world, then we need to do
a much better sales job. Of course, many companies
are working very hard to do just that. GemStone, for
example, has taken a big step forward by positioning
their OO database product as an application data
server that uses Smalltalk as the primary development
environment. Given the visibility they’ve been receiv-
ing of late, this is a positive step for all of us. IBM has
also clearly demonstrated that Smalltalk is a major
part of their future in the software arena. Their moving
VisualAge and Smalltalk to their various platforms
makes it a viable solution for software development
shops that otherwise never would have considered it.
And investors in ParcPlace/Digitalk are certainly
expecting growth in the industry.

We have to realize that having Smalltalk progress on
a pilot project by pilot project basis is not the scale of

growth necessary. We need to see it being adopted by
organizations as their leading choice for mainstream
application development. And those of us who make a
living from this technology cannot afford to stand idly
by. We have to take the lead in educating “the masses”
in why Smalltalk is a sound business choice. We’re now
to the point that making arguments strictly on a tech-
nology basis will never enable us to achieve this
growth. The arguments must be raised to issues of
business value, not technical merit. As an example, we
believe that for software development to qualitatively
improve as an industry, we need to move toward the
adoption of notions such as software components.

These components need to be
self-contained, testable, and well
specified on the basis of their
behavior, constraints, input
types, and output types. If we
make this argument convincing-
ly, then it becomes much simpler
to convince people that Smalltalk

is probably the best choice for achieving this type of
software organization. We urge you to try arguing the
case for Smalltalk in this type of context, rather than
“but it has garbage collection which saves you a lot of
work”—we think you’ll be more successful.

The other issue with respect to “selling” Smalltalk is
that we cannot afford to wait much longer in succeed-
ing. We probably need to take a type of “storm the
beaches” mentality to this, since the time is ripe now
for market penetration. The simple fact is that virtual-
ly every software development shop is facing the same
problem, namely that the systems they are being
asked to build are significantly more difficult to con-
struct than systems of even two or three years ago. The
new systems being created today must capture busi-
ness rules and business logic to be considered suc-
cessful. Well, let’s argue for Smalltalk’s use because it is
the best tool for capturing this knowledge. We think it
is possible to demonstrate that Smalltalk is, purely
from a language point of view, better positioned for
application development than languages such as
PowerBuilder, VisualBasic, and even C++. Let’s use this
to our advantage, rather than arguing whether or not
Smalltalk’s window creation facilities are as slick as
other products—in the longer run, business decisions
will always be based on business value! We hope you’ll
enjoy the issue.

Editors’ Corner
Paul WhiteJohn Pugh

The arguments (for using
Smalltalk) must be raised
to issues of business value,

not technical merit.

http://www.sigs.com

For more object
news and analysis,
check out SIGS
online at
http://www.sigs.com

July–August 1996 1

Table of Contents
July–August 1996 Vol 5 No 9

Features
How to display an object as a string: 4
printString and displayString
Bobby Woolf
Objects are often identified using a string that describes the
object. Bobby offers some guidelines on how to implement and
use printString and displayString to produce an object’s description.

Smalltalk SQA—The Public/Private Problem #2 9
Jeff McKenna
Jeff explores the public/private problem, proposes a solution, and
then describes how to use the solution to define a unit, interface,
and aggregate testing.

Proper use of class methods 12
Jill Nicola
Using class methods for creating new objects, managing class
variables, and building test objects.

Implementing mixins in Smalltalk 14
Terry Montlick
A simpler, more pragmatic approach for working with mixins.

Managing Objects 16
Smalltalk as an Internet server
Jan Steinman & Barbara Yates
Mainframes and terminals are tired, client-
server is wired. With a simple TCP-based
server framework, you can concentrate on

the service you provide, without getting bogged down in
server details.

Getting Real 21
Communicating between sessions
Jay Almarode
Jay discusses two kinds of client-to-client communication
that can be supported by multi-user Smalltalk and shows
how to use these services to implement concurrent
processing algorithms.

Visual Programming 24
Reusable components
Dwight Deugo & Wayne Beaton
Deugo and Beaton describe the building
blocks for constructing any application
window: parts and corrections.

Departments
Editors’ Corner 2
The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, monthly except in Mar–Apr, July–Aug, and Nov–Dec. Published by
SIGS Publications Inc., 71 West 23rd St., 3rd Floor, New York, NY 10010. © Copyright 1996 by SIGS Publications. All rights reserved.
Reproduction of this material by electronic transmission, Xerox or any other method will be treated as a willful violation of the US
Copyright Law and is flatly prohibited. Material may be reproduced with express permission from the publisher. Bulk rate U.S. postage
paid Lancaster, PA, permit 161. Canada Post International Publications Mail Product Sales Agreement No. 290386.

Individual Subscription rates 1 year (9 issues): domestic $89; Mexico and Canada $114, Foreign $129; Institutional/Library rates:
domestic $199, Canada & Mexico $224, Foreign $239. To submit articles, please send electronic files on disk to the Editors at 885
Meadowlands Drive #509,Ottawa,Ontario K2C 3N2,Canada,or via Internet to streport@objectpeople.on.ca.Preferred formats for figures
are Mac or DOS EPS,TIF,or GIF formats.Always send a paper copy of your manuscript, including camera-ready copies of your figures (laser
output is fine).

POSTMASTER: Send domestic address changes and subscription orders to: The Smalltalk Report, P.O. Box 5050, Brentwood, TN 37024-
5050. For service on current domestic subscriptions call 1.800.361.1279 or fax 615.370.4845. Email: subscriptions@sigs.com. For foreign
subscription orders and inquiries phone +44(0)1858.435302. PRINTED IN THE UNITED STATES.

Columns

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS Publications Advisory Board
Tom Atwood, Object Design
François Bancilhon, O2 Technology
Grady Booch, Rational
George Bosworth, ParcPlace-Digitalk
Jesse Michael Chonoles, Lockheed Martin ACC
Stuart Frost, SELECT Software
Adele Goldberg, ParcPlace-Digitalk
Thomas Keffer, Rogue Wave Software
R. Jordan Kriendler, IBM Consulting Group
Thomas Love, Consultant
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

The Smalltalk Report Editorial Board
Jim Anderson, ParcPlace-Digitalk
Adele Goldberg, ParcPlace-Digitalk
Reed Phillips
Mike Taylor, ParcPlace-Digitalk
Dave Thomas, Object Technology International

Columnists
Jay Almarode, GemStone Systems Inc.
Wayne Beaton, The Object People
Kent Beck, First Class Software
Dwight Deugo, The Object People
Juanita Ewing, ParcPlace-Digitalk
Bob Hinkle, Consultant
Tim Howard, FH Protocol, Inc.
Ralph E. Johnson, University of Illinois
Alan Knight, The Object People
Mark Lorenz, Hatteras Software, Inc.
Jan Steinman, Bytesmiths
Rebecca Wirfs-Brock, ParcPlace-Digitalk
Barbara Yates, Bytesmiths

SIGS Publications Group, Inc.
Richard P. Friedman, Founder, President, and CEO
John McCormick, Editorial Director

Editorial/Production
Kathleen M. Major, Managing Editor
Elisa Varian, Director of Manufacturing
Seth J. Bookey, Associate Managing Editor
Dan Olawski, Production Editor
Sue Mycka, Desktop Designer and Cover Design
Margaret Conti, Manufacturing Coordinator

Circulation
Elayne Glick, Circulation Director
Lawrence E. Hoffer, Director, New Business Development
Byron Scarlett, Assistant Circulation Manager

Advertising/Marketing
Gary Portie, National Sales Manager
Elisa Marcus, Advertising Manager,Central US
Michael W. Peck, Advertising Representative
Kristine Viksnins,West Coast Exhibit Sales
Sarah Olszewski, East Coast Exhibit Sales

212.242.7447 (v), 212.242.7574 (f)
Diane Fuller & Associates, Sales Representative,West Coast

408.255.2991 (v), 408.255.2992 (f)
Nancy Beuschel, Promotions Manager for Magazines

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Senior Accounting Manager
Bibi Budhram, Accounts Payable

Publishers of JOURNAL OF

OBJECT-ORIENTED PROGRAM-
MING, OBJECT MAGAZINE,

C++ REPORT, THE SMALLTALK REPORT, THE X JOURNAL, JAVA

REPORT, OBJECT CURRENTS (ONLINE), THE X SPOT (ONLINE),
OBJECT EXPERT (UK), and OBJEKTSPEKTRUM (GERMANY)

SIGS
PUBLICATIONS

http://www.sigs.com The Smalltalk Report4

W about how to use different sorts of
objects, people often ask me what these objects
look like. I draw a bunch of bubbles and arrows,

underline things while I’m talking, and (hopefully) peo-
ple nod knowingly. The bubbles are the objects I’m talk-
ing about, and the arrows are the pertinent relationships
between them. But of course the diagram is not just cir-
cles and lines; everything has labels to identify them. The
labels for the arrows are easy: The name of the method in
the source that returns the target. But the labels for the
bubbles are not so obvious. It’s a label that somehow
describes the object and tells you which one it is. We all
know how to label objects in this way, but what is it that
we’re doing?

This is a Smalltalk programmer’s first brush with a big-
ger issue: How do you display an object as a string? Turns
out this is not a very simple issue. VisualWorks gives you
four different ways to display an object as a string:
printString, displayString, TypeConverter, and PrintConverter.
Why does there need to be more than one way? Which
option do you use when?

This article is in two parts. This month, I’ll talk about
printString and displayString. In September, I’ll talk about
TypeConverter and PrintConverter.

printString AND displayString
There are two messages you can send to an object to dis-
play it as a string:

• printString—Displays the object the way the
developer wants to see it.

• displayString—Displays the object the way the user
wants to see it.

printString is as old as Smalltalk itself. It was part of the
original Smalltalk-80 standard and was probably in
Smalltalk long before that. It is an essential part of how
Inspector is implemented, an inspector being a develop-
ment tool that can open a window to display any object.
An inspector shows all of an object’s slots (its named and
indexed instance variables); when you select one, it
shows that slot’s value as a string by sending the slot’s

value the message printString. The inspector also shows
another slot, the pseudovariable self. When you select
that slot, the inspector displays the object it’s inspecting
by sending it printString.

displayString was introduced in VisualWorks 1.0, more
than 10 years after printString. displayString is an essential
part of how SequenceView (VisualWorks’ List widget) is
implemented. The list widget displays its items by dis-
playing a string for each item. The purpose of this dis-
play-string is very similar to that of the print-string, but
the results are often different.

printString describes an object to a Smalltalk program-
mer. To a programmer, one of an object’s most important
properties is its class. Thus a print-string either names
the object’s class explicitly (a VisualLauncher, Ordered-
Collection (#a #b), etc.) or the class is implied (#printString
is a Symbol, 1/2 is a Fraction, etc.). The user, on the other
hand, couldn’t care less what an object’s class is. Because
most users don’t know OO, telling them that this is an
object and what its class is would just confuse them. The
user wants to know the name of the object. displayString
describes the object to the user by printing the object’s
name (although what constitutes an object’s “name” is
open to interpretation).

STANDARD IMPLEMENTATION
The first thing to understand about printString is that it
doesn’t do much; its companion method, printOn:, does
all of the work. This makes printString more efficient
because it uses a stream for concatenation.1 Here are the
basic implementors in VisualWorks:

Object>>printString
| aStream |
aStream := WriteStream on: (String new: 16).
self printOn: aStream.
^aStream contents

Object>>printOn: aStream
| title |
title := self class name.

How to display an object
as a string: printString and
displayString

Bobby Woolf

aStream nextPutAll: ((title at: 1) isVowel
ifTrue: [‘an ‘] ifFalse: [‘a ‘]).

aStream print: self class

displayString is not implemented
as gracefully as printString. Rather than using a two-step
process and
a stream, displayString is a single method that returns a
string. By default, that string is the object’s print-string:

Object>>displayString
^self printString

Ideally, displayString should be implemented using
displayOn:, but that message already has a different
meaning in the VisualComponent hierarchy. However,
those methods in the VisualComponent hierarchy would
be better named “displayWith:,” which more accurately
describes what the method does. This would then free
up displayOn: to be implemented to add an object’s
name onto a stream. Until displayString is imple-
mented this way, subimplement displayString in your
own classes.

displayString is a VisualWorks convention that the
other Smalltalk dialects do not have. However, as you
can see, its implementation is very simple, so you can
easily add it to your VisualSmalltalk or IBM Smalltalk
image if you’d like to.

YOUR IMPLEMENTORS
You should never implement printString in your own class
(even though ParcPlace did in HelpPage and HelpSeeAlso).
However, you will often want to enhance the string it pro-
duces; do so by subimplementing printOn:.

Your implementors of printString should always speci-
fy the object’s class. Furthermore, it should tell the devel-
oper which instance of that class it is. To do this, print-
String (implemented in printOn:) should print out one or
more of the object’s identity variables. Identity variables
are one of the types of instance variables I described in
my previous article.2 The values in an object’s identity
variables identify which instance it is and rarely change.
They are the keys used to find that object in a dictionary
or a database. By printing the identity variables, you’re
telling the developer which instance this is. If he wants to
see its status and cache variables, he can use an inspec-
tor. If printOn: needs to print out a variable that’s not
a string, it should send that variable printString or
displayString.

Cursor has a good example of printOn:. A Cursor has a
name aspect to identify which cur-
sor it is. Thus its printOn: method
looks like this:

Cursor>>printOn: aStream
self name == nil

ifTrue: [...]
ifFalse: [aStream

print: self class;

nextPutAll: ‘ ‘,self name]

Basically, the cursor prints its class and its name (sepa-
rated by a space). That tells the developer this is a Cursor
and which one it is.

Your implementors of displayString should never speci-
fy what the object’s class is, but they should specify which
instance it is. displayString does this by printing one or
more of the object’s identity variables. Many objects don’t
have any identity variables. In these cases, there probably
is no good way to display this object to the user. In such a
case, just inherit Object>>displayString and avoid using it.

Remember that printString is how you want this object
to appear in an inspector to a developer; displayString is
how you want it to appear in a list widget to a user.

AN EXAMPLE
Let’s say you’re implementing the class Person. It has an
aspect, name, which is an instance of PersonName. The
classes will be subclassed from Object. This means that
their print- and display-strings will be “a Person” and “a
PersonName.” This is of limited use in an inspector; worse,
a selection-in-list for a collection of Persons will list “a
Person” in every slot.

Here’s how we could implement printString (via
printOn:) and displayString to make them more useful:

Person>>printOn: aWriteStream
super printOn: aWriteStream.
aWriteStream

nextPutAll: ‘: ‘;
nextPutAll: self displayString

Person>>displayString
^self name displayString

PersonName>>printOn: aWriteStream
super printOn: aWriteStream.
aWriteStream

nextPutAll: ‘: ‘;
nextPutAll: self displayString

PersonName>>displayString
^self lastName, ‘, ‘, self firstName

The results for a person named “John Smith” are shown
in Table 1.

Note that implementing printString to send the message
displayString is somewhat unusual. However, I find it to be
a simple andconvenient example ofreuseformanyobjects.

July–August 1996 5http://www.sigs.com

Method Default Output String Custom Output String

Person>>printString a Person a Person: Smith, John
Person>>displayString a Person Smith, John
PersonName>>printString a PersonName a PersonName: Smith, John
PersonName>>displayString a PersonName Smith, John

Table 1. The strings produced by printString and displayString.

The Smalltalk Report6

DISPLAY AN OBJECT AS A STRING

http://www.sigs.com

This can have adverse consequences in ENVY since
Object>>printString and Object>>displayString are defined
in separate applications, Kernel and WindowSystem, re-
spectively. Thus in ENVY, your applications that con-
tain implementors of printString that use displayString
may need to have WindowSystem—and thus Kernel as
well—as prerequisites. Specifically, the implementors of
displayString that printString uses must be in the prerequi-
sites; luckily, Object>>displayString is usually not one of
them. Setting up the prerequisites is usually not a prob-
lem for Application Model applications, but can be a
problem for Domain Model applications, because they
should not have WindowSystem as a prerequisite. If this is
a problem for your code, the solution is to modify the OTI
applications to move the necessary implementors of
displayString from WindowSystem to Kernel. (Or you can
ignore the problem because you probably won’t use the
image without a windowing system anyway!)

printString SHOULD NOT FAIL
Sometimes printString fails and issues an error notifier.
This is really annoying. Often during development, you
have an object that is not working correctly. As you inspect
it to figure out why, you keep getting message-not-under-
stood errors saying that UndefinedObject does not under-
stand some message. This really limits the usefulness of
the inspector!

One way to get around this problem is to have your
implementors of printOn: check each variable before
using it. Only print out a variable if it’s not nil. However,
checking for nil all of the time is tedious. Even if the vari-
able is not nil, it may still be of the wrong type (which
would explain why the object is not working correctly).
But since the variable’s value is the wrong type, it proba-
bly won’t understand the messages printOn: sends to it, so
printOn: will still fail.

Another tactic is to only send the variables messages
that all objects understand. If you only send messages
like printString to a variable, the message is guaranteed to
work no matter what the variable’s value is. However, if
your implementor of printOn: contains a bug, it will fail
and fixing the bug will be frustrating.

The universal way to prevent printString from failing is
to have it trap errors and handle them. You can trap all
errors by implementing printString like this:

Object>>printString
| aStream |
aStream := WriteStream on: (String new: 16).
Object errorSignal

handle:
[:ex |
aStream

reset;
nextPutAll: ‘an invalid ‘;
print: self class.

ex return]
do: [self printOn: aStream].

^aStream contents

This way, if printOn: fails, the error handler will print out
the name of the class and say that the instance is invalid. At
thispoint, you can inspect the object to see why it is invalid.
I think that is a lot better than getting an error notifier.

You may want to make this modification in your image.
This will require modifying ParcPlace’s Object>>printString
method. You should usually avoid modifying vendor
code, but in this case I think doing so is the best solution.

displayString AND asString
A common problem with using strings is that string
concatenation (implemented in VisualWorks by
SequenceableCollection>>,) is not very polymorphic (nor
should it be). If the concatenation argument is nil, a
Character, an Exception, or some other nonstring-like
object, Smalltalk will issue an error. To avoid this prob-
lem, developers routinely send an object printString
before concatenating it. But printString does a lousy job of
printing the object for concatenation: strings have
quotes around them, symbols have pound-signs in front
of them, most objects are called “an Object,” etc.

To do a better job of printing an object out so that it
can be concatenated onto a string, many developers use
asString. They implement Object>>asString to define the
standard protocol, then implement asString in all kinds of
classes as they find objects that don’t convert “correctly.”
I contend that this is a haphazard way to program and
overloads ParcPlace’s original asString protocol. asString is
a message VisualWorks uses for converting a string-like
object (such as a symbol, text, or filename) into a String.
If an object is not at all string-like, it really has no clear
implementation for asString.

Instead, I think that displayString is the solution devel-
opers are looking for. Both asString and displayString return
strings. Neither message puts any junk in the string to
specify the object’s class. The main difference is that
asString is an“as . . .” message. This implies that the receiver
can be (and will be) converted to a String equivalent.
displayString makes no such promises of equivalency; it
simply says it will display the object as a string that
describes the object.

Thus I recommend implementing displayString for any
object you need to concatenate onto a string. Implemen-
tors you might need are:

• UndefinedObject>>displayString should return an empty
string;

• Character>>displayString should return a one-character
string;

• CharacterArray>>displayString should be reimplemented
as “^self asString displayString.”

I think this policy will be more consistent and easier to
reuse than random implementors of asString.

CONCLUSIONS
Here are the main points in this article:

• printString displays an object the way a developer would

July–August 1996 7http://www.sigs.com

describe it. It specifies the object’s class and specifies
which instance the object is by displaying one or more
of its identity variables.

• displayString displays an object the way a user would
describe it. It does not specify the object’s class because
users never do. It specifies the object’s name, that being
one or more of its identity variables.

• In VisualWorks, don’t subimplement printString; sub-
implement printOn: instead. Do subimplement
displayString.

• Consider reimplementing Object>>printString with an
error handler so that it cannot fail.

• Do not implement Object>>asString or most other im-
plementors of asString. Use displayString instead.

In the next article, I’ll talk about TypeConverter and
PrintConverter.

References
1. Woolf, B. “A Sample Pattern Language: Using Streams for

Concatenation,” Smalltalk Report, Feb. 1995.
2. Woolf, B. “A Strategy for Using Instance Variables,” Smalltalk

Report, June 1996.

Bobby Woolf is a Senior Member of Technical Staff at Knowledge
Systems Corp. in Cary, NC. He mentors Smalltalk developers in the
use of VisualWorks, ENVY, and Design Patterns. Comments are
welcome at woolf@acm.org or at http://www.ksccary.com.

`
`

July–August 1996 9http://www.sigs.com

I article of this series, we opened up a
discussion of testing issues when using Smalltalk. We
discussed aspects of GUI and Model testing, and we

provided a definition of a software component as code,
documentation, and tests. In this article, we discuss the
testing of these components in detail, including the role
of regression testing.

In discussing components, it is very important that we
include the ability to construct complex components as
aggregations of simpler components, because this is very
common and allows us to define components in a recur-
sive manner. Our prior discussion of a software compo-
nent emphasized the role of the interface in the defini-
tion of the component. The interface must be supplied
for an aggregate or complex component, as well as a sim-
ple component. This brings us to a problem that I refer to
as the Public/Private Problem.

In Figure 1, we show a simple diagram of three classes,
A, B, and C, some numbered methods, 1 to 8, and two
message sends from outside. Note that the method num-
bers are arbitrary.

Smalltalk currently defines the interface through the
public/private “attribute” of the methods. In Figure 1, meth-
ods 7, 1, 4, 3 and 6 would be considered public if the two
message sends were the only way the classes are used.

Now consider Figure 2. In this figure, we have construct-
ed two components, I and II, from the supplied classes.

Note that from the point of view of component I, the
interface is 1 and 6. From the point of view of component
II, the interface is 6 and 7.

Let’s look at Class A methods.

Method 2
Class A Private
Component I Private
Component II Private

Method 4
Class A Public >>A(4)
Component I Private
Component II Private
Method 1
Class A Public >>A(1)
Component I Public >>I.A(1)
Component II Private
Method 6
Class A Public >>A(6)
Component I Public >>I.A(6)
Component II Public >>II.A(6)

We are using a simple dot notation to indicate the inter-
section of the method and the component:

<component>.<class>(<selector>)

From this diagram it is easy to see that the public/private
attribute of a method is not a useful construct in deter-
mining the interface of a component. Each component
must define its own public methods (i.e., its interface). We
have found that the identification of this interface is crit-
ical to the building of reusable components.

None of the currently available code control systems
for Smalltalk support this view of the interface definition
of a component. At most they support the public/private
attribute of a method. This situation makes it difficult to
adequately specify and test a component. I would like to
encourage the vendors to add such support to their tools.
Such support would move us a long way in the direction
of being able to clearly define components.

Note that if the packaging changes, then the interfaces
may change fairly dramatically. For example, if compo-

Smalltalk SQA:
The Public/Private Problem #2

Jeff McKenna

A B
1

2

3 4

5

C

6

7

8

Figure 1.

A B
1

2

3 4

5

C

I

II

6

7

8

Figure 2.

nent I is changed to be classes A and C rather than class-
es A and B. As we would expect, the interfaces of II
remain II.C(7) and II.A(6). The interface of I, however,
changes noticeably. I.C(7) and I.A(4) are added to the
interfaces, I.A(6) does not change its status, and I.A(1) is
no longer part of the interface.

We can make one further observation regarding ag-
gregate components. If a method defined in a compo-
nent, C, is private, then it must remain private in any ag-
gregate component that contains the component C. This
restriction is often violated, as “interesting” methods are
discovered deep within a component structure. One
might consider such usage as behavior “leakage,” which
is analogous to memory leakage. The tool support
requested above would make it possible to detect such
leakage.

This view of the public/private problem also solves the
difficult problem of considering methods in a class hier-
archy. If a component, CA, holds an abstract class, A, and
another component, CS, holds a concrete subclass, S,
then how do we handle methods that are defined in the
class A but only used within the class S? Our view is that
all such methods must be considered public to the com-
ponent CA, just as any methods in S that are required in A
to “complete” the abstract class should be considered
public to the component CS.

All of this is a bit easier to think about if we just con-
sider a class as a component consisting of a bunch of
methods. Thinking of classes in this way also makes it
easier to consider loose methods (class extensions).

TESTING COMPONENTS
With this enhanced definition of a component and its
interface, it is now possible to discuss how we might test a
component.

Testing only the interface, with no knowledge of the
internals, is called black box testing. Most practitioners
consider black box testing insufficient because it is typi-
cally impossible to test all possible states. Testing with
knowl-edge of the internals is called white box testing. A
suggestion has been made that testing the interface with a
“little” knowledge of the internals should be called gray
box testing!

The decision as to the type of testing (i.e., black, gray, or
black box) dependson the testingjob being performed. Let
us consider these three major tasks performed with tests:

• Unit Testing
• Interface Testing
• Aggregation Testing

Unit testing is typically performed by the developer and
should verify that the component functions as designed.
This usually means white box testing or, at least, gray box
testing.

Interface testing is a term I use to mean testing only
the interface. It is important that interface tests are pro-
vided to support consolidation and redesign activities.
SQA should ensure that interface testing completely ex-
ercise the interface of the component.

Aggregation testing is the term that I use when testing
aggregations or complex components. In aggregation test-
ing, interface testing of the subcomponents is followed by
theunittestingofthecomponentitself.In otherwords, first
test if the pieces still work and then determine if they are
working together correctly; bottom-up testing as it were.

In our example, here is the testing sequence for com-
ponent II:

Unit Class A
Unit Class B
Interface Class A*
Interface Class B*
Unit Component I*
Unit Class C
Interface Component I**
Interface Class C**
Unit Component II**
Interface Component II

The asterisk indicates the aggregation test of component
I and double asterisks indicate the aggregation test of
component II.

Of course, in practice, distinctions are never this clear.
However, they should be considered when considering
the efficacy of testing.

The above sequence works fine when fixing bugs and
when adding functions. For each version, existing tests
are used as is or are expanded to test for bugs and the
new functions.

This is classic regression testing, which can be auto-
mated. Automation helps keep systems “no worse” than
they were in the prior build. Regression testing in Small-
talk systems appears to have more value than regres-
sion testing in classical software development. While I
am not exactly sure why, I suspect that it is because
inheritance and the distributed nature of Smalltalk sys-
tems make the impact of change more difficult to pre-
dict. The developer doesn’t know the whole system.

Regression testing does not work as well during con-
solidation or refactoring. Say component I is significantly
changed so that it no longer use classes A and B, but rather
uses classes X and Y. Call this new component I’. Also as-
sume that the interface to component I’ remains un-
changed from I.The test sequence for component I’ is now

Unit Class X
Unit Class Y
Interface Class X
Interface Class Y
Unit Component I’
Interface Component I’

The key to note is that the last test is the same as in the
original testing. In other words, Interface(I) is the same
test as Interface(I’), because the interface has not
changed. If unit and interface testing are combined, as
many folks do, then this is not true; Unit(I’) is clearly not
the same as Unit(I).

In practice, this means that if the tests are not sep-
arated into the unit and interface components, tests
have no utility in verifying if the new version can replace

The Smalltalk Report

SMALLTALK SQA

July–August 1996

the old. In practice this happens all the time. The devel-
oper changes class A, changes the class A tests to reflect
the change, and then is puzzled when someone else’s
use of class A breaks. This is because the developer
changed the interface and then just changed the tests to
match.

Good design and the enforcement of interface con-
tracts reduces the exposure to this type of trouble. Good
interface tests can be used to ensure that interface con-
tracts are kept up.

As more software is developed by top–down construc-
tion, combining existing components in new ways, the
importance of interface testing becomes greater. No
longer can the developer of a component use SENDERS to
find all the clients of that component. In the extreme
view, if the interface changes in any way it is really a new
component. New and improved perhaps, but still a new
component.

This article has explored the public/private, proposed a
solution, and then used that solution to define unit,
interface, and aggregate testing. In our next article, we
will discuss roles in the testing process with a particular
focus on changes in time.

Jeff McKenna is the founder and President of MCG Software, Inc.,
Wilsonville, OR. MCG Software offers testing frameworks for
Smalltalk. Jeff has been involved with software for more than 33
years and been involved with Smalltalk since 1982. He was chair-
man of OOPSLA ‘94. He may be reached at mckenna@acm.org.

`
`

The Smalltalk Report12 http://www.sigs.com

T most new Smalltalk developers
make is improper use of class methods. Many a new
Smalltalk convert has implemented major portions of

a system design using class methods. Well, why not? They
are easy to access—callable from anywhere by any object.

Tempting, but not a good idea. First, consider your
system design documents. There is no place on an object
model for class methods. When you build an object
model of your system design, the services in a class sym-
bol map to instance methods, not class methods. For
example, consider the simple class symbol for a product
vendor as shown in Fig. 1:

Every product vendor has its own name, address, and
list of products offered. These attributes that every prod-
uct vendor possesses translate into Smalltalk instance
variables defined in the ProductVendor class. Every prod-
uct vendor can be asked to provide a quote for a given
quantity of product. This is a behavior every product ven-
dor provides, so it translates into an instance method
defined in the ProductVendor class.

Now at some time during system execution all the
product vendor objects must be loaded into memory.
One approach is to write a class method, loadAll, in the
ProductVendor class. This class method goes out to the
database and reads all the product vendor objects. A
class method is used so it can be called by a human inter-
face screen or some other process. Great, but where does
it go on the object model? To show it on the class symbol
would imply it is an action every product vendor per-
forms—an instance method (see Fig. 2).

Faced with this problem, most developers invent an
extension to the notation or discover within the notation
some obscure demarcation for distinguishing class

methods from instance methods. Oh boy. If you follow
this approach, you have an object model with notation
only you understand that is implemented using global
functions. That’s right, global functions.

Your design is much less object oriented with class
methods. Ideally, you want all the functionality in your
system to be implemented by objects that represent
things in the real world, or correspond to system compo-
nents. Class methods are a fluke, a side effect of the fact
that most object-oriented languages need a data struc-
ture to serve as the definition for producing objects, and
this data structure, typically called a class, needs to have
behavior so it can produce objects. Making use of this
fluke is just an acknowledgment that you have system
functionality you cannot associate with any object in
your design . . . global functionality.

Another problem arises when requirements change.
Suppose you want to use the ProductVendor class in two
different applications—one with an ORACLE database,
one with a OODBMS. The loadAll method would have to
be written differently for each application. In fact, every
time the data representation requirements changed you
would need a new version of the loadAll method. Ouch.

So to recap, the problems with class methods are: 1)
Class methods require new or obscure notation on the
object model. 2) Class methods make your design less
object oriented. 3) Class methods decrease the flexibility
of your system to changes in requirements.

What to do? What to do? First, learn to recognize that
wherever class methods abound . . . objects are missing.
In the example, a loadAll class method was used because
there was no object in the system design responsible for
loading product vendors. So add one (see Fig. 3).

Heck, add a bunch… ProductVendorOracleDBA, Product-
VendorOODMBSDBA. However many you might need, just
get that loading behavior out of the class method on your
business domain object and get it into an instance
method on a separate object. Now in all your future
applications whenever product vendors need to be
loaded, create a product vendor DBA of the proper class,
hook it to the server, and tell it to loadAll. Gee, you could
even document the loading procedure with an object
interaction or a scenario diagram, something that would
be really hard if you were using class methods.

Proper use of class methods
Jill Nicola

?
?
?
?
?
?
?
?
?

O2@@@6K?hf?
W20M ?I46X?he?

?W.M ?I/Xhe?
?7H? N1he?
J5f?O2@@@6Kf?3L?h?
7He?W2@@@6Xe?N1?h?
@?e?7@@@1f@?h?
@?eJ@@(M? I'@@L?e@?h?
@?e7@@H ?N@@1?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? ?@@@@@@6X? ?@@? ?@@?e?@@? @@ @@@?e@?h?
@?e@@@? ?@@?e?@1? ?@@? @@?3@LeJ@5? @@ @@@?e@?h?
@?e@@@? ?@@?e?@@? ?@@? ?J@@LN@1e7@H? @@ @@@?e@?h?
@?e@@@? ?@@?e?@@?@@@(?W2@@6X??W2@@@@??@@??@@??W2@@6T&@@@?@@e@@eW2@@6Xe@@@@6XeW2@@@@eW2@@6Xe@@@(@@@?e@?h?
@?e@@@? ?@@?e?@5?@@(Y?7@??@1??7@??@@??@@??@@??7@?I40Y@@H?3@e@5e7@e@1e@@e@1e7@e@@e7@e@1e@@(Y @@@?e@?h?
@?e@@@? ?@@@@@@0Y?@@H??@@??@@??@@??@@??@@??@@??@@?f@@eN@e@He@@@@@@e@@e@@e@@e@@e@@e@@e@@H? @@@?e@?h?
@?e@@@? ?@@?g@@e?@@??@@??@@??@@??@@??@@??@@?f@@e?@@@@?e@@g@@e@@e@@e@@e@@e@@e@@ @@@?e@?h?
@?e@@@? ?@@?g@@e?@@??@@??@@??@@??@@??@@??@@?f@@e?3@@5?e@@g@@e@@e@@e@@e@@e@@e@@ @@@?e@?h?
@?e@@@? ?@@?g@@e?3@??@5??3@??@@??3@??@@??3@?O2(?3@L??N@@H?e3@?O2(e@@e@@e3@e@@e3@e@5e@@ @@@?e@?h?
@?e@@@? ?@@?g@@e?V4@@0Y??V4@@@@??V4@@@@??V4@@0Y?V4@?e@@fV4@@0Ye@@e@@eV4@@@@eV4@@0Ye@@ @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@?g@@@@6XeW2@@6Xe@@@@@@@@6XeW2@@6X @@@?e@?h?
@?e@@@?g@@e@1e&@X?@1e@@e@@e@1e7@e@1 @@@?e@?h?
@?e@@@?g@@e@@e?S@@@@e@@e@@e@@e@@@@@@ @@@?e@?h?
@?e@@@?g@@e@@eW&(Y@@e@@e@@e@@e@@ @@@?e@?h?
@?e@@@?g@@e@@e7@H?@@e@@e@@e@@e@@ @@@?e@?h?
@?e@@@?g@@e@@e3@e@@e@@e@@e@@e3@?O2(@@@?e@?h?
@?e@@@?g@@e@@eV4@@@@e@@e@@e@@eV4@@0Y @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@g@@ @@@?e@?h?
@?e@@@? @@g@@ @@@?e@?h?
@?e@@@? @@g@@ @@@?e@?h?
@?e@@@?gW2@@6XeW2@@@@eW2@@@@e@@@(?W2@@6X??W2@@6X??W2@@6X? @@@?e@?h?
@?e@@@?g&@X?@1e7@e@@e7@e@@e@@(Y?7@??@1??7@?I4)??7@?I4)? @@@?e@?h?
@?e@@@?g?S@@@@e@@e@@e@@e@@e@@H??@@@@@@??3@?f?3@? @@@?e@?h?
@?e@@@?gW&(Y@@e@@e@@e@@e@@e@@e?@@?f?V4@@6X??V4@@6X? @@@?e@?h?
@?e@@@?g7@H?@@e@@e@@e@@e@@e@@e?@@?h?@1?f?@1? @@@?e@?h?
@?e@@@?g3@e@@e3@e@@e3@e@@e@@e?3@?O2(??'6K?@5??'6K?@5? @@@?e@?h?
@?e@@@?gV4@@@@eV4@@@@eV4@@@@e@@e?V4@@0Y??V4@@0Y??V4@@0Y? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? ?@@? ?W2@@6X?eW2@?W2@? ?@@? @@@?e@?h?
@?e@@@? ?@@? @@heW&(MI')Xe7@H?7@H? ?@@? @@@?e@?h?
@?e@@@? ?@@? ?J@@L?h7@H??N@1?J@@e@@L? ?@@? @@@?e@?h?
@?e@@@?g@@@@6Xe@@@(?W2@@6X??W2@@@@??@@??@@??W2@@6T&@@@?W2@@6Xe@@f@@?@@@@@@@@?W2@@6Xe@@@(?W2@@6X??W2@@@@? @@@?e@?h?
@?e@@@?g@@e@1e@@(Y?7@??@1??7@??@@??@@??@@??7@?I40Y@@H?7@?I4)e@@f@@?N@@e@@H?7@e@1e@@(Y?7@??@1??7@??@@? @@@?e@?h?
@?e@@@?g@@e@@e@@H??@@??@@??@@??@@??@@??@@??@@?f@@e3@g@@f@@e@@e@@e@@@@@@e@@H??@@@@@@??@@??@@? @@@?e@?h?
@?e@@@?g@@e@@e@@e?@@??@@??@@??@@??@@??@@??@@?f@@eV4@@6Xe@@f@@e@@e@@e@@g@@e?@@?f?@@??@@? @@@?e@?h?
@?e@@@?g@@e@@e@@e?@@??@@??@@??@@??@@??@@??@@?f@@g@1e3@L??J@5e@@e@@e@@g@@e?@@?f?@@??@@? @@@?e@?h?
@?e@@@?g@@e@5e@@e?3@??@5??3@??@@??3@??@@??3@?O2(?3@L?'6K?@5eV')KO&(Ye@@e@@e3@?O2(e@@e?3@?O2(??3@??@@? @@@?e@?h?
@?e@@@?g@@@@0Ye@@e?V4@@0Y??V4@@@@??V4@@@@??V4@@0Y?V4@?V4@@0Ye?V4@@0Y?e@@e@@eV4@@0Ye@@e?V4@@0Y??V4@@@@? @@@?e@?h?
@?e@@@?g@@ @@@?e@?h?
@?e@@@?g@@ @@@?e@?h?
@?e@@@?g@@ @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@@@@6Xg@@ ?@@@@@@@ ?W2@@6X? @@ ?W2@@6X?eW2@?@@@@@@6X @@ @@@?e@?h?
@?e@@@? @@he@@f@1g@@ ?@@? W&(MI')X @@e@@e@@heW&(MI')Xe7@H?@@f@1 @@ ?@@? @@@?e@?h?
@?e@@@? ?J@@L?h@@f@@ ?@@? 7@H??N@1 ?J@@L?e?J@@he7@H??N@1?J@@L?@@f@@ @@ J@@L @@@?e@?h?
@?e@@@?gW2@@@@e@@e@@eW2@@6X?@@@@?W2@@6Xe@@f@@?@@@(?@@eW2@@6X?W2@@6X??@@?f?W2@@6X??@@@(?@@f@@e@@e@@eW2@@6Xe@@@@6X?@@@@?@@?@@@@@@?e?@@?@@f@@?@@@@?@@f@@?@@@(?W2@@6XeW2@@@@e@@e@@eW2@@6T&@@@ @@@?e@?h?
@?e@@@?g7@e@@e@@e@@e7@e@1?N@@H?7@e@1e@@f@5?@@(Y?@@e7@?I4)?7@??@1??@@@@@@??7@??@1??@@(Y?@@f@@e@@e@@e&@X?@1e@@e@1?N@@H?@@?N@@V'@LeJ@5?@@f@@?N@@H?@@f@5?@@(Y?7@e@1e7@e@@e@@e@@e7@?I40Y@@H @@@?e@?h?
@?e@@@?g@@e@@e@@e@@e@@e@@e@@e@@@@@@e@@@@@@0Y?@@He@@e@@f?@@@@@@??@@?f?@@??@@??@@He@@f@@e@@e@@e?S@@@@e@@e@@e@@e@@e@@?N@1e7@H?@@f@@e@@e@@@@@@0Y?@@He@@e@@e@@e@@e@@e@@e@@f?@@? @@@?e@?h?
@?e@@@?g@@e@@e@@e@@e@@e@@e@@e@@g@@g?@@?e@@e@@f?@@?f?@@?f?@@??@@??@@?e@@f@@e@@e@@eW&(Y@@e@@e@@e@@e@@e@@e3@e@5e@@f@@e@@e@@g?@@?e@@e@@e@@e@@e@@e@@e@@f?@@? @@@?e@?h?
@?e@@@?g@@e@@e@@e@@e@@e@@e@@e@@g@@g?@@?e@@e@@f?@@?f?@@?f?@@??@@??@@?e3@L?@@@5e@@e@@e7@H?@@e@@e@@e@@e@@e@@eN@@@@He3@L??J@5e@@e@@g?@@?e@@e@@e@@e@@e@@e@@e@@f?@@? @@@?e@?h?
@?e@@@?g3@e@@e3@e@@e3@e@5e3@L?3@?O2(e@@g?@@?e@@e3@?O2(?3@?O2(??@@?f?3@??@5??@@?eV')KV@@?e3@e@@e3@e@@e@@e@@e3@L?@@e3@L??3@@5?eV')KO&(Ye@@e@@g?@@?e3@e@5e3@e@@e3@e@@e3@?O2(?3@L @@@?e@?h?
@?e@@@?gV4@@@@eV4@@@@eV4@@0YeV4@?V4@@0Ye@@g?@@?e@@eV4@@0Y?V4@@0Y??@@?f?V4@@0Y??@@?e?V4@@@@@eV4@@@@eV4@@@@e@@e@@eV4@?@@eV4@??N@@H?e?V4@@0Y?e@@e@@g?@@?eV4@@0YeV4@@@@eV4@@@@eV4@@0Y?V4@ @@@?e@?h?
@?e@@@?he@@ ?J@5 @@@?e@?h?
@?e@@@?he@@ W&(Y @@@?e@?h?
@?e@@@?he@@ &0Y? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@?g@@ @@f@@f@@e@@ @@@?e@?h?
@?e@@@?g@@ @@e?J@@L?e@@e@@ @@@?e@?h?
@?e@@@?g@@ @@e?7@@1?e@@e@@ @@@?e@?h?
@?e@@@?g@@eW2@@6XeW2@@6XeW2@@@@e?@@@@?e@@e@@ @@@?e@?h?
@?e@@@?g@@e7@e@1e&@X?@1e7@e@@eJ@e@Le@@e@@ @@@?e@?h?
@?e@@@?g@@e@@e@@e?S@@@@e@@e@@e7@e@1e@@e@@ @@@?e@?h?
@?e@@@?g@@e@@e@@eW&(Y@@e@@e@@e@@e@@e@@e@@ @@@?e@?h?
@?e@@@?g@@e@@e@@e7@H?@@e@@e@@?J@@@@@@L?@@e@@ @@@?e@?h?
@?e@@@?g@@e3@e@5e3@e@@e3@e@@?7@?e?@1?@@e@@ @@@?e@?h?
@?e@@@?g@@eV4@@0YeV4@@@@eV4@@@@?@@?e?@@?@@e@@ @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e3@@L ?J@@5?e@?h?
@?eN@@)K? O&@@H?e@?h?
@?e?3@@@5f@?h?
3Le?V4@@@0Ye?J5?h?
N1f?I4@@@0Mf?7H?h?
?3L? J5he?
?V/K ?O.Yhe?
V46K ?O20Y?he?
I4@@@0M?hf?

?
?
?
?
?
?
?
?
?

Figure 1. Simple class symbol.

ProductVendor

name
address
productsOffered

quotePriceForQuantityOfProduct
loadAll

So, system functionality in class methods, particularly
in a business domain class, indicates objects are missing.
Here’s when you should use class methods:

1. Creating new objects.
Product new
Date today
Time now
perot
Array new: 10

Messages new, today, now, perot, new:, correspond to class
methods that create new objects. The new class methods
typically create objects with nil or default initial values in
the instance variables. The other methods, such as today,
and now, create special objects in the class that have
instance variables preset to meaningful values.

2. Managing class variables. Use class methods to:
• Initialize, reset, flush class variables.
• Provide read and write access into class variables.

Wow. That’s a short list. Well, there is one other time you
might consider class methods, but it is for development
purposes not system design.

3. Creating example or test objects.

A test object has in its instance variables typical data val-
ues that would exist during a normal system execution.
Test objects are a great help during development because
they allow developers to run portions of the system with-
out having to load data, guess at representative data val-
ues, or keep workspaces open with scripts for building
objects. Here’s how a typical test object method looks.
Note, how the executable comment within the method
makes it easy to run.

ProductVendor class methodsFor: ‘examples’

testObject
“ProductVendor testObject”

| vendor |
vendor := self new.
vendor name: ‘Vendor X’.
vendor address: Address testObject.
vendor addProductOffered: Product testObject.
vendor addProductOffered: Product testObject2.
vendor addProductOffered: Product testObject3.
^vendor

Now do not go off and implement elaborate test scenar-
ios with a slew of class methods; you will be making the
missing object mistake all over again. Test scenarios will
vary from application to application, so build separate
objects to implement your testing procedures. Test ob-
jects are essentially the unit tests from which all test pro-
cedures are built.

To conclude, guard against class methods creeping in-
to your design. Designs using class methods are not eas-
ily represented within an object model, are less object
oriented and more functional, and are brittle to changes
in requirements. Where class methods abound, objects
are missing. Use class methods for creating new objects,
managing class variables, and building test objects.

Jill Nicola is President of JEN Consulting, which offers Smalltalk
training, consulting, and mentoring services. She specializes in
architecture design and customized GUIs. She can be reached by
email at nicola@jencon.com.

`
`

July–August 1996 13http://www.sigs.com

?
?
?
?
?
?
?
?

O2@@@6K?hf?
W20M ?I46X?he?

?W.M ?I/Xhe?
?7H? N1he?
J5f?O2@@@6Kf?3L?h?
7He?W2@@@6Xe?N1?h?
@?e?7@@@1f@?h?
@?eJ@@(M? I'@@L?e@?h?
@?e7@@H ?N@@1?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? ?@@@@@@6X? ?@@? ?@@?e?@@? @@ @@@?e@?h?
@?e@@@? ?@@?e?@1? ?@@? @@?3@LeJ@5? @@ @@@?e@?h?
@?e@@@? ?@@?e?@@? ?@@? ?J@@LN@1e7@H? @@ @@@?e@?h?
@?e@@@? ?@@?e?@@?@@@(?W2@@6X??W2@@@@??@@??@@??W2@@6T&@@@?@@e@@eW2@@6Xe@@@@6XeW2@@@@eW2@@6Xe@@@(@@@?e@?h?
@?e@@@? ?@@?e?@5?@@(Y?7@??@1??7@??@@??@@??@@??7@?I40Y@@H?3@e@5e7@e@1e@@e@1e7@e@@e7@e@1e@@(Y @@@?e@?h?
@?e@@@? ?@@@@@@0Y?@@H??@@??@@??@@??@@??@@??@@??@@?f@@eN@e@He@@@@@@e@@e@@e@@e@@e@@e@@e@@H? @@@?e@?h?
@?e@@@? ?@@?g@@e?@@??@@??@@??@@??@@??@@??@@?f@@e?@@@@?e@@g@@e@@e@@e@@e@@e@@e@@ @@@?e@?h?
@?e@@@? ?@@?g@@e?@@??@@??@@??@@??@@??@@??@@?f@@e?3@@5?e@@g@@e@@e@@e@@e@@e@@e@@ @@@?e@?h?
@?e@@@? ?@@?g@@e?3@??@5??3@??@@??3@??@@??3@?O2(?3@L??N@@H?e3@?O2(e@@e@@e3@e@@e3@e@5e@@ @@@?e@?h?
@?e@@@? ?@@?g@@e?V4@@0Y??V4@@@@??V4@@@@??V4@@0Y?V4@?e@@fV4@@0Ye@@e@@eV4@@@@eV4@@0Ye@@ @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@?g@@@@6XeW2@@6Xe@@@@@@@@6XeW2@@6X @@@?e@?h?
@?e@@@?g@@e@1e&@X?@1e@@e@@e@1e7@e@1 @@@?e@?h?
@?e@@@?g@@e@@e?S@@@@e@@e@@e@@e@@@@@@ @@@?e@?h?
@?e@@@?g@@e@@eW&(Y@@e@@e@@e@@e@@ @@@?e@?h?
@?e@@@?g@@e@@e7@H?@@e@@e@@e@@e@@ @@@?e@?h?
@?e@@@?g@@e@@e3@e@@e@@e@@e@@e3@?O2(@@@?e@?h?
@?e@@@?g@@e@@eV4@@@@e@@e@@e@@eV4@@0Y @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@g@@ @@@?e@?h?
@?e@@@? @@g@@ @@@?e@?h?
@?e@@@? @@g@@ @@@?e@?h?
@?e@@@?gW2@@6XeW2@@@@eW2@@@@e@@@(?W2@@6X??W2@@6X??W2@@6X? @@@?e@?h?
@?e@@@?g&@X?@1e7@e@@e7@e@@e@@(Y?7@??@1??7@?I4)??7@?I4)? @@@?e@?h?
@?e@@@?g?S@@@@e@@e@@e@@e@@e@@H??@@@@@@??3@?f?3@? @@@?e@?h?
@?e@@@?gW&(Y@@e@@e@@e@@e@@e@@e?@@?f?V4@@6X??V4@@6X? @@@?e@?h?
@?e@@@?g7@H?@@e@@e@@e@@e@@e@@e?@@?h?@1?f?@1? @@@?e@?h?
@?e@@@?g3@e@@e3@e@@e3@e@@e@@e?3@?O2(??'6K?@5??'6K?@5? @@@?e@?h?
@?e@@@?gV4@@@@eV4@@@@eV4@@@@e@@e?V4@@0Y??V4@@0Y??V4@@0Y? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? ?@@? ?W2@@6X?eW2@?W2@? ?@@? @@@?e@?h?
@?e@@@? ?@@? @@heW&(MI')Xe7@H?7@H? ?@@? @@@?e@?h?
@?e@@@? ?@@? ?J@@L?h7@H??N@1?J@@e@@L? ?@@? @@@?e@?h?
@?e@@@?g@@@@6Xe@@@(?W2@@6X??W2@@@@??@@??@@??W2@@6T&@@@?W2@@6Xe@@f@@?@@@@@@@@?W2@@6Xe@@@(?W2@@6X??W2@@@@? @@@?e@?h?
@?e@@@?g@@e@1e@@(Y?7@??@1??7@??@@??@@??@@??7@?I40Y@@H?7@?I4)e@@f@@?N@@e@@H?7@e@1e@@(Y?7@??@1??7@??@@? @@@?e@?h?
@?e@@@?g@@e@@e@@H??@@??@@??@@??@@??@@??@@??@@?f@@e3@g@@f@@e@@e@@e@@@@@@e@@H??@@@@@@??@@??@@? @@@?e@?h?
@?e@@@?g@@e@@e@@e?@@??@@??@@??@@??@@??@@??@@?f@@eV4@@6Xe@@f@@e@@e@@e@@g@@e?@@?f?@@??@@? @@@?e@?h?
@?e@@@?g@@e@@e@@e?@@??@@??@@??@@??@@??@@??@@?f@@g@1e3@L??J@5e@@e@@e@@g@@e?@@?f?@@??@@? @@@?e@?h?
@?e@@@?g@@e@5e@@e?3@??@5??3@??@@??3@??@@??3@?O2(?3@L?'6K?@5eV')KO&(Ye@@e@@e3@?O2(e@@e?3@?O2(??3@??@@? @@@?e@?h?
@?e@@@?g@@@@0Ye@@e?V4@@0Y??V4@@@@??V4@@@@??V4@@0Y?V4@?V4@@0Ye?V4@@0Y?e@@e@@eV4@@0Ye@@e?V4@@0Y??V4@@@@? @@@?e@?h?
@?e@@@?g@@ @@@?e@?h?
@?e@@@?g@@ @@@?e@?h?
@?e@@@?g@@ @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@@@@6Xg@@ ?@@@@@@@ ?W2@@6X? @@ ?W2@@6X?eW2@?@@@@@@6X @@ @@@?e@?h?
@?e@@@? @@he@@f@1g@@ ?@@? W&(MI')X @@e@@e@@heW&(MI')Xe7@H?@@f@1 @@ ?@@? @@@?e@?h?
@?e@@@? ?J@@L?h@@f@@ ?@@? 7@H??N@1 ?J@@L?e?J@@he7@H??N@1?J@@L?@@f@@ @@ J@@L @@@?e@?h?
@?e@@@?gW2@@@@e@@e@@eW2@@6X?@@@@?W2@@6Xe@@f@@?@@@(?@@eW2@@6X?W2@@6X??@@?f?W2@@6X??@@@(?@@f@@e@@e@@eW2@@6Xe@@@@6X?@@@@?@@?@@@@@@?e?@@?@@f@@?@@@@?@@f@@?@@@(?W2@@6XeW2@@@@e@@e@@eW2@@6T&@@@ @@@?e@?h?
@?e@@@?g7@e@@e@@e@@e7@e@1?N@@H?7@e@1e@@f@5?@@(Y?@@e7@?I4)?7@??@1??@@@@@@??7@??@1??@@(Y?@@f@@e@@e@@e&@X?@1e@@e@1?N@@H?@@?N@@V'@LeJ@5?@@f@@?N@@H?@@f@5?@@(Y?7@e@1e7@e@@e@@e@@e7@?I40Y@@H @@@?e@?h?
@?e@@@?g@@e@@e@@e@@e@@e@@e@@e@@@@@@e@@@@@@0Y?@@He@@e@@f?@@@@@@??@@?f?@@??@@??@@He@@f@@e@@e@@e?S@@@@e@@e@@e@@e@@e@@?N@1e7@H?@@f@@e@@e@@@@@@0Y?@@He@@e@@e@@e@@e@@e@@e@@f?@@? @@@?e@?h?
@?e@@@?g@@e@@e@@e@@e@@e@@e@@e@@g@@g?@@?e@@e@@f?@@?f?@@?f?@@??@@??@@?e@@f@@e@@e@@eW&(Y@@e@@e@@e@@e@@e@@e3@e@5e@@f@@e@@e@@g?@@?e@@e@@e@@e@@e@@e@@e@@f?@@? @@@?e@?h?
@?e@@@?g@@e@@e@@e@@e@@e@@e@@e@@g@@g?@@?e@@e@@f?@@?f?@@?f?@@??@@??@@?e3@L?@@@5e@@e@@e7@H?@@e@@e@@e@@e@@e@@eN@@@@He3@L??J@5e@@e@@g?@@?e@@e@@e@@e@@e@@e@@e@@f?@@? @@@?e@?h?
@?e@@@?g3@e@@e3@e@@e3@e@5e3@L?3@?O2(e@@g?@@?e@@e3@?O2(?3@?O2(??@@?f?3@??@5??@@?eV')KV@@?e3@e@@e3@e@@e@@e@@e3@L?@@e3@L??3@@5?eV')KO&(Ye@@e@@g?@@?e3@e@5e3@e@@e3@e@@e3@?O2(?3@L @@@?e@?h?
@?e@@@?gV4@@@@eV4@@@@eV4@@0YeV4@?V4@@0Ye@@g?@@?e@@eV4@@0Y?V4@@0Y??@@?f?V4@@0Y??@@?e?V4@@@@@eV4@@@@eV4@@@@e@@e@@eV4@?@@eV4@??N@@H?e?V4@@0Y?e@@e@@g?@@?eV4@@0YeV4@@@@eV4@@@@eV4@@0Y?V4@ @@@?e@?h?
@?e@@@?he@@ ?J@5 @@@?e@?h?
@?e@@@?he@@ W&(Y @@@?e@?h?
@?e@@@?he@@ &0Y? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@?g@@ @@f@@f@@e@@ @@@?e@?h?
@?e@@@?g@@ @@e?J@@L?e@@e@@ @@@?e@?h?
@?e@@@?g@@ @@e?7@@1?e@@e@@ @@@?e@?h?
@?e@@@?g@@eW2@@6XeW2@@6XeW2@@@@e?@@@@?e@@e@@ @@@?e@?h?
@?e@@@?g@@e7@e@1e&@X?@1e7@e@@eJ@e@Le@@e@@ @@@?e@?h?
@?e@@@?g@@e@@e@@e?S@@@@e@@e@@e7@e@1e@@e@@ @@@?e@?h?
@?e@@@?g@@e@@e@@eW&(Y@@e@@e@@e@@e@@e@@e@@ @@@?e@?h?
@?e@@@?g@@e@@e@@e7@H?@@e@@e@@?J@@@@@@L?@@e@@ @@@?e@?h?
@?e@@@?g@@e3@e@5e3@e@@e3@e@@?7@?e?@1?@@e@@ @@@?e@?h?
@?e@@@?g@@eV4@@0YeV4@@@@eV4@@@@?@@?e?@@?@@e@@ @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e@@@? @@@?e@?h?
@?e3@@L ?J@@5?e@?h?
@?eN@@)K? O&@@H?e@?h?
@?e?3@@@5f@?h?
3Le?V4@@@0Ye?J5?h?
N1f?I4@@@0Mf?7H?h?
?3L? J5he?
?V/K ?O.Yhe?
V46K ?O20Y?he?
I4@@@0M?hf?

?
?
?
?
?
?
?
?

Figure 2. An Instance method.

O2@@6Khg
W20M I46Xhf

?W.M I/X?he
?7H? ?N1?he
J5f?O2@@6K?f3Lhe
7He?W2@@6X?eN1he
@?e?7@@1?e?@he
@?eJ@@(M? ?I'@@Le?@he
@?e7@@H N@@1e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@?hf?@@@@@@6X? ?@@? ?@@?e?@@? @@ ?@@@@@6Xe?@@@@@@6X?e?@@? ?@@@e?@he
@?e@@@?hf?@@?e?@1? ?@@? @@?3@LeJ@5? @@ ?@@??I')X??@@?e?@1?eJ@@L ?@@@e?@he
@?e@@@?hf?@@?e?@@? ?@@? ?J@@LN@1e7@H? @@ ?@@?eN@1??@@?e?@@?e7@@1 ?@@@e?@he
@?e@@@?hf?@@?e?@@?@@@(?W2@@6X??W2@@@@??@@??@@??W2@@6T&@@@?@@e@@eW2@@6Xe@@@@6XeW2@@@@eW2@@6Xe@@@(?@@?e?@@??@@?e?@5?e@@@@ ?@@@e?@he
@?e@@@?hf?@@?e?@5?@@(Y?7@??@1??7@??@@??@@??@@??7@?I40Y@@H?3@e@5e7@e@1e@@e@1e7@e@@e7@e@1e@@(Y?@@?e?@@??@@@@@@@e?J@??@L?hf?@@@e?@he
@?e@@@?hf?@@@@@@0Y?@@H??@@??@@??@@??@@??@@??@@??@@?f@@eN@e@He@@@@@@e@@e@@e@@e@@e@@e@@e@@H??@@?e?@@??@@?e?@1??7@??@1?hf?@@@e?@he
@?e@@@?hf?@@?g@@e?@@??@@??@@??@@??@@??@@??@@?f@@e?@@@@?e@@g@@e@@e@@e@@e@@e@@e@@e?@@?e?@@??@@?e?@@??@@??@@?hf?@@@e?@he
@?e@@@?hf?@@?g@@e?@@??@@??@@??@@??@@??@@??@@?f@@e?3@@5?e@@g@@e@@e@@e@@e@@e@@e@@e?@@?eJ@5??@@?e?@@?J@@@@@@Lhf?@@@e?@he
@?e@@@?hf?@@?g@@e?3@??@5??3@??@@??3@??@@??3@?O2(?3@L??N@@H?e3@?O2(e@@e@@e3@e@@e3@e@5e@@e?@@??O&(Y??@@?e?@5?7@f@1hf?@@@e?@he
@?e@@@?hf?@@?g@@e?V4@@0Y??V4@@@@??V4@@@@??V4@@0Y?V4@?e@@fV4@@0Ye@@e@@eV4@@@@eV4@@0Ye@@e?@@@@@0Ye?@@@@@@0Y?@@f@@hf?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@?gW2@@6XeW2@@6Xe@@@@@@f@@?W2@@6X??@@@(? ?@@@e?@he
@?e@@@?g7@?I4)e7@e@1e@@(?'@L??J@5?7@??@1??@@(Y? ?@@@e?@he
@?e@@@?g3@g@@@@@@e@@H?N@1??7@H?@@@@@@??@@H ?@@@e?@he
@?e@@@?gV4@@6Xe@@g@@e?3@??@5??@@?f?@@? ?@@@e?@he
@?e@@@?he@1e@@g@@e?V'@@(Y??@@?f?@@? ?@@@e?@he
@?e@@@?g'6K?@5e3@?O2(e@@fN@@He?3@?O2(??@@? ?@@@e?@he
@?e@@@?gV4@@0YeV4@@0Ye@@f?@@?e?V4@@0Y??@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@?g@@ @@f@@f@@e@@ ?@@@e?@he
@?e@@@?g@@ @@e?J@@L?e@@e@@ ?@@@e?@he
@?e@@@?g@@ @@e?7@@1?e@@e@@ ?@@@e?@he
@?e@@@?g@@eW2@@6XeW2@@6XeW2@@@@e?@@@@?e@@e@@ ?@@@e?@he
@?e@@@?g@@e7@e@1e&@X?@1e7@e@@eJ@e@Le@@e@@ ?@@@e?@he
@?e@@@?g@@e@@e@@e?S@@@@e@@e@@e7@e@1e@@e@@ ?@@@e?@he
@?e@@@?g@@e@@e@@eW&(Y@@e@@e@@e@@e@@e@@e@@ ?@@@e?@he
@?e@@@?g@@e@@e@@e7@H?@@e@@e@@?J@@@@@@L?@@e@@ ?@@@e?@he
@?e@@@?g@@e3@e@5e3@e@@e3@e@@?7@?e?@1?@@e@@ ?@@@e?@he
@?e@@@?g@@eV4@@0YeV4@@@@eV4@@@@?@@?e?@@?@@e@@ ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@?g@@ @@f@@f@@e@@eW2@@@6X? @@f?@@@@@@@@?@@ ?@@@e?@he
@?e@@@?g@@ @@e?J@@L?e@@e@@e7@e?@1? @@h@@f@@ @@ ?@@@e?@he
@?e@@@?g@@ @@e?7@@1?e@@e@@e@@e?@@? @@h@@f@@hf?J@@L? ?@@@e?@he
@?e@@@?g@@eW2@@6XeW2@@6XeW2@@@@e?@@@@?e@@e@@e3@g?@@??@@??W2@@6X?@@@@6Xf@@f@@@@6XeW2@@6X?@@@@? ?@@@e?@he
@?e@@@?g@@e7@e@1e&@X?@1e7@e@@eJ@e@Le@@e@@eV4@6K?e?@@??@@??7@?I4)?@@e@1f@@f@@e@1e&@X?@1?N@@H? ?@@@e?@he
@?e@@@?g@@e@@e@@e?S@@@@e@@e@@e7@e@1e@@e@@fI4@6X??@@??@@??@@?f@@e@@f@@f@@e@@e?S@@@@e@@ ?@@@e?@he
@?e@@@?g@@e@@e@@eW&(Y@@e@@e@@e@@e@@e@@e@@g?@1??@@??@@??@@?f@@e@@f@@f@@e@@eW&(Y@@e@@ ?@@@e?@he
@?e@@@?g@@e@@e@@e7@H?@@e@@e@@?J@@@@@@L?@@e@@e@@e?@@??@@??@@??@@?f@@e@@f@@f@@e@@e7@H?@@e@@ ?@@@e?@he
@?e@@@?g@@e3@e@5e3@e@@e3@e@@?7@?e?@1?@@e@@e3@e?@5??3@??@@??3@?O2(?@@e@@f@@f@@e@@e3@e@@e3@L? ?@@@e?@he
@?e@@@?g@@eV4@@0YeV4@@@@eV4@@@@?@@?e?@@?@@e@@eV4@@@0Y??V4@@@@??V4@@0Y?@@e@@f@@f@@e@@eV4@@@@eV4@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e@@@? ?@@@e?@he
@?e3@@L J@@5e?@he
@?eN@@)K? ?O&@@He?@he
@?e?3@@5?e?@he
3Le?V4@@0Y?eJ5he
N1f?I4@@0M?f7Hhe
?3L? ?J5?he
?V/K O.Y?he
V46K O20Yhf
I4@@0Mhg

Figure 3. Object for loading product vendors.

ProductVendor
name
address
productsOffered

quotePriceForQuantityOfProduct
loadAll

ProductVendorDBA

server

loadAll
loadAllSuchThat

The Smalltalk Report14 http://www.sigs.com

G B a mixin as:

“A class that embodies a single, focused behavior, used
to augment the behavior of some other class via inher-
itance; the behavior of a mixin is usually orthogonal to
the behavior of the classes with which it is combined.”1

There are always situations in which “mixing in” another
class is the most straightforward thing to do. But mixins
are generally thought of as requiring multiple inheri-
tance,2 which is the mechanism by which languages like
CLOS supply them. Smalltalk, however, does not have
multiple inheritance. Furthermore,
multiple inheritance raises a host of
issues, such as repeated inheri-
tance—where the same superclass
can be reached via more than route
through the parent hierarchy.

Instead, I’m going to take a sim-
pler, more pragmatic approach. In
this implementation, mixins are
provided to a class by adding a mes-
sage, mixins, which replies with a collection of mixin
objects. If an object which uses mixins does not under-
stand a particular message, then each object in the mix-
ins collection is tried, in order. Technically, this is not true
multiple inheritance because it provides only “interface
inheritance” and not “class inheritance.”

In order for this to work, the Object class must be mod-
ified.* Ordinarily, I am loath to do this, but this change is
very simple and foolproof. Honest.

First, change the name of the existing doesNot-
Understand: method in the Object class to originalDoesNot-
Understand:. Then, add the following method:

doesNotUnderstand: aMessage
“If the object has mixins, see if one responds to
aMessage.”

(self class canUnderstand: #mixins) ifTrue: [

self mixins do: [:mixin |
(mixin class canUnderstand: aMessage selector)
ifTrue: [

^mixin perform: aMessage selector
withArguments:

aMessage arguments
].

].
].
“was not handled by mixin, so pass to original

doesNotUnderstand handler”
^self originalDoesNotUnderstand:
aMessage

The operation of this method is very
simple. If the class of the object that
generated the doesNotUnderstand:
message selector understands the
mixins message, then this message
is sent to it. The reply is some kind of
Collection, which is sent the do: mes-

sage selector with a block argument. This block argument
tests to see if an element of the Collection understands the
message selector that the original object did not under-
stand. As soon as such an element is found, it is sent the
message selector, along with the original arguments.

The mixins may be put in any type of collection. A sim-
ple OrderedCollection may be used as the mixins object. A
dictionary might also be used to gain named access to the
individual mixin objects.

Here is a simply and highly artificial, but illustrative,
example of using mixins. A class, MixinTest, has a single
instance variable called mixins. It has the following
accessor:

mixins
^mixins

and the following initialize method:

initialize
mixins := OrderedCollection new.
mixins add: (Date today).

Implementing mixins
in Smalltalk

Terry Montlick

* You could alternatively create a class that overrides the doesNot-
Understand: message selector of the Object class, and always sub-
classfrom this. However, thisrestrictsthe utilityof mixins, sinceyou
would not then be able to “mixin” to an existing class hierarchy.

Multiple inheritance raises
a host of issues, such as
repeated inheritance.

The initialize method sets the mixins instance variable as
an OrderedCollection with a single element, a Date, which is
today’s. This initialize method is sent by the instance cre-
ation method:

new
^super new initialize

Inspecting the following statement causes the current day
of the month to be displayed:

MixinTest new dayOfMonth

Additional levels of mixins can be added. Consider a class
Mixin2Test, which is a subclass of MixinTest. This class also
has the instance creation method:

new
^super new initialize

but the initialize method is

initialize
super initialize.
mixins add: (Point x: 100 y: 50)

By calling super initialize, the MixinTest object creates the
mixins instance variable and adds a Date object to it. The
Mixin2Test initialize method then adds a Point object to
mixins.

A Mixin2Test object now understands messages for two
mixin objects. For example:

Mixin2Test new dayOfMonth
Mixin2Test new x

An object of any class may act as a mixin. However, an
abstract mixin class is particularly powerful. An abstract
mixin is a class that cannot be instantiated in isolation,
because it requires another object or objects to provide
methods for it.

I’ll call the object that a mixin is added to the root
object. A class for subclassing abstract mixin classes is
called AbstractMixin. It has a single instance variable called
root, which has the accessors:

root
^root

root: anObject
root := anObject

It also has the class-side instance creation method:

root: anObject
^self new root: anObject

Subclasses of AbstractMixin must declare their root object
when they create a new instance. The root object is im-
plicitly referred to by sending messages of the form:

self root <some message for root object>

Every AbstractMixin subclass should clearly document
what methods it requires its root object to provide.

As an example of abstract mixins, I’ll use one given by

Seidewitz.3 The abstract mixin class InterestMixin is a
subclass of AbstractMixin and provides the incremental
functionality of earning interest. It has a single-instance,
variable, rate, with the usual accessors, plus a method
for computing interest earned:

interestEarned: dt
“root must provide a ‘balance’ method”
^root balance * rate * dt

An instance creation method sets both the rate and the
root object:

rate: aNumber root: anObject
^(self root: anObject) rate: aNumber

Another mixin class, this time a concrete mixin called
AccountMixin with an instance variable called balance,
provides basic account functionality:

deposit: aNumber
balance := balance + aNumber

withdraw: aNumber
balance := balance - aNumber

An instance creation method sets the current balance:

balance: aNumber
^(self new) balance: aNumber

Now, I’ll put these together in a new class called Savings-
AccountImplementation, which has an instance variable
mixins with an accessor of the same name. All that is nec-
essary is add the instance initialization method:

balance: aBalance rate: aRate
mixins := OrderedCollection new.
mixins add: (AccountMixin balance: aBalance).
mixins add: (InterestMixin rate: aRate root: self).

and the following class-side instance creation method,

balance: aBalance rate: aRate
^self new balance: aBalance rate: aRate

That’s all there is to it! The AccountMixin object provides
the implementation of the balance method, which is
required by the InterestMixin. SavingsAccountImplemen-
tation does not have to supply anything.

References
1. Booch, G. Object-Oriented Analysis and Design with

Applications, 2nd ed. Benjamin/Cummings, Menlo Park, CA,
1994, p. 515.

2. Gamma, E., et al. Design Patterns. Addison-Wesley, Reading, MA,
1995, p 16.

3. Seidewitz, E. “Controlling Inheritance,” Journal of Object-
Oriented Programming 8(8), Jan. 1996.

Terry Montlick is the founder of Software Design Consultants,
which specializes in state-of-the-art Smalltalk projects. He can
be reached by email at 75260.2606@compuserve.com or at
http://www.softdesign.com/softinfo/sdc.html.

`
`

July–August 1996 15http://www.sigs.com

The Smalltalk Report16 http://www.sigs.com

I , we demonstrated how to turn arbi-
trary Text objects into HTML, and in September 1995,
we demonstrated how to modify VisualWorks under

ENVY so you could store all your commentary in styled
text. The only thing missing to have live web access to
your Smalltalk project documentation is a server!

We’ve never been fond of specific solutions to general
problems. It would be easy to hard-code a server that is
dedicated to serving HTML versions of Smalltalk docu-
mentation, but there is so much code that is common to
any server that we couldn’t ignore the potential reuse.

For example, a server of any kind has these needs:
• Manage a socket name space — you can’t simply

pick any number for your socket.
• Initialize a socket and prepare it for use.
• Loop forever, waiting for connection requests.
• Record service requests in a log.
• Screen service requests for security reasons.
• Fork off individual service requests, so the main

loop isn’t unduly delayed from its primary task of
waiting for connections.

• Manage unexpected problems that might occur in
a service request.

• Perform the requested service, and return a result.
The following TCP server framework for VisualWorks
hides all but the last step, allowing the server author to
concentrate on the actual service being provided, with-
out being distracted by the mechanics of managing sock-
ets, processes, logs, and exceptions.

SETTING UP A SERVER INSTANCE
Our server is defined as:

Object subclass: #TcpServer
instanceVariableNames: ‘port socket server service

handler requests logger logProtect’
classVariableNames: ‘CanTalkToBlock

DefaultHandlers DefaultServices Portmap
PortmapControl ‘

poolDictionaries: ‘’

Instances of TcpServer provide stateless services on
Transmission Control Protocol (TCP) Internet domain
sockets. Each instance is uniquely associated with a port
number on a given machine, which must be supplied
when creating an instance. Because port must be unique,
we use a class Portmap registry to maintain this unique-
ness. Because this registry will be accessed from multiple
threads of control, it must be protected by a mutual ex-
clusion mechanism in PortmapControl. We set all this up
when initializing the class, which also sets up the default
security and the DefaultHandlers and DefaultServices.

TcpServer class:
initialize

“Set up long-term state that is used for instance
management.”

self beSecure.
“If this is a re-initialize, be thread-safe.”
PortmapControl == nil ifFalse: [self shutDown].
PortmapControl := Semaphore forMutualExclusion.
Portmap size > 0 ifTrue:

[Portmap copy do: [:server | server terminate]].
Portmap := IdentityDictionary new.
(DefaultHandlers := IdentityDictionary new) at: 0
put: self nullHandler.

(DefaultServices := IdentityDictionary new) at: 0
put: self discardService

onPort: portNumber
“Answer an active instance that provides default
services for port <portNumber>.”

^Portmap
at: portNumber asInteger
ifAbsent: [(self new port: portNumber asInteger)

resume]

The connection security mechanism employs a block
that answers a Boolean when passed an incoming sock-

Jan Steinman and Barbara Yates are co-founders of Bytesmiths,
a technical services company that has been helping compan-
ies adopt Smalltalk since 1987. Between them, they have more
than 22 years of Smalltalk experience. They can be reached
at Barbara@Bytesmiths.com or Jan@Bytesmiths.com, or via
http://www.bytesmiths.com.

Managing Objects

Smalltalk as an Internet server

Barbara YatesJan Steinman

July–August 1996 17http://www.sigs.com

et. If the block answers false, the connection is dropped
immediately. This class method sets the default connec-
tion security, but once the connection security is passed,
an individual server can take extra precautions or imple-
ment finer graduations of security. We also have utility
methods beFriendly, which allows all connections, and
beLonely, which only allows connections from the same
machine, which can be useful for testing.

TcpServer class:
beSecure

“Set the default security to only accept connections
from the same network.”

CanTalkToBlock := [:socket |
socket getPeer networkAddress = socket
getName networkAddress]

The final part of class initialization declares what to do
when an instance is created for a port number that does
not have a default service block or exception handler.
Normally, an instance has its own service and handler. If
not, a default service and/or handler is fetched from the
class for a given port number. If even that fails, then the
“default default” service and/or handler is used. Because
zero is an illegal port number, we use it to hold the
“default default” service and handler.

TcpServer class:
nullHandler

“Answer a handler for when nothing is to be done
with errors. (This is generally not a wise choice!!)”

^[:exception :stream |]

discardService
“Answer a ‘discard’ service, which is to be used
when no service can be found for a given port.”

^[:stream |]

Finally, accessing methods for the unique identifying in-
formation for an instance must take some special actions.

TcpServer:
port

“Answer the port that is listened to by this server for
requests. If none is given, answer 7, for an echo
server.”

^port ? [7]

port: portNumber
“Initialize me with state needed for default
communication on the given <portNumber>.
Answer myself.”

self port: portNumber service: nil handler: nil
logger: System errorLog

The definition of the ? method was published in our

January 1996 column. It simply answers the receiver,
unless it is nil, in which case the argument is evaluated and
answered. Note that we also use a few ENVY utility meth-
ods in this code, which you will need to change if you are
not going to use this as an ENVY documentation server.

With one more method, we will have all the essential
base state needed to implement our server. This is the
primary instance initialization method.

TcpServer:
port: portNumber service: serviceBlock

handler: exceptionBlock logger: logStream
“Initialize me with state needed for a particular
task. Any argument can be nil, and will be
defaulted suitable for an ‘echo’ server that logs to
the Transcript.

<portNumber> is an Integer port number to listen
to.

<serviceBlock> is a one-argument block that is
passed a stream on a transient socket on
<portNumber> when a connection arrives.

<exceptionBlock> is a two-argument block that is
passed the exception and the socket stream when
<serviceBlock> has an unhandled exception.

<logStream> is place to write log messages.”

requests := WeakArray with: 0.
service := serviceBlock.
handler := exceptionBlock.
port := portNumber asInteger.
logger := logStream ? [Transcript].
(self class register: self) ifFalse:

[self error: ‘You already have a service on this
port! You can only have one service
per port per machine.’]

Remember the need to keep track of port numbers? This
is handled by the class, which also needs a way to “forget”
about port numbers as their server instances are released.
The class also manages associations between port num-
bers and the services (and their exception handlers) that
each port provides.

TcpServer class:
register: instance

“Register the given <instance> of myself, unless one
is already registered at that port.

Answer success or failure.”

^(Portmap at: instance port ifAbsentPut:
[PortmapControl critical: [instance]]) == instance

unregister: instance

“Unregister the given <instance> of myself. Don’t
complain if I can’t find it.”

PortmapControl critical:
[Portmap removeKey: (Portmap keyAtValue:
instance ifAbsent: []) ifAbsent: []]

defaultHandlerFor: portNumber
“Answer an appropriate handler for <portNumber>,
or a default default if none.”

^DefaultHandlers at: portNumber ifAbsent:
[DefaultHandlers at: 0]

defaultServiceFor: portNumber
“Answer an appropriate service for <portNumber>,
or a default default if none.”

^DefaultServices at: portNumber ifAbsent:
[DefaultServices at: 0]

Recall that class initialization set up a nullHandler and a
discardService to be used when nothing else was specified
for a given instanceon a given port number.Thatmeanswe
need a way to associate other handlers and services with
ports, so that instances can be tightly cohesive with a port
number, but loosely coupled with a service and handler.

The “default default” of a discardService with a
nullHandler doesn’t make for a very useful server!

TcpServer class:
defaultHandlerFor: portNumber is: twoArgBlock

“Set the exception handler for <portNumber> to
<twoArgBlock>. When evaluated, the two
arguments will be:

the <exception> that was the argument to the
handle: block,
a read-append <stream> on the transient socket
that is being serviced.
This is not thread safe, and should not be changed
by some server action.”

2 = twoArgBlock numArgs
ifFalse: [self error: ‘Sorry, I need a two-argument

clean block here!!’]
ifTrue: [DefaultHandlers at: portNumber put:

twoArgBlock]

defaultServiceFor: portNumber is: oneArgBlock
“Set the service for <portNumber> to a clean
<oneArgBlock>. When evaluated, the argument will
be a read-append <stream> on the transient socket
that is being serviced.”

1 = oneArgBlock numArgs
ifFalse: [self error: ‘Sorry, I need a one-argument

clean block here!!’]
ifTrue: [DefaultServices at: portNumber put:

oneArgBlock]

MAKING A SERVER INSTANCE USEFUL
Although you need more code for a functional server, we
now have the base state needed to create and initialize a
server instance. Let’s put it to work by deriving the in-
stance state needed, such as the socket connection and
input process.

The basic service and handler are usually initialized
from the class registry of default services and default
handlers:

TcpServer:
handler

“Answer a two-argument block that is evaluated
upon service exception. It is passed the exception
and a stream. Non-local returns should not be
attempted. The block answer is discarded.

If no handler exists, get one suitable for my port.”

^handler ? [handler := self class defaultHandlerFor:
self port]

service
“Answer a one-argument clean block that is forked
upon service request. It is passed a stream on the
transient socket connection. Stream closing will be
handled by the evaluator. The block answer is
discarded.

If no service has been set, initialize it to one
appropriate for my port.”

^service ? [service := self class defaultServiceFor:
self port]

This class–instance collaboration might not seem neces-
sary; in fact it isn’t. However, the temporality of server
instances is very different from that of port–service asso-
ciations, so it’s useful to bind server instances tightly to a
port number, but loosely to a service.

For example, an instance that is providing World Wide
Web service using Hyper Text Transfer Protocol (HTTP) is
created and discarded more frequently than the binding
of this service to port number 80, the default HTTP port
number. This reduces coupling in the time domain,
which is often overlooked by designers who concentrate
on reducing behavioral or implementation coupling.

Now that we have a service and a handler, the impor-
tant stuff can happen. An independent thread runs the
primary server loop that waits on socket connections,
checks to see if the connection is legal, then services the
connection’s request.

TcpServer:
server

“Answer an unscheduled Process that listens for and
dispatches service requests.

This service loop should spend most of its time
waiting on a socket connection, and so has a high
priority. The service it implements is typically time-
consuming, and so should be forked at a low
priority, which immediately allows the server to
resume listening for connections.”

^server ? [server := [[| connection |
(CanTalkToBlock value: (connection := self

socket accept))

The Smalltalk Report18

MANAGING OBJECTS

http://www.sigs.com

ifTrue: [self serviceRequest: connection
readAppendStream]

ifFalse: [[connection close] fork]] repeat]
newProcess.

server priority: Processor userInterruptPriority - 1.
server]

socket
“Answer an IOSocketAccessor that listens to my port
for service requests.”

^socket ?
[socket := OSErrorHolder existingReferentSignal

handle: [:ex |
logger == nil ifFalse:

[logger cr; show: ‘You appear to have
another server running on port ‘, self
port printString, ‘ on this machine.’]].

ex returnWith: nil]
do: [IOAccessor defaultForIPC

newTCPserverAtPort: self port]]

serviceRequest: stream
“A connection has been accepted on a transient copy
of my socket. <stream> is a read-write stream on that
socket. Log the activity and provide the requested
service in a separate thread at low priority.”

self registerRequest: ([self serviceRequestFork:
stream]

forkAt: Processor userBackgroundPriority + 1)

serviceRequestFork: stream
“Provide a requested service, based on the socket
<stream>, which at this point has not been read at
all. If there is a problem, invoke an instance-specific
handler. This method is forked at a low priority.”

Signal noHandlerSignal
handle: [:ex | self handler value: ex value: stream]
do: [self log: ‘Open connection at ‘,

EmTimeStamp now printString from: stream.
self service value: stream.
self log: ‘Close connection at ‘ EmTimeStamp now

printString from: stream].
OSErrorHolder errorSignal handle: [:ex |] do:

[stream close]

Because individual requests are forked off, it is essential
to track them down and kill them if needed, so request
threads are registered in requests, a WeakArray. As these
requests terminate, they are collected as garbage and
removed from requests.

TcpServer:
registerRequest: serviceRequestProcess

“A connection has been accepted and
<serviceRequestProcess> has been forked to deal
with it. Hang onto it weakly, so it can be killed when
I’m killed. When it terminates, the scavenger will
remove it from the registry.”

July–August 1996 19http://www.sigs.com

SIGS Publications, Inc., 71 West 23rd Street, 3rd Floor, New York, NY
10010; 212.242.7447; Fax: 212.242.7574

ARTICLE SUBMISSION
To submit articles for publication,please contact:
John Pugh & Paul White, Editors, 885 Meadowlands Dr.#509,Ottawa,
Ontario,K2C 3N2 Canada; email: streport@objectpeople.on.ca

PRODUCT REVIEWS AND ANNOUNCEMENTS
To submit product reviews or product announcements, please
contact the Editors at the address above.

CUSTOMER SERVICE
For customer service in the US, please contact PO Box 5050,
Brentwood, TN 37024-5050; 800.361.1279; Fax: 615.370.4845;
in the UK, please contact Subscriptions Department, Tower
Publishing Services, Tower House, Sovereign Park, Market
Harborough, Leicestershire, LE16 9EF, UK; +44.(0)1858.435302;
Fax: +44.(0)1858.434958

SIGS BOOKS
For information on any SIGS book, contact: Don Jackson, Director of
Books, SIGS Books, Inc., 71 West 23rd Street, New York, NY 10010;
212.242.7447; Fax: 212.242.7574; email: donald_jackson@sigs.com

SIGS CONFERENCES
For information on all SIGS Conferences, please contact: SIGS
Conferences,71 West 23rd Street, 3rd Floor, New York, NY 10010;
212.242.7515; Fax: 212.242.7578; email: info@sigs.com

BACK ISSUES
To order back issues, please contact: Back Issue Order Department,
SIGS Publications, 71 West 23rd Street, 3rd Floor, New York, NY
10010; Phone: 212.242.7447; Fax: 212.242.7574

REPRINTS
For information on ordering reprints, please contact:
Reprint Management Services, 505 East Airport Road, Box 5363,
Lancaster, PA 17601; Phone: 717.560.2001; Fax: 717.560.2063

ADVERTISING
For ad information for any SIGS publication, please contact:
East Coast/Europe: Gary Portie
Central US: Elisa Marcus
Recruitment: Michael Peck
Exhibit Sales, West Coast: Kristin Viksnins
Exhibit Sales, East Coast: Sarah Olszewski
Phone:212.242.7447; Fax: 212.242.7574; email: sales@sigs.com
West Coast: Diane Fuller
Phone:408.255.2991; Fax: 408.255.2992; email: dhfsigs@hooked.net

INTERNATIONAL OFFICES
SIGS Conferences Ltd., Brocus House, Parkgate Road, Newdigate,
Surrey RH5 5AH, United Kingdom. Phone: 011.44.1.306.631.331;
Fax: 011.44.1.306.631.696; email: 100131,3500@compuserve.com.

SIGS France, 105 rue Jules Guesde, 92532 Levallois Perret Cedex,
Paris, France. Phone: +33 (1) 41 06 18 00; Fax: +33 (1) 41 06 18 19;
email: 100631,1050@compuserve.com.

SIGS Conferences GmbH, Odenthaler Strasses 47, D-51465 Bergisch
Gladbach, Germany. Phone: 011.49(0).2202.936.810;
Fax: 011.49(0).2202.936.812; email: 100634,2070@compuserve.com.

SIGS HOME PAGE AND ONLINE MAGAZINES
Access the SIGS Home Page at http://www.sigs.com;
Object Currents at http://www.sigs.com/objectcurrents; and
The X Spot at http://www.sigs.com/xspot.

INFO@SIGS

(requests includes: 0) ifFalse: [requests grow
replaceAll: nil with: 0].

requests
indexOf: 0
replaceWith: serviceRequestProcess
startingAt: 1
stoppingAt: requests size

Finally, instances need to be started, stopped, and killed.
If you are using ENVY, you’ll want to have an application
startUp method that relays to TcpServer startUp to restart
your servers, and a shutDown method that relays to
TcpServer shutDown to suspend them. Also remember to
have a removing method that gets rid of all instances by
sending TcpServer initialize.

TcpServer:
resume

“Begin my server.”

logger == nil ifFalse:
[logger cr;

nextPutAll: ‘Resuming service on port ‘; print:
self port;

nextPutAll: ‘ at ‘; print: EmTimeStamp now; flush].
self server resume

suspend
“Suspend my server in such a way that when it
resumes, it opens a new socket. Terminate any
active requests in process.”

| count |
logger == nil ifFalse:

[logger cr;
nextPutAll: ‘Suspending service on port ‘;

print: self port;
nextPutAll: ‘ at ‘; print: EmTimeStamp now.

count := (requests reject: [:request | request =
0]) size.

count > 0 ifTrue: [logger space; print: count;
nextPutAll: ‘ active requests
cancelled.’].

logger flush].
requests do: [:request | request = 0 ifFalse: [request

terminate]].
server == nil ifFalse: [server terminate. server := nil].
socket == nil ifFalse: [socket close. socket := nil]

terminate
“Terminate my server and release my state.”

self suspend.
self class unregister: self.
logger == nil ifFalse: [logProtect wait. logger close].
socket := server := service := handler := logger :=

logProtect := nil

TcpServer class:
shutDown

“Suspend all my services so that the image can be
quit and re-started.”

PortmapControl critical: [Portmap do: [:server |
server suspend]]

startUp
“Re-start all my services.”

PortmapControl critical: [Portmap do: [:server |
server resume]]!

WHAT’S LEFT?
We’ve run out of space, but this implementation sketch
should give you enough “thoughtware” to improvise. We
left out the thread–safe log interface (there are problems
if multiple processes write to the global Transcript), and
our implementation has more extensive logging and se-
curity features and a home page facility.

We’ll leave you with a handler and a service that im-
plement a complete telnet interface to VisualWorks
using this framework, hoping it might inspire your own
services.

TcpServer class:
textualHandler

“Answer a handler that dumps a textual stack.”
“self defaultHandlerFor: 23 is: self textualHandler”

^[:exception :stream | stream
nextPutAll: ‘Unhandled exception: ‘; nextPutAll:

exception errorString; cr;
nextPutAll: exception initialContext printStack]

evaluationServiceLoop
“Answer a service block that loops over lines of input,
evaluating each and sending back the result.”

“self defaultServiceFor: 23 is: self
evaluationServiceLoop”

^[:stream | stream
next: 6; “Discard garbage characters.”
nextPutAll: ‘Smalltalk evaluation service’; cr;
nextPutAll: ‘Type “self close” to end session’; cr;

nextPutAll: ‘Smalltalk> ‘.
[stream

print: (Compiler evaluate: stream nextLine for:
stream); cr;

nextPutAll: ‘Smalltalk> ‘] repeat]

CONCLUSION
It is easier to write client–server code in VisualWorks
than in C, but it is still not easy enough! With some work,
you can build a framework that reduces TCP servers to
one or two methods.

Next issue, we’ll conclude this series by tying together
this month’s server framework with last month’s HTML
interface, and you’ll have your Smalltalk project docu-
mentation on your company’s Intranet! `

`

The Smalltalk Report20

MANAGING OBJECTS

http://www.sigs.com

July–August 1996 21http://www.sigs.com

I , users often want to com-
municate with each other. In some cases, they want to
broadcast their message to all interested parties; in

other cases, they only want to carry on a dialog with one
other user. In a system that supports transactions, an
application sometimes wants to be notified when changes
to particular objects have been committed. A client/server
system already has the infrastructure to provide these ser-
vices. The client and server already have predefined com-
munication protocols, and the server has knowledge of all
the clients currently logged in. This column discusses two
kinds of client-to-client communications that can be sup-
ported by multiuser Smalltalk and shows how to use them
to implement concurrent processing algorithms.

In a system that supports transactions, application
sessions are committing changes to objects all the time.
Many times an application needs to know when another
concurrent session has committed a change to specific
objects of interest. For example, a stock broker applica-
tion may want to trigger some activity when the price of
a particular stock has changed. Or, an inventory manage-
ment application may need to initiate item purchases
when the inventory dips below a specified threshold. A
reservation system may want to be notified when a new
reservable unit becomes available. In these cases, the
application does not care who made the change; it just
wants to be notified that a change occurred and which
objects were modified.

In GemStone Smalltalk, class System provides protocol
to receive notification when particular objects are mod-
ified. Each session that is logged in maintains its own ‘noti-
fy set’. A session can register objects of interest by placing
them in its notify set. This set only exists for the life of the
session; that is, it is not a persistent object, but it is main-
tained across transaction boundaries. An application can
add a single object to its notify set by executing System
addToNotifySet: anObject or can add a collection of objects
by sending addAllToNotifySet:. There is also protocol to
access and remove objects from the notify set.

Once objects have been added to its notify set, there

are two ways in which the session can receive notifica-
tion. One way is to poll for the objects that have changed;
the other is to install an exception handler. If the applica-
tion installs an exception handler, it must first enable the
ability to receive this error (it is not really an error, but the
underlying implementation uses the error mechanism to
interrupt execution). This error is enabled by sending
System enableSignaledObjectsError. Whether polling or
handling an exception, to find out which objects have
been modified, the application sends System signaled-
Objects. This message returns a set of objects that have
had changes committed to them and clears the signaled
objects set for the next use.

The following section of code illustrates how to install
an exception handler and get the changed objects:

“first enable the ability to be notified when
changed objects are committed “

System enableSignaledObjectsError.

“ now install an exception handler to catch the notification “
Exception

category: GemStoneError
number: (ErrorSymbols at: #rtErrSignalCommit)
do: [:ex :cat :num :args | | changedObjects |

“ get the objects that have had changes to them
committed “

changedObjects := System signaledObjects.
].

When adding objects to the notify set, an application
must consider what part of an object will actually be writ-
ten, so that the session will be notified when a change to
that object is committed. For example, an RcCounter
object (described in an earlier column) is actually imple-
mented as a composite object, composed of multiple
subobjects that each encapsulates a numerical value. It
is the sum of all values in the subcomponents that ac-
tually make up the RcCounter’s value. When an RcCounter
is incremented or decremented, it is one of the subcom-
ponents that is actually written. Consequently, to receive
notification when a change to an RcCounter is committed,
a session must place the root object and all of its sub-
components in the notify set.

Another kind of useful client-to-client communication

Getting Real

Jay Almarode

Using Smalltalk since 1986, Jay Almarode has built CASE tools, in-
terfaces to relational databases, multi-user classes, and query sub-
systems. He is currently a Senior Software Engineer at GemStone
Systems Inc., and can be reached at almarode@gemstone.com.

Communicating between
sessions

is when two sessions want to talk to one another directly
and immediately. In GemStone Smalltalk, this is possible
by sending a signal to another session currently logged in.
A signalconsistsof a SmallInteger, whosemeaningis agreed
on by the participants in the dialog, and a sequence of
bytes (a maximum of 1,023). As with the changed object
notification mechanism just described, signaling is im-
plemented using the underlying error mechanism. Con-
sequently, a sessionmust enable the receptionof these sig-
nals by sending System enableSignaledGemStoneSession-
Error. A session can receive signals from multiple senders,
and the signals are queued in the order received.

For a session to send a signal to another session, it must
identify the other session by its unique session identifier, a
SmallInteger. There are a couple of ways that a user can find
out about other sessions currently logged into the system.
To get the session IDs of all users currently logged in, you
can send the message System currentSessions, which
returns an array of SmallIntegers. For each session ID, you
can send System descriptionOfSession: sessionId to get back
an array of more detailedinformation.Amongthe piecesof
information returned by this message is the name of the
host machine on which that user is logged in, and the
UserProfile object for that user. Getting information about
other users is a privileged operation, so you must have ‘ses-
sion access’ privilege to send these messages.

Once you have the identifier of the session to which
you would like to send a signal, you can send System send-
Signal: aSignalNumber to: aSessionId withMessage: aString.
The receiver of the signal executes System signalFromGem-
StoneSession to receive an array of signal information. The
array is empty if no signal has been sent. If a signal has
been sent, the array consists of three elements: the ses-
sion id of the sender, the signal number, and the bytes.

Because signaling uses the underlying error mecha-
nism, a receiver can install an exception handler to be
triggered when a signal is sent to it, or the receiver can
poll for signals.

Signals are a simple mechanism that can be used to
build complex behaviors that involve more than one con-
current session. One use of signals is to coordinate sessions
for implementing concurrent algorithms. Implementing
concurrent algorithms with individual sessions means that
you are allocating tasks among multiple processes, each
with its own dedicatedSmalltalkinterpreter and view of the
object repository. Some care must be taken to make sure
that each session’s transaction point of view is reasonably
up to date with the others. Usually this means that a session
begins a new transaction as the first step in performing its
part of the concurrent algorithm.

The remainder of this column describes a simple pair
of classes that can be used for implementing concurrent
processing. The implementation consists of one class,
called WorkerBee, whose responsibility is to receive com-
mands to do work, and another class, called QueenBee,
which sends commands to multiple WorkerBee objects
and accumulates the results of their work. A QueenBee
uses signals to send commands to each WorkerBee and

uses changed object notification to learn when each
WorkerBee has committed its work.

The implementation of WorkerBee is fairly simple. Its
main task is to execute a service loop, waiting for instruc-
tions from any QueenBee. Class WorkerBee defines a single
instance variable, called amountToSleep that holds the
number of seconds to delay each time through its service
loop. This allows the responsiveness of each WorkerBee to
be tuned. Note that the WorkerBee’s OS process and
resources used can be further controlled using configura-
tion parameters as described in an earlier column on tun-
ing. Each time, through its service loop, a WorkerBee checks
if a signal was received. If so, it initiates some work based
on the signal number. Because the meaning of signal
numbers must be agreed upon by the sender and receiver,
I use a pool dictionary shared by WorkerBee and QueenBee
to provide symbolic names for different signal numbers.

The pool dictionary has entries with the following
meanings:

#handshake initiate an agreement to work for a
QueenBee

#freeWorker end the agreement to work for a
QueenBee

#executeString execute the given string for a QueenBee
#commit commit the current transaction
#abort abort the current transaction
#terminate terminate the service loop of the

WorkerBee

A WorkerBee must synchronize with a QueenBee before it
does any work. In this simple example, a WorkerBee and a
QueenBee perform a handshake in the following way: A
QueenBee sends a signal initiating the handshake. In-
cluded in this initial signal is the QueenBee’s name. This
must be a name that the WorkerBee can resolve to get the
QueenBee instance that sent the signal. If the WorkerBee is
not already servicing another QueenBee, it returns a signal
indicating its availability; otherwise it indicates it is busy.
At this point, the WorkerBee is dedicated to a single
QueenBee, waiting for commands. The implementation of
the WorkerBee’s serviceLoop is as follows (simple portions
of this method have been omitted for brevity):

method: WorkerBee
serviceLoop

“Start up a loop, waiting for instructions.”

| continue queen queenSessId
| continue := true.
“ worker bee loop “
[continue] whileTrue: [| signalArray |

signalArray := System signalFromGemStoneSession.
“ if no signal was sent, sleep for awhile “
signalArray isEmpty

ifTrue: [System sleep: self amountToSleep]
ifFalse: [

| signalNumber signalSender signalBytes |

The Smalltalk Report22

GETTING REAL

http://www.sigs.com

signalSender := signalArray at: 1.
signalNumber := signalArray at: 2.
signalBytes := signalArray at: 3.

“ command to execute the given string “
signalNumber = executeString

ifTrue: [
“ only accept commands from one queen “
(queen notNil and: [signalSender =
queenSessId])

ifTrue: [queen addToHive: signalBytes
_execute]

].
“ receive a request to work for a queen “
signalNumber = handshake

ifTrue: [
queenSessId isNil

ifTrue: [
queenSessId := signalSender.
“ resolve the QueenBee’s name to an

instance “
queen := System myUserProfile

objectNamed: signalBytes.
System sendSignal: handshake

to: signalSender
withMessage: ‘Available’

]
ifFalse: [“ signal that the WorkerBee is

unavailable “
System sendSignal: handshake

to: signalSender
withMessage: ‘Unavailable’

]
].

continue := signalNumber ~= terminate.
]

].

The implementation of the QueenBee is also fairly simple.
Class QueenBee defines three instance variables: its name,
an array containing the session ID of each of its worker
bees, and a bag in which each WorkerBee can place the
result of its work. This last instance variable, cutely
named hive, will be concurrently updated by multiple
WorkerBees. To avoid concurrency conflicts, this variable
contains an instance of RcBag. You may recall from an
earlier column, an RcBag has concurrency semantics such
that concurrent adders to the bag will not conflict.

In addition, theQueenBee wants to be notified wheneach
WorkerBee has committed the result of its work to the RcBag.
To accommodate this, theQueenBee places theRcBag andits
subcomponents into its notify set. Once a QueenBee has
issued the command for each of its workers to do some
work, it can wait for notification of changes to the RcBag
to gather results. The following code listing shows the
methods to add the RcBag to the notify set, and to find
all WorkerBees and perform the handshake with them:

method: QueenBee
addHiveToNotifySet

“ put the RcBag and all of its subcomponents in the notify
set “

System addToNotifySet: hive.
hive _doSessionBags: [
:addBag :removeBag |

System addToNotifySet: addBag.
System addToNotifySet: removeBag.

]

method: QueenBee
getWorkerBees

“Find possible worker bees, then perform a handshake to
see if they are available for work. Set the array of worker
bee’s session id’s with those that are available.”

| possibleWorkers |
“ find all users logged in as WorkerBee “
possibleWorkers
:= System currentSessions

select: [:sessId |
((System descriptionOfSession: sessId) at: 1)
userId = ‘WorkerBee’

].

“ initiate the handshake “
possibleWorkers do: [:sessId |

System sendSignal: handshake
to: sessId
withMessage: name.

].

workers := Array new.
possibleWorkers size timesRepeat:
[| signalArray |

signalArray := System signalFromGemStoneSession.
signalArray isEmpty

ifFalse: [
| signalSender signalNumber signalBytes |
signalSender := signalArray at: 1.
signalNumber := signalArray at: 2.
signalBytes := signalArray at: 3.

“ check if WorkerBee was available “
(signalNumber = handshake and:
[signalBytes = ‘Available’])

ifTrue: [workers add: signalSender]
]

]

The mechanisms described in this column let one session
find out about and communicate with other sessions.
These mechanisms provide the infrastructure to build
complex applications in a multiuser environment. `

`

July–August 1996 23http://www.sigs.com

The Smalltalk Report24 http://www.sigs.com

U user interface builder like Visual-
Works’ Canvas tool and ObjectShare’s Window Build-
er Pro, a developer avoids the tedious task of hand

coding an application window’s layout by using a tool that
generates the code after the window is constructed visual-
ly. Using such GUI builders, developers view a window’s
appearance when opened and how it appears when re-
sized before ever executing a line of the application win-
dow’s “real” code. These tools permit a developer to iden-
tify what application methods should execute when spe-
cific events, such as the clicking of a button, occur in the
application window. Good ones will write method stubs
that developers subsequently complete to perform the
required reaction to given events. Reaction methods often
send messages to business objects to set or retrieve infor-
mation about them and may force the window to update
its views. Although these tools no longer require that
developers hand code an application window’s layout,
they still require them to implement the interaction
between the views and the underlying business domain.

The latest generation of GUI builders include tools such
as VisualSmalltalk’s PARTS Workbench and IBM’s Vis-
ualAge Composition Editor. Both GUI builders are exam-
ples of the new Construction from Parts technology called
Visual Programming. They enable developers to create
windows and other components by assembling and con-
necting reusable components, also known as parts. Rather
than hand-coding the interactions between the parts,
developers make visual connections between a source
part’s events and another part’s actions. The GUI builders
still write Smalltalk code to construct the window for the
developer, but, in addition to layout code, they also write
code connecting events on parts to the execution of meth-
ods on others. Provided that there are good parts, develop-
ers do not need to write any Smalltalkcode to develop their
application windows. They just assemble them from exist-
ing parts and say “go”. However, without guidelines, it is
now possible to paint spaghetti instead of just writing it!

The success of visual programming depends on how
organizations use it and on the availability of a rich library
of reusable generic and domain-specific parts. This col-
umn will focus on visual programming tips and tech-
niques to help you become a more effective visual pro-
grammer. Future columns will cover how to manage the
number of connections in your window and describe
visual debugging techniques. We will also provide many
examples of reusable components developed using visual
programming parts and techniques, such as an advanced
factory part, a broker, a marquee, and web parts. Initially,
we will use examples derived from IBM’s VisualAge for
Smalltalk environment, but we will include examples
from ParcPlace-Digitalk’s next product release.

This column describes the building blocks for con-
structing any application window: parts and connections.
As an example, we build an Action ListWindow with IBM’s
VisualAge using only those building blocks—no Smalltalk
code. The window’s requirements are to let a user enter
any number of actions into a To-Do list and then move
them to a Completed list. Our goal is to demonstrate that,
when given the building blocks and good reusable compo-
nents, you can do a substantial amount “programming”
without writing a single line of code. Be warned that visual
programming rarely, if ever, provides a complete solution.

REUSABLE COMPONENTS (PARTS)
Before one can do any visual programming, one must
have access to, or must create, a number of reusable com-
ponents (parts). There are two different types of parts:
Visual and Nonvisual. Visual parts have visual representa-
tions and appear in a runtime application window, for
example, buttons, lists, input fields, and labels. Nonvisual
parts have no visual representation, such as a Printer, CD
player, Ordered Collection, Variable, and any domain-
specific business parts. Nonvisual parts implement ob-
jects that provide logic, storage, and resource access for
your application windows. Visual and Nonvisual parts are
simply assemblies of visual and nonvisual parts.

In VisualSmalltalk’s PARTS, all parts in the Workbench
are instances of Smalltalk classes. The part’s default inter-
face includes all the messages the Smalltalk object under-
stands and all of the events it can trigger. In IBM’s Vis-
ualAge, all parts in the Composition Editor are Smalltalk
classes. The part’s default interface is empty until the

Dwight Deugo and Wayne Beaton are senior members of the
development educational staff at The Object People, in Ottawa,
ON, Canada. Dwight (dwight@objectpeople.on.ca) has immersed
himself in objects for more than 10 years and has helped clients
with their object immersions as a project mentor and as a course
instructor. Wayne (wayne@objectpeople.on.ca) is the coordinator
of course construction and a software developer.

Visual Programming

Reusable components
Wayne BeatonDwight Deugo

developer decides what portion of the part’s Smalltalk
class’ interface to make public.

A part’s interface includes attributes, events, and ac-
tions. Attributes represent properties of a part, such as the
name of an employee, that other parts access. An attribute
can be any Smalltalk object, including other visual and
nonvisual parts. One can initialize a part’s attributes using
a GUI builder’s property or settings tool at development
time or can access them dynamically at runtime. Actions
are an operation that a part executes when events on other
parts trigger them. For example, a button click event (gen-
erated when the user clicks on the button in the applica-
tion window) could trigger a window’s close action. Ac-
tions correspond to Smalltalk methods or code fragments.
Events are signals that one part can send to another to
notify it that something has occurred.

CONNECTIONS
A developer specifies relationships between parts by mak-
ing connections between them. The first type of connec-
tion is an event-to-action connection. This link connects
an event of one part with the execution of another part’s
action. When the event triggers, the action executes. The
second type of connection is an attribute-to-attribute
connection, which can be viewed as a two-way event-to-
action connection. The change of one part’s attribute (the
event) triggers the setting of the second part’s attribute to
the same value (the action), and vice-versa.

A link, alsocalled connection, is a typeof part.Therefore,
it has attributes and events. The attributes of a connection
correspond to the parameters that the action at the end of
the connection requires and the action’s result. If an action
requires no parameters, the connection has only one at-
tribute: a result. Since actions just execute Smalltalk code,
theconnection stores theresult object as an attribute. Since
the setting of an attribute is equivalent to an event, it is
possible to make a connection between the result event
and other actions. One can trigger an action on another
part when a previous action finishes and returns a result.

Events may or may not generate parameter values. For
example, the clicking of a button only triggers a click
event. On the other hand, the selection of an item in a list
generates a selection event and provides the selected
object as an argument for a connection to use as one of its
parameters. Of course, one can change the value by mak-
ing a connection to the link.

VISUAL PROGRAMMING EXAMPLE
Visual programming permits developers to quickly con-
struct application windows provided the appropriate
parts are available. Using VisualAge for Smalltalk version
3.0, we quickly constructed the “ActionListWindow”
shown in Figure 1. This window allows the user to con-
struct a list of actions to do for the current day. From that
list, completed actions can be moved to a completed
action list. At the end of the day, the user should have all
of his or her actions in the completed actions list (ha ha)!

Thisfirst-passoftheActionListWindowcontainsseveral
visual parts, two nonvisual parts, and a few connections.
The ordered collection* part, “ActionsTo Do,” is connected
to the left-most list with an attribute-to-attribute connec-
tion. The collection’s “self” attribute† is connected to the
list’s “items” attribute. This connection specifies that the
orderedcollectionstorestheitemstodisplay–if theordered
collection changes in any way, the change is automatically
reflectedin the listbox. A similarconnection linksthe“self”
attribute of the ordered collection titled “Actions
Completed” to the“items” attributeof the right-mostlist.

The “clicked” event of the push button labeled “Add” is
connected to the “add:” action of the “Actions To Do”
ordered collection through an event-to-action connection.
The “add:” action requires a parameter. We specify the con-
nection parameter with an attribute-to-attribute connec-
tion from the “anObject” continued on page 28

Figure 2. ActionListWindow Connections.

Figure 1. ActionListWindow in the Composition Editor.

* An ordered collection holds any number of Smalltalk objects in the
order in which they are added.

† In VisualAge, all parts have a “self” attribute. This attribute repre-
sents the whole part.

attribute of the original connec-
tion to the “object” attribute of the entry field. These two
connections provide the ability to add objects to the
ordered collection. Any objects added are automatically
displayed by the connected list.

Clicking the “move” button, labeled “>>,” moves the se-
lected item from the left-most list to the right-most one.
Objects removed from the “Actions To Do” ordered collec-
tion are added to the “Actions Completed” ordered collec-
tion. The order of the following connections is important.‡

The“clicked” eventofthe“move” button isconnected tothe
“remove:” action of the “Actions Completed” ordered col-

lection. This event-to-action connection requires an object
(the object to be removed) that is supplied by connecting
the “anObject” attribute of the event-to-action connection
to the “selectedItem” attribute of the left-most list box.
The “move” button’s “clicked” event is also connected to
the “remove:” action of the “Actions To Do” ordered
collection, with the “anObject” parameter supplied again
by the “selectedItem” attribute of the left-most list box.

Clearly, we require a better way of describing the con-
nections—textual descriptions are too long. A concise
connection representation is both desirable and neces-
sary. Figure 2 shows our Action List Window again, but
this time we have added line labels (unfortunately
VisualAge does not provide this facility for us) and Figure
3 shows the legend.

IN THE FUTURE
To keep this example small, we have avoided certain is-
sues. The push button is not disabled when its does not
apply. The “move” button should be enabled only when
there is a valid selection in the left-most list box. The
“Add” button should be enabled only when the user has
entered data in the entry field. Perhaps some ability to
remove items from one or both lists might prove useful.
Ultimately, the information needs to persist in some way.
These are issues we intend to address in future columns.

THE CODE
The code used in this column is available on the World
WideWeb. Our URL is http://www.objectpeople. on.ca. `

`

The Smalltalk Report28

VISUAL PROGRAMMING

http://www.sigs.com

Figure 3. ActionListWindow Legend.

Link # PartName.attribute/event/action →
PartName.attribute/event/action

1. ActionList.items → ‘Actions To Do’.self
2. ActionsCompletedList.items → ‘Actions Completed’.self
3. AddButton.clicked → ‘Actions To Do’.add:
4. inputField.object → connection3.anObject
5. >>Button.clicked → ‘Actions Completed’.add:
6. ActionsCompletedList.selectedItem → connection5.anObject
7. button.clicked → ‘Actions To Do’.remove:
8. ActionsCompletedList.selectedItem → connection7.anObject

‡ Once you remove an object from an “Action To Do” ordered collec-
tion, it is no longer in the left-most list. Therefore, it can no longer
be the selected item and cannot be moved to the “Actions
Completed” ordered collection.

continued from page 25

The Smalltalk Report2

P
. word causes more grief
and costs more time in terms of system devel-
opment with objects than any other single is-
sue. In theory, the problem is a very simple one.

Is there a way for an application to store and retrieve
the data contained within its objects?

Will the persistence mechanism also maintain the
relationships between the objects in addition to the
raw data? Will it support object identity properly?
And how fast (slow) will it execute?

Providing a suitable answer for all of these questions
is extremely difficult. Persistence has always been an
issue with object-oriented languages, Smalltalk being
no exception. The first persistence mechanism de-
signed for Smalltalk used the
storeOn: method to ask an object
to generate a string that, when
evaluated, would return the ob-
ject itself. Clever idea, but not very
practical. The next idea was to use
a Loader/Dumper style implementation, where an
entire object (and all its parts) can be stored in a file,
and later retrieved. This worked well as far as it went.
The shortcoming was that an object being retrieved
had no notion of the relationships it used to have
with other objects, and vice versa. And it certainly
did not scale in terms of size or maintenance.

The correct solution, of course, is to use a true data-
base of some flavor. Be it IMS, Oracle, Sybase, Gem-
stone, Versant, etc., the idea is to store and retrieve
objects using a facility designed to do just that.

So, what’s so hard about this? As most of you know,
the difficult part is not the“data” stored with the object.
It is simple to store and retrieve data such as a name,
phone number and date of birth of a customer object.
The difficulty comes in maintaining the relationships
between the objects as designed in our systems. For
example, our customer object may have a reference to
an account object (or many) as well as relationships
with other customers (a bank would keep track of our
relationship with our spouses). The challenge is how
keep track of these types of relationships? And how can
we support the dynamic nature of these relationships?

The quick answer, of course, is to use an object per-
sistence storage mechanism. Tools such as GemStone,
Versant, and others handle these complex and dynam-
ic relationships with next to no effort. There are other
issues to consider when deciding whether or not to
employ these new persistence mechanisms, but ease

of managing these relationships isn’t one of them.
However, most of us aren’t in the position to entertain
such a choice (and maybe we shouldn’t anyway). Our
organizations have invested significantly in other tech-
nologies that serve the overall organization quite well.
Furthermore, since the data used by our Smalltalk
applications is often shared with others, a more tradi-
tional route may be the only practical choice.

Using a relational mechanism poses some signifi-
cant challenges. For example, determining how to map
the relationships found in our object model to tables is
nontrivial. The greater the difference between the ob-
ject model to the data model, the more difficult the
mappings can become. For example, many-to-many

relationships (customers to ac-
counts) require an intermediate
table in the relational world, but
in the object world, they’re really
a nonissue. Storing and retriev-
ing objects from non-relational

mechanisms is proving to be even more difficult. Many
relationships that exist in objects are virtually impos-
sible to duplicate in, for example, a CICS transaction.

Having stated the difficulties, many have been able
to successfully bridge the worlds. Most of these solu-
tions are “home-grown.” Our concern with home-
grown solutions is that even once we describe how to
overcome the hurdles and discover the mappings re-
quired, we’re still faced with two significant challenges.
First, the execution speed can often be painful (espe-
cially with writes) if not very careful about the database
commands generated (e.g., SQL statements or stored
procedures). Second, and more important, is the effort
that is required to maintain the mappings.

This point concerning maintenance is being over-
looked by far too many shops who are building their
own interfaces. Many are saying “I can build it myself”
and they can. But the impact on the elegance of the
implementation is going to lead to systems that are
tougher to extend and difficult to understand. What
many seem to fail to grasp is, even if they can under-
stand it while they’re writing the code, will the person
coming behind them to maintain it be able to under-
stand? And what about the person behind them? The
real costs of our solutions will be seen down the road.
We strongly believe it is our job as software engineers
to design systems that are easy to maintain—if we fail,
we haven’t done our organizations any favors.

Enjoy the issue.

Editors’ Corner
Paul WhiteJohn Pugh

It is our job to design
systems that are easy

to maintain.

For more object
news and analysis,
check out SIGS
online at
http://www.sigs.com

September 1996 1

Table of Contents
September 1996 Vol 6 No 1

Features:

Externalizing Business-Object Behavior 4
Paul Davidowitz
One of the frameworks explored by the advanced development group at Andersen Consulting is the
externalization of business-object behavior, which allows for tailoring by the end user.The behavior is
represented as rule bases, which are specified in Smalltalk.

Using events for constraint solving 11
Annick Fron
Constraint-solving techniques have been commercially implemented in C++ and used for such
industrial applications as train and plane scheduling. Smalltalk events allow an elegant representa-
tion of these techniques.

How to display an object as a string: 16
TypeConverter and PrintConverter
Bobby Woolf
Producing an object’s description is not enough. When the user types in another string, the new one
needs to be converted back into an object. Here are some guidelines on how to use the
TypeConverter and PrintConverter classes to display objects and read new ones from the user.

Visual programming: 19
Managing connection complexity
Wayne Beaton and Dwight Deugo
What approach is one to take to minimize the connection com-
plexity of visual parts? There must be a way to understand easi-
ly what is being built now and what has been built in the past.

Managing Objects: 22
SmallDoc Web serving
Jan Steinman and Barbara Yates
Now that you know how to turn SmallDoc into HTML and how
to build a generic TCP/IP server, you can now begin serving up
Smalltalk project documentation to anyone with a Web server.

Getting Real: 25
Fault tolerance
Jay Almarode
Here are some mechanisms to achieve fault tolerance, and how to recover when
bad things happen.

Smalltalk Idioms: 27
Object-oriented recursion
Kent Beck
While coming to understand recursion as a rite of passage for developers, it
must be managed somewhat differently to make effective use of it.

Departments
Editors’ Corner 2
The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, monthly except in Mar–Apr, July–Aug, and Nov–Dec. Published by
SIGS Publications Inc., 71 West 23rd St., 3rd Floor, New York, NY 10010. © Copyright 1996 by SIGS Publications. All rights reserved.
Reproduction of this material by electronic transmission, Xerox or any other method will be treated as a willful violation of the US
Copyright Law and is flatly prohibited. Material may be reproduced with express permission from the publisher. Bulk rate U.S. postage
paid Lancaster, PA, permit 161. Canada Post International Publications Mail Product Sales Agreement No. 290386.
Individual Subscription rates 1 year (9 issues):domestic $89;Mexico and Canada $114,Foreign $129;Institutional/Library rates:domestic
$199,Canada & Mexico $224,Foreign $239.To submit articles,please send electronic files on disk to the Editors at 885 Meadowlands Drive
#509,Ottawa,Ontario K2C 3N2,Canada,or via Internet to streport@objectpeople.on.ca.Preferred formats for figures are Mac or DOS EPS,
TIF, or GIF formats. Always send a paper copy of your manuscript, including camera-ready copies of your figures (laser output is fine).
POSTMASTER: Send domestic address changes and subscription orders to: The Smalltalk Report, P.O. Box 5050, Brentwood, TN 37024-
5050. For service on current domestic subscriptions call 1.800.361.1279 or fax 615.370.4845. Email: subscriptions@sigs.com. For foreign
subscription orders and inquiries phone +44(0)1858.435302. PRINTED IN THE UNITED STATES.

Columns

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS Publications Advisory Board
Tom Atwood, Object Design
François Bancilhon, O2 Technology
Grady Booch, Rational
George Bosworth, ParcPlace-Digitalk
Jesse Michael Chonoles, Lockheed Martin ACC
Stuart Frost, SELECT Software
Adele Goldberg, ParcPlace-Digitalk
Thomas Keffer, Rogue Wave Software
R. Jordan Kriendler, IBM Consulting Group
Thomas Love, Consultant
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

The Smalltalk Report Editorial Board
Jim Anderson, ParcPlace-Digitalk
Adele Goldberg, ParcPlace-Digitalk
Reed Phillips
Mike Taylor, ParcPlace-Digitalk
Dave Thomas, Object Technology International

Columnists
Jay Almarode, GemStone Systems Inc.
Wayne Beaton, The Object People
Kent Beck, First Class Software
Dwight Deugo, The Object People
Juanita Ewing, ParcPlace-Digitalk
Bob Hinkle, Consultant
Tim Howard, FH Protocol, Inc.
Ralph E. Johnson, University of Illinois
Alan Knight, The Object People
Mark Lorenz, Hatteras Software, Inc.
Jan Steinman, Bytesmiths
Rebecca Wirfs-Brock, ParcPlace-Digitalk
Barbara Yates, Bytesmiths

SIGS Publications Group, Inc.
Richard P. Friedman, Founder, President, and CEO
Chris Keating,Publishing Director–US Magazines
John McCormick, Editorial Director

Editorial/Production
Kristina Joukhadar, Senior Managing Editor
Elisa Varian, Director of Manufacturing
Jan Foster, Cover Design
Douglas Finlay, Associate/Managing Editor
Serena Tesler, Production Editor
Erika Romero, Desktop Designer
Margaret Conti, Manufacturing Coordinator

Circulation
Elayne Glick, Circulation Director
Byron Scarlett, Assistant Circulation Manager

Advertising/Marketing
Gary Portie, National Sales Manager
Elisa Marcus, Advertising Manager,Central US
Michael W. Peck, Advertising Representative
Kristine Viksnins,West Coast Exhibit Sales
Sarah Olszewski, East Coast Exhibit Sales

212.242.7447 (v), 212.242.7574 (f)
Nancy Beuschel, Promotions Manager for Magazines

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Senior Accounting Manager
Bibi Budhram, Accounts Payable

Publishers of JOURNAL OF

OBJECT-ORIENTED PROGRAM-
MING, OBJECT MAGAZINE,
C++ REPORT, THE SMALLTALK

REPORT, THE X JOURNAL, JAVA REPORT, OBJECT CURRENTS and
THE X SPOT (ONLINE), OBJECT EXPERT (UK), JAVASPRCTRUM and
OBJEKTSPEKTRUM (GERMANY)

The Smalltalk Report4 http://www.sigs.com

E is an intergrated set of tools, architectures,
processes, patterns, and reusable components that
Andersen Consulting brings to its clients to enable

the design and development of mission critical business
systems. One of the frameworks explored in the area of
tailorability was the externalization of business-object
behavior, which makes conven-
tional black-box business-object
behavior available for tailoring by
an end user. This externalized
behavior is represented as rule-
bases, which are specified in
Smalltalk. This paper describes a
tool that can be used to create and
edit the rules of the rule-bases. The
tool guarantees that the source
code it produces will always com-
pile and, at run time, will never generate the
doesNotUnderstand: message. The tool is a context-sensitive
editor that makes use of typing information and handles
a wide range of expressions.

The basic technique is to transform a source string via
manipulation of its abstract syntax tree. The abstract syn-
tax parse tree, or more accurately ProgramNode tree in Visual
Works, is produced as an intermediate step during code

compilation, but is useful in its own right as an intermedi-
ate representation between source code and compiled
code. The tree representation is convenient for dealing
with syntactic issues. This representation can be trans-
formed via decompilation into a string representation,
with which most users prefer to interact. One representa-

tion can be transformed into the
other as is convenient. Valid syntax
and valid message-selectors are
achieved by constraining the user to
choose from valid manipulations of
the ProgramNode tree. Valid message
arguments are achieved by having
the user choose from manipula-
tions that satisfy type require-
ments.Here is an example of a rule-
base consisting of two rules. The

rule-base derives the attribute isReceiving for a
Warehouse business object.

Rule1 premise: [:aWarehouse | aWarehouse
isTakingInventory]
Rule1 action: [:aWarehouse | aWarehouse
isReceiving: false]
Rule2 premise: [:aWarehouse | aWarehouse
isTakingInventory not]
Rule2 action: [:aWarehouse | aWarehouse
isReceiving: (aWarehouse isOpen and:[aWarehouse
isAvailableStorage])]

As the example shows, a rule contains a single-argument
block; the argument being the instance of the business
object. The nature of Eagle rules is that they tend to be
short and simple. The tool in turn was designed to per-
form well for shallow-nested blocks and a small number
of assignments and temps.

PPD VisualWorks was the development environment;
concepts may or may not be applicable to other Smalltalk
environments.

The standard input to the tool is a string specifying a
single argument block and the class name of the business

Externalizing
Business-Object Behavior:
A Point-and Click Rule Editor

Paul Davidowitz

Figure 1. Starts with a generic seed-block of [:subject | nil].

The tool guarantees
that the source code it produces

will always compile and,
at run time, will never generate
the doesNotUnderstand: message.

September 1996 5http://www.sigs.com

object. The output is a similar string. Let’s create the
action block of Rule2, starting with a generic seed-block
of [:subject | nil] as shown in Figure 1.

The view in the upper right is the ProgramNode tree. The
user has the ability to select a node either by clicking on it
in the tree view, or by clicking appropriately on code in
the NodeSelection text view (shown). For example, to select
a MessageNode in the text view, the user clicks on its selec-
tor. We click on nil, which is a LiteralNode.

We proceed to replace the nil statement with the argu-
ment of the block. We have replacement options available
from four lists: Morph, MorphConstruct, MetaMorph, and
MetaMorphConstruct. These options (collectively referred to
as morphs) produce valid replacement nodes for the cur-
rent-selection. Morph proper and MorphConstruct produce
replacement nodes of the same class as that of the current
selection; MetaMorph and MetaMorphConstruct produce
those of a different class. The construct suffix means that
the replacement node, instead of being a fixed prototype,
is rather constructed from the current selection. For
example, construct sel -> sel isNil (sel denoting current
selection) means: replace the current selection with a
MessageNode of selector isNil, and use the current selection
as the receiver.

Let’s metamorph. We select subject in the MetaMorph list.
This replaces the LiteralNode with a VariableNode and, we get
Figure 2.

The Morph list presents the option of using global
Transcript; it is possible to have other globals as well. We
select MetaMorphConstruct sel -> sel isNil. This replaces the
VariableNode with a MessageNode, whose receiver is the
VariableNode, and then we get Figure 3.

We have expanded the MorphConstruct list and see
choices for different selectors. Each of these choices
shows the return type (depicted by the up-arrow), as well
as the required types for the arguments (if any). (The ver-
tical bar appearing in a type specification is read as or.)
We pick sel -> sel rcvr isReceiving:. This replaces the current
MessageNode with another MessageNode of the same receiv-
er, but different selector, that of isReceiving:.

Let’s proceed by showing remaining steps with descrip-
tive text, where bold emphasis indicates current selection.

4) [:subject | subject isReceiving: nil]
5) [:subject | subject isReceiving: nil]
6) [:subject | subject isReceiving: subject]

At this point, as shown in Figure 4, the label at the top of
the tree view has turned red and now reads: Type Mismatch
instead of Type Match. The current selection appears
(inverted) red in the tree view, and the Accept button at the
lower right is disabled. The red color for the node indi-
cates that for that particular node, there is a type mis-
match. The type status in the lower left shows that the
required-type is <UndefinedObject | (kindOf: Boolean)>, but
the actual type is <Warehouse>. Warehouse is neither an
UndefinedObject nor a kindOf: Boolean, so the required type
is therefore not satisfied. Unless all nodes have their
required type satisfied, the tool will not permit the code to
be accepted.

Whereas each allowed manipulation of the ProgramNode
tree will result in correct syntax, it will not necessarily sat-
isfy required type for all ProgramNodes. As far as the tool is
concerned, an unsatisfied required type is the sole cause
for the generation of the doesNotUnderstand: message. The
tool guarantees prevention of the doesNotUnderstand: mes-
sage, by requiring that all required types are satisfied. The
user is alerted to type mismatches, and it is the user’s
responsibility to satisfy them. Type mismatch usually
occurs with message arguments.

We continue to morph, aware that the type mismatch
was due to an intermediate morph step.

7) [:subject | subject isReceiving: subject isNil]
8) [:subject | subject isReceiving: subject isOpen]
9) [:subject | subject isReceiving: subject isOpen isNil]
10) [:subject | subject isReceiving: (subject isOpen
and: [nil])]
11) [:subject | subject isReceiving: (subject isOpen and:
[nil])]
12) [:subject | subject isReceiving: (subject isOpen and:
[subject])] (At step 12 there is another type mismatch,
again with the argument of isReceiving:.)
13) [:subject | subject isReceiving: (subject isOpen and:
[subject isNil])]
14) [:subject | subject isReceiving: (subject isOpen and:

Figure 2. DEMO 2. Figure 3. DEMO 3.

The Smalltalk Report6

EXTERNALIZING BEHAVIOR

http://www.sigs.com

[subject isAvailableStorage])]
We’re almost done creating the action block. We now
select the VariableNode block argument subject and rename
it to aWarehouse by editing its name in the edit box; this
renames all references in the scope of the variable.

15) [:subject | subject isReceiving: (subject isOpen
and: [subject isAvailableStorage])]
16) [:aWarehouse | aWarehouse isReceiving:
(aWarehouse isOpen and: [aWarehouse isAvailableStorage])]

That’s it, and it took a total of 15 mouse clicks (not includ-
ing list expansions) and one name edit.

Now let’s say we wanted to add another statement to
the action block. We start by selecting the Sequence
Statements collection. A collection editor is installed in the
lower right, as shown in Figure 5. We select the single state-
ment, and then click on the Add Before button, and get:

[:aWarehouse |
nil.
aWarehouse isReceiving: (aWarehouse isOpen and:
[aWarehouse isAvailableStorage])]

The added nil statement can then be built out via morph-
ing. The collection editor can also modify a collection of
temporary-variables.

The tool has unlimited undo/redo capability, as well
as the ability to alternate between NodeSelection and
FreeStyle (i.e., regular) text views. Text is automatically

parenthesized and formatted in the NodeSelection view (as
we have seen). Also in this view, the user is able to walk
up the tree by shift clicking.

Assignment to a block is not supported, nor is sending
it #value. Cascaded expressions are currently not support-
ed.

NODE WRAPPERS
The ProgramNode class hierarchy (somewhat simplified) is
shown in Figure 6. Instance variables are shown with soft
type (gleaned from class comments). Note that a
BlockNode contains a SequenceNode, which in turn contains
temporaries and statements.

ProgramNode (sourcePosition <Interval>)

ParameterNode (variable <VariableNode>)
StatementNode

ReturnNode
ValueNode

AssignmentNode (variable <VariableNode>,
value <kindOf: ValueNode>)

CascadeNode
LeafNode

BlockNode (arguments <Collection of:
ParameterNode>, body <SequenceNode>)

LiteralNode (value <kindOf: Object>)
VariableNode (name <String>)

SequenceNode (temporaries <Collection of:
ParameterNode>, statements <Collection of: (kindOf:
StatementNode)>)

SimpleMessageNode (receiver <kindOf:
ValueNode>, selector <Symbol>, arguments <Collection of:
(kindOf: ValueNode)>)

MessageNode
The ProgramNode class-hierarchy (somewhat simplified).

A wrapper class hierarchy that parallels that of the
ProgramNodes was created. The wrapper classes refer
to the ProgramNode classes and extend them, but the
ProgramNode classes themselves are not modified, thus
keeping the compiler framework intact (Adapter pat-
tern1). The wrapper hierarchy (somewhat simplified)
is shown in Figure 7. (AbstractParserTraverser and
MessageWrapperBlockArgument Evaluator are technically not
wrappers, but are referred to as such.)

AbstractParserTraverser (parent, children)
MessageWrapperBlockArgumentEvaluator
AbstractParserWrapper (value)

AbstractProgramNodeWrapper (type,
requiredType)

ParameterNodeWrapper
AbstractStatementNodeWrapper

ReturnNodeWrapper
AbstractValueNodeWrapper

AssignmentNodeWrapper
AbstractLeafNodeWrapper

LiteralNodeWrapper

Figure 5. DEMO 5.

Figure 4. DEMO 4.

BlockNodeWrapper
VariableNodeWrapper

SequenceNodeWrapper
MessageNodeWrapper

MessageNodeWithArgumentsWrapper
OrderedCollectionWrapper

ParentOfUserRoot
The wrapper hierarchy (somewhat simplified).

Added state allows a ProgramNode to know its parent, as
well as keep track of its required and current type.
OrderedCollectionWrapper wraps collections pointed to by
ProgramNodes; this includes SequenceNode statements and
MessageNode arguments. Manipulation is defined as
either wrapper replacement or addition/dele-
tion of an OrderedCollectionWrapper child.

Not having the option of modifying the ProgramNode
classes can be tricky. It was necessary for example, to
deep-copy a ProgramNode, an ability which it lacks. The
technique is to regenerate it by compiling its decompiled
string.

THE USER-ROOT
The user-root parent hierarchy is designated as follows:

nil
BlockNodeWrapper

SequenceNodeWrapper
ParentOfUserRoot

The ParentOfUserRoot is an OrderedCollectionWrapper on
sequence statements and is constrained to always have
one statement– the user root. Wrapper replacement is
forbidden for any wrappers above the user root. Indeed,
the user is aware of the user-root tree only. The user-root
must have a parent because the user root needs to be
replaceable, and this requires a parent wrapper. As a
kind of AbstractStatementNodeWrapper, the user root has
flexibility in being replaceable with wrappers of other
classes.

CONSTRUCTS
Constructs are obtained from the soft-typing information
of ProgramNode instance variables (as shown in Figure 6.).
For example, take a MessageNode, which is a statement.
This node can be replaced with any of the subclasses of
StatementNode such as ValueNode. Since the receiver of a
MessageNode is itself a ValueNode, it follows that it is permis-
sible to replace this MessageNode with its receiver, as shown
in Figure 8.

Replacing a statement MessageNode with its receiver.

Construct Return message receiver (123 isNil → 123).

The following constructs are supported:

• Return message receiver (123 isNil → 123)
• Be message receiver (123 → 123 isNil)
• Change message selector and arguments only (123 + 456 →123 * nil)
• Change message selector only (123 + 456 → 123 * 456)

• Return block’s first and only statement ([123] → 123)
• Enclose statement in block (123 → [123])
• Return assignment value (t1 := 123 → 123)
• Be assignment value (123 → t1 := 123)

September 1996 7http://www.sigs.com

Figure 6. Branch.

Figure 7. Loop.

• Remove up-arrowT> (^123 → 123)
• Add up-arrow (123 → ^123)

MANIPULATION VALIDATION
Each potential manipulation must be validated to be
made available to the user. A manipulation is invalid if it
hasn’t been implemented for example, like the replace-
ment of a message receiver. A manipulation is invalid if it
is syntactically incorrect. For example, the definition of a
temporary variable may not be deleted if the variable is
currently referenced.

We also check the ramifications for message receivers
if the type of a temporary variable were to change. For a
message-receiver whose type is determined by a tempo-
rary, we ensure that the receiver’s required type is satis-
fied. For example, t1 isEmpty, where the receiver’s
required-type is <kindOf: Collection>. If the type of t1 were
to change from <ByteString> to <SmallInteger>, for example,
the check would fail, because <kindOf: Collection> would
not be satisfied with <SmallInteger>. This check is accom-
plished by simulating the manipulation on a parallel test
tree to preview the results.

CORRECT SOURCE POSITION
Wrapper source-position information enables the user to
select the wrapper by clicking on it in a text view. A pris-
tine ProgramNode tree will have correct source-position
information stored in its nodes. Once the tree is manipu-
lated, however, this information is no longer guaranteed
to be in synch with the decompiled string. The technique
is to create a parallel ProgramNode tree after every manipu-
lation, by compiling the decompiled string of the modi-
fied wrapper tree. A wrapper seeks its correct source posi-
tion from its parallel node counterpart.

Instead of directly replacing a node in the tree, why not
do so indirectly by replacing the corresponding string
component in the overall string? For a BlockNode, for
example, replace the string ‘[nil]’ in the correct spot in the
overall string. Then, from this overall string create a fresh
wrapper tree that would then have the correct source
position. This approach, however, also has a drawback;
The state information in the pre-manipulation wrapper
tree must always be transferred to the post-manipulation
wrapper tree.

In the next article, we plan to conclude by looking at
typing, traversal of the wrapper tree, treatment of blocks,
and creation of the wrapper-tree.

Reference

1. Gamma, E. et al. Design Patterns: ELEMENTS of REUSABLE OBJECT-
ORIENTED SOFTWARE, Addison-Wesley, Reading, MA, 1995.

EXTERNALIZING BEHAVIOR

Figure 8. Construction.

Paul Davidowitz is a senior developer at Andersen Consulting.
He can be reached at paul.davidowitz@ac.com.

S

September 1996 11http://www.sigs.com

S
malltalk has evolved and the good old MVC scheme
has now grown up into events. Events are imple-
mented in Visual Smalltalk and Visual Age, but the

code will be presented here in the Visual Smalltalk envi-
ronment.

The MVC implementation in Smalltalk relies on a cou-
ple of changed/update messages sent back and forth
between dependents.

Figure 1 shows how the dependency mechanism is trig-
gered: Each time object A is modified and calls method
“changed”, or one of its variants, all of its dependents are
informed and execute an “update” method.

A more sophisticated scheme allows an aspect to be
passed as an argument to an update, in order to refine the
monolithic link between dependent variables. The prob-
lem is that the update method has to decode the argu-
ment to decide on its behavior. For example,

anObject changed: #color
anotherObject >>update: anArgument

anArgument = #color ifTrue: [...]
anArgument = #size ifTrue: ...

Event programming can be seen as a refinement of the
changed/update pairs. Namely, instead of maintaining a
list of dependents, the system maintains a dictionary with
events as entries. This allows for a much more efficient
and finely tuned scheme for maintaining dependencies.

Event-based programming has been very successful for
building graphical interfaces and for visual programming.
In Visual Age and Visual Smalltalk, events are the back-
bone of links between objects in order to build a visual
application.

Events are also popular at the operating and window-
ing system levels, but this is not the topic here.

CONSTRAINT-SOLVING TECHNIQUES
Constraint-solving techniques allow the user to tackle

such combinatorial problems as scheduling a meeting or
dispatching resources according to some criteria.

One popular technique, called “Finite domain tech-

niques,” is used when variables can only take a finite num-
ber of values. For instance, scheduling a project when the
time unit is a day can be modeled using this technique.

The idea is to represent the variable not as bounded to
a value, but with a range of potential values called its
domain. The solver will then ensure consistency between
these domains through the constraints.

For instance, if two variables are constrained to be
equal, their domains should be the same. Hence, each time
one domain is modified the other one should be as well.

The easiest way to represent domains is through inter-
vals. One easy way to detect interval modification is
through its bounds. On intervals, it is thus possible to
define two modification events, on each bound. We will
call them: #min and #max.

In Figure 2. two constrained variables and one con-
straint are shown. When the domain of x is modified by
some other constraints or external event, it informs all
connected constraints, in this case here the equality con-
straint. This constraint has only one connected variable, y.
Because it is equal, it must tell y to modify its lower bound
as well, thus triggering a #min event for y. y in turn will
inform its own constraints.

Consistency on finite domain has been proven to be
efficient for solving constraints on integers, which is usu-
ally exponentially complex. The only restriction to get a
fixed-point solution is to always shrink the domain; never

Using Events
for constraint solving

Annick Fron

Object A

Obj ect B

Obj ect C

Obj ect D

update

changed

update

update

Figure 1. A changed message in object A triggers update messages on
all its dependents.

The Smalltalk Report12

CONSTRAINT SOLVING

http://www.sigs.com

increase it. The triggering order of events on domains has
been proven not to affect the result. Yet, this algorithm is
not complete and needs an enumeration phase in order
to find all of the solutions. This will be omitted here.

A SMALLTALK IMPLEMENTATION OF CONSTRAINTS
The Smalltalk implementation of a constrained vari-

able is very simple, and events will help a lot in the job.
The first question to ask is: “Do the constraints represent
objects, or are they included into other objects?” Having
constraints as true objects is very helpful. Because it
allows the implementation of a constraint hierarchy to
refine new constraints, it provides a handle to dynamical-
ly inhibit or activate a constraint.

Here, we take a simple assumption that constrained vari-
ables need not be any Smalltalk object; they can derive from
a specific root under object. Therefore, we get two object
hierarchy roots, one for constraints, one for variables.

THE VARIABLES
Variables are defined by their domain and by the

events they are able to respond to. Here we get only finite
domain variables (the model can be extended to other
kinds of variables, but for reasons of simplicity, it will be
omitted here).

In Visual Smalltalk, it is possible to define any seman-
tic event at the class level, through the method
contructEventsTriggered. The second step is to couple every
domain modification (instance variable accessor) with
an event using the triggerEvent: message. This should be
compared to adding changed to instance variable acces-
sors displayed on a view.

The operator * and =@ are only syntactic sugar for the
final example. =@ means equals in the constraint sense,
which should not be confused with variable assignation
(variables that have no value yet).

For esthetic reasons, variables get a name to be printed.

Object

subclass: #ConstrainedVariable
instanceVariableNames: ‘name domain’
classVariableNames: ‘’
poolDictionaries: ‘’

!ConstrainedVariable class methods!

constructEventsTriggered

“Private - answer the set of events that instances of the
receiver can trigger.”
^#(#min #max) asSet

from: aMin to: aMax

^super new from: aMin to: aMax

!ConstrainedVariable methods!

* y

| c |
c := ActTimes x: self y: y.
^c result “a constrained variable”

+ y
|c|
c := ActAdd x: self y: y.
^c result “a constrained variable”

@= y

|c|
c := ActEquals x: self y: y.
^c result “ a constrained variable

domain
^domain!

domain: anObject
domain := anObject!

max
^domain last!

max: aValue
domain newMax: aValue.
self triggerEvent: #max!

min
^domain first!

min: aValue
domain newMin: aValue.
self triggerEvent: #min!

printOn: aStream
aStream nextPutAll: name, ‘ ‘,domain printString! !

from: aMin to: aMax
domain := Interval from: aMin to: aMax.

THE CONSTRAINTS
Here we need two types of constraints: constraints on
comparators, which will have two arguments, x and y, as
pointers to the variables they involve; and constraints on
operators when we need to introduce a new constrained

x

y

x = y
constraint

#min

#min

Figure 2. An event on a variable will propagate to all related constraints.
The constraints in turn will trigger new events on the connected variables.

variable, the result, which is also stored as an instance
variable and called r.

When a constraint is created in the program, the
method post will define the event dispatch mechanism
according to the constraint semantic. It uses the
when:send:to: message that links events to actions on sever-
al objects.

The following table shows the links between events
and domain updating for the equality constraint x @= y.

Symmetrically, we can define the same for y. Methods
have to be defined in the constraint class to compute the
updates, such as xmin or xmax. The constraint is called
ActEquals. ActEquals also needs an init method in order to
ensure domain consistency prior to any computation.

In the example, the two operators introduced are
ActAdd (addition) and ActTimes (multiplication by a con-
stant factor). These classes inherit from ActConstraint, an
abstract class which does not have any behavior here.

ActConstraint subclass: #ActEquals
instanceVariableNames: ‘x y’
classVariableNames: ‘’
poolDictionaries: ‘’!

!ActEquals class methods !

x: var1 y: var2
^super new x: var1 y: var2.

!ActEquals methods !

x: var1 y: var2
x := var1 . y := var2.
self post; init.

init
| m s |
m := x min max: y min.
s := x max min: y max.
x min: m; max: s.
y min: m; max: s

post
x when: #min send: #xmin to: self.
x when: #max send: #xmax to: self.
y when: #min send: #ymin to: self.
y when: #max send: #ymax to: self

xmax
y max: x max

xmin

y min: x min

ymax
x max: y max

ymin
x min: y min

========

ActConstraint subclass: #ActAdd
instanceVariableNames: ‘x y r’
classVariableNames: ‘’
poolDictionaries: ‘’ !

!ActAdd class methods !

x: var1 y: var2
^super new x: var1 y: var2

!ActAdd methods !

x: aVar1 y: aVar2
x := aVar1
y := aVar2.
r := ConstrainedVariable from: (x min + y min) to: (x max + y max).
self post

post
x when: #min send: #xmin to: self.
x when: #max send: #xmax to: self.
y when: #min send: #ymin to: self.
y when: #max send: #ymax to: self.
r when: #min send: #rmin to: self.
r when: #max send: #rmax to: self.

rmax
x max: (r max - y min).
y max: (r max - x min).!

rmin
x min: r min - y max.
y min: r min - x max!

xmax
r max: x max + y max.
y min: r min - x max

xmin
y max: r max - x min.
r min: y min + x min

ymax
r max: x max + y max.
x min: r min - y max

ymin
x max: r max - y min.

September 1996 13http://www.sigs.com

Description Event Update

x minimum #min on x y domain takes min(x)
increased as new lower bound

x maximum #max on x y domain takes max(x)
decreased as new upper bound

r min: x min + y min

========

ActConstraint subclass: #ActTimes
instanceVariableNames: ‘x y r’
classVariableNames: ‘’
poolDictionaries: ‘’ !

!ActTimes class methods ! !

x: var1 y: anInteger
^super new x: var1 y: anInteger

!ActTimes methods !

x: aVar1 y: anInteger
x := var1. y := anInteger.
anInteger >= 0

ifTrue: [r := ConstrainedVariable from: anInteger * x
min to: anInteger * x max]

ifFalse: [r := ConstrainedVariable from: anInteger *
x max to: anInteger * x min].

self post.

post
x when: #min send: #xmin to: self.
x when: #max send: #xmax to: self.
r when: #min send: #rmin to: self.
r when: #max send: #rmax to: self.

rmax
y >= 0

ifTrue: [x max: (r max / y) floor]ifFalse
: [x min: (r max / y) ceiling]

rmin
y >= 0

ifTrue: [x min: (r min / y) ceiling]
ifFalse: [x max: (r min / y) floor]

xmax
y >= 0

ifTrue: [r max: y * x max]
ifFalse: [r min: y * x min]

xmin
y >= 0

ifTrue: [r min: y * x min]
ifFalse: [r max: y * x min]

========

EXAMPLE
The simple example is used to test the code and show how
some partial solving can be achieved. It defines the
domains of the variables, and sets the only constraint: x +
3y + 4z = 2t + c.

ConstrainedVariable class>>example

“ConstrainedVariable example”

| x y z t c |
x := ConstrainedVariable from: 0 to: 3. x name: ‘x’.
y := ConstrainedVariable from: 0 to: 1. y name: ‘y’.
z := ConstrainedVariable from: 2 to: 5. z name: ‘z’.
t := ConstrainedVariable from: 0 to: 3. t name: ‘t’.
c := ConstrainedVariable on: #(5). c name: ‘c’.
((x + (y * 3))+ (z * 4))@=((t * 2)+ c).

x printOn: Transcript.
y printOn: Transcript.
z printOn: Transcript.
t printOn: Transcript.
Transcript cr.

COMMERCIAL IMPLEMENTATIONS
This article has given a brief insight into constraint solving
techniques. These techniques have been commercially
implemented in C++, and used on such industrial applica-
tions as train and plane scheduling. Smalltalk events allow
a very elegant presentation of the consistency scheme.

The Smalltalk Report

CONSTRAINT SOLVING

Annick Fron can be reached at 100342.3301@compuserve.com.

S

The Smalltalk Report16 http://www.sigs.com

I
N PART 1 of this article, I described the need for each
object to generate a short string that identifies itself.
VisualWorks provides two messages to do this:

printString and displayString. printString displays the object
to a developer, so it specifies the object’s class. displayString
displays the object to a user, so it should not specify the
object’s class. In Part 2, I’ll talk about two classes for con-
verting an object to a String: TypeConverter and
PrintConverter.

TYPECONVERTER
TypeConverter is a class that was introduced in VisualWorks
1.0. It is a kind of ValueModel, a model that contains a sin-
gle aspect called “value.” The converter’s subject is itself a
ValueModel, so the converter enhances its subject by
adding conversion behavior while preserving its value-
model behavior.1 This is an example of the Decorator pat-
tern.2

The conversion behavior that a TypeConverter adds is
the ability to convert its subject’s value from one type to
another, and back again. This assumes that the two
types are convertible and the conversion is bi-direc-
tional.

The primary type that TypeConverters convert to is Text,
which is just a fancy string. ParcPlace has already imple-
mented the algorithms numberToText, dateToText, objectToText,
and so on.

TypeConverter has two advantages over printString and
displayString:

• A TypeConverter does not just display the object as a
string; it converts the object to its String (actually Text)
equivalent.

• A TypeConverter can convert the String equivalent back
into the original type.

TypeConverter was introduced to support InputFieldView.
An input field’s value might be any type of object. The
field needs to display the object as a string, a task that
displayString can do. However, if the user types in a new

string, the field needs to convert that string back into its
value’s type. The standard message for converting a string
into an object is readFromString:.

A TypeConverter encapsulates displayString and
readFromString: together so that a source type can be con-
verted into a String and back again. In the process, it
remembers the target’s type—whether the new object
should be a Number, a Date, etc. It also checks for excep-
tional conditions, such as the original object being nil or
times, when empty-string from the user should be con-
verted into nil. Since TypeConverter encapsulates all of this
behavior into a single object, it can easily be reused any
time this conversion is needed.

AN EXAMPLE
Here’s an example of how a TypeConverter can be used.

Let’s say you’ve stored somebody’s age, and that it’s acces-
sible through a ValueModel called ageHolder. Age is a Number,
but you need to display it in a field. If the user types in a
new age, you need to convert it back into a Number. This
code shows the two value-models you’ll need:

| ageHolder ageAsStringHolder |
ageHolder:=10as Value.
ageAsStringHolder :=

TypeConverter onNumberValue: ageHolder.
Transcript cr; show: ‘age’’s type is ‘,

ageHolder value class displayString.
Transcript cr; show: ‘ageAsString’’s type is ‘,

ageAsStringHolder value class displayString.
The transcript shows that ageHolder contains a
SmallInteger, and ageAsStringHolder contains a Text. The
input field’s model would be ageAsStringHolder. Any code
needing to access the age in its unconverted form would
go through ageHolder.

PRINTCONVERTER
The problem with TypeConverter, displayString, and

printString is that they all assume that there’s only one way
to show a particular object as a string. This “one-size-fits-
all” approach is often insufficient. A Date can be printed

How to display an object
as a string:
TypeConverter and PrintConverter

Bobby Woolf

September 1996 17http://www.sigs.com

many different ways: December 25, 1990; 25-DEC-90;
Christmas Day. A Time has several choices: 4:00 P.M.;
16:00:00; etc. A Number can be printed with leading and/or
trailing zeros: 1; 1.00; and so on. TypeConverter can’t handle
these formatting choices. As long as it converts to the
right type, it’s done. Subtleties about what exactly the
resulting type should look like have to be handled some-
where else.

PrintConverter is essentially a TypeConverter that has been
optimized to display objects to the user as strings. Whereas,
a TypeConverter can convert from any type to any other type
and back again, and PrintConverter
only converts to strings. Like
displayString, PrintConverter doesn’t
even convert the object to its string
equivalent; it just displays the object
as a string. Like a TypeConverter, a
PrintConverter can convert an input
string back into the original object’s
type.

The major advantage PrintConverter has over both
TypeConverter and displayString is that it can format the
string it displays. You do this by specifying the type of
source object to be converted, but also by specifying the
format of the resulting string. For example,

PrintConverter for: #date

will create a PrintConverter that will display a Date using the
default format. On the other hand,

PrintConverter
for: #date
withFormatString: ‘d-mmm-yy’

will create a PrintConverter that will display a Date using the
format specified.

The other advantage of the way PrintConverter works is
that a single converter can be used to display a number of
objects of the same type with the same format. To display
a list of twenty Dates with the format ‘d-mmm-yy,’ you
only need one PrintConverter for the whole list. As the list
prints each Date, it runs the Date through the PrintConverter,
which returns the formatted string for that Date. To per-
form a similar conversion using TypeConverters, you would
need twenty TypeConverters, one for each Date.

Ironically, the only widgets that use PrintConverters are
input fields, combo boxes (which, of course, contain input
fields), and those data sets that contain input fields and/or
combo boxes. SequenceView (the List widget) doesn’t use
PrintConverter. So if you develop a PrintConverter that formats
Dates in a special way that you like, you can use that format
to display a list of Dates, in a DataSetView but not a
SequenceView. To use that format in a List widget, you have to
implement a method, such as Date>>displayStringSpecialWay,
and set the SequenceView’s displayStringSelector to
displayStringSpecialWay.3 So now you have the same format
implemented in a special instance of PrintConverter for Dates
and a special method in Date. I would prefer to only imple-
ment this code in one place, not two.

WHERE PRINTCONVERTER IS USED
You’re already using PrintConverters, even if you don’t real-
ize it. In the Painter, when you specify the properties for
an Input Field, two of the properties on the Basics page
are Type and Format. What you’re specifying is the source
object’s type (String, Symbol, Text, Number, etc.) and its for-
mat ((@@@) @@@-@@@@, 0.00, etc.). This is all of the
information needed to set up a PrintConverter. When you
open the window, as the Builder creates the Input Field, it
also creates a PrintConverter with the properties you have
specified. Combo Box and Data Set have similar properties

that specify the PrintConverter to
use.
As you create your own objects
that need to be displayed as
strings, I suggest you create new
PrintConverters to display them.
Let’s say you have a Money class.
You want to be able to display a

Money object in an Input Field and get a new one from the
user by having him type it within the field.

1. You would need to implement PrintConverter>>initForMoney.
Use the corresponding methods for Date, Number, and String
as examples of how to implement your methods.

2. Modify PrintConverter class>>for: to add #money onto
that big, long case statement.

To make your new Money PrintConverter accessible from the
Properties Tool:

3. Modify InputFieldSpec class>>typeMenu to add ‘Money’
-> #money.

Now the Properties Tool will allow you to specify the type of
a value for an Input Field as Money. This will also be avail-
able for Combo Box and Data S et widgets.

Modifying the list of formats for one of ParcPlace’s types
is also simple. See the methods in InputFieldSpec class>for-
mats. For example, to add another string format, modify
the method InputFieldSpec class>>defaultStringFormats.

Unfortunately, specifying special formats for your new
Money PrintConverter is not very easy. You would need to
implement MoneyPrintPolicy as a subclass of PrintPolicy.
That ultimately involves implementing MoneyPrintPolicy
class>>nextTokenOn: and MoneyPrintPolicy>>print:on:policy:, a
task which is not for the faint of heart.

READFROMSTRING:
Earlier I mentioned that TypeConverter (and PrintConverter)
use readFromString:. If you don’t know what this method
does, you’ll need to learn so you can implement your own
converters.

Object class>>readFromString: is sort of the opposite of
Object>>printString. The implementor in Object really only
works if the string contains a literal or a store-string (see
Object>>storeString).4 However, implementors in more

“A TypeConverter encapsulates
displayString and

readFromString: together.”

The Smalltalk Report18

DISPLAY AN OBJECT AS A STRING

http://www.sigs.com

specialized classes work well because they can assume
that the string represents an instance of that class. For
example, Object doesn’t know what to make of “April 5,
1982,” nor do most classes, but Date is able to make it into
a Date.

Just like printString uses printOn: to do most of the work,
readFromString: lets readFrom: do everything. Thus you’ll
never subimplement readFromString:, but you should
implement readFrom: in your own classes. Ideally,
readFromString: should reverse the process of printString
and displayString and should also recognize any format-
ting that a PrintConverter might throw in. For example, if
the printString for a particular Person is “John Smith,” you
will need to implement Person class>>readFrom: to inter-
pret that string as a Person with that name.

GLOBALIZATION
Globalization (internationalization), a feature added in
VisualWorks 2.5, adds a whole new twist to displaying an
object as a string. In order to know what string to display
and how to interpret a new string, you have to know what
language the user speaks and what
formatting conventions he uses.
This has not been an issue prior to
this upgrade, because we always
assumed (often inaccurately) that
the user speaks American English.

First, ignore globalization when
implementing printString (printOn:),
storeString and readFromString:. These
methods are for developers. Since
Smalltalk is written in American English, the methods can
assume that they should use that language. In addition I
think these methods need to be simple and highly reliable;
globalization is an unnecessary complication.

Second, ignore globalization when implementing
displayString as well. Just as printString should be simple, so
should displayString. Use displayString as a quick-and-sim-
ple way to display an object to the user. When this
becomes too complicated, such as when globalization is
necessary, use a PrintConverter instead.

Third, TypeConverters don’t need globalization either. A
TypeConverter is only responsible for converting an object’s
type to or from a string. As long as the object is a String,
any effort to format it or translate it into another language
is unnecessary. These are responsibilities better fulfilled
by a PrintConverter.

Finally, a PrintConverter should use globalization when
performing its conversion. Look at the ones that
ParcPlace has already implemented for Date, Time, and
Timestamp. Their toPrint and toFormat blocks use “Locale
current ...” and TimestampPrintPolicy to display a string
appropriate for the current location. Similarly, the toRead
blocks use “Local, current ...” and TimestampPrintPolicy to
read a string from the user. As I mentioned earlier,
implementing your own subclass of PrintPolicy is diffi-
cult.

A PrintConverter that uses globalization does not use

readFromString: to convert a string back into an object.
readFromString: does not use globalization, so it is not
appropriate for this purpose. Instead, a globalized
PrinterConverter uses a LocaleSensitiveDataReader to convert
a location-specific string back into an object. Just as
PrintPolicy displays an object in a location-specific way,
LocaleSensitiveDataReader does the opposite. If your own
subclass of PrintPolicy displays an object in a location-
specific way, you’ll need to implement a subclass of
LocaleSensitiveDataReader to read it back.

CONCLUSIONS
Here are the main points in this article:

• Unlike printString and displayString, a TypeConverter can
convert a string back into an object again.

• A TypeConverter is useful for converting an object to a
String, but doesn’t display it as a string very well.

• PrintConverter is designed to display an object to the
user as a string. It makes displayString into a first class
object.

• PrintConverter is able to format the
display string the way the user
prefers.

• A PrintConverter uses
readFromString: to convert a string
back into an object.

• All classes should implement
readFromString: (via readFrom:) to
convert their print-strings and

display-strings back into an instance.

• A PrintConverter should use the globalization framework
to format the string for the current location.

I hope you now see that displaying an object as a string is
often not a trivial matter. VisualWorks provides several
protocols and frameworks to help you. If you learn how to
use them well, I think you’ll find your system a lot easier
to use.

References
1. Coplien, James O. and Schmidt, Douglas C., Editors. PATTERN

LANGUAGES of PROGRAM DESIGN. Addison-Wesley, 1995.
“Understanding and Using the ValueModel Framework in
VisualWorks Smalltalk” by Bobby Woolf.

2. Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides,
John. DESIGN PATTERNS: ELEMENTS of REUSABLE OBJECT-ORIENTED

SOFTWARE, Addison-Wesley 1995.

3. Kohl, William and Howard, Tim “VisualWorks List Components”
The Smalltalk Report, June 1994.

4. LaLonde, Wilf R. and Pugh, John R. INSIDE SMALLTALK, Vol. 1.,
Prentice-Hall, 1990, Section 6.2.9, “Read/Write Operations:
PrintStrings and StoreStrings.”

Bobby Woolf is a senior member of technical staff at
Knowledge Systems Corp. in Cary, North Carolina. He mentors
Smalltalk developers in the use of VisualWorks, ENVY, and
Design Patterns. Comments are welcome at woolf@acm.org. or
at htpp://www.ksccary.com.

“PrintConverter is essentially a
TypeConverter that has been

optimized to display objects
to the user as strings.”

S

September 1996 19http://www.sigs.com

Y
ou’re given your first visual programming assign-
ment. You spend the day working on it and are proud
that you completed it without writing one line of

Smalltalk. A week later, after being asked to add a new fea-
ture, you return to your picture (the visual equivalent of
code) and realize that you can’t remember the semantics
of all of those connections. It takes the rest of the day to
understand what you developed last week and add the
new connections to support the additional feature. Does
this sound familiar?

Often we are asked “Even though visual programming
enables developers to create windows quickly, what
approach should one use in order to minimize the con-
nection complexity of visual parts? ” The approach should
enable developers to quickly and easily understand what
they’re building now and what they’ve built in the past.

One source of the problem developers are experienc-
ing is a result of working in a new paradigm (the con-
struction from parts paradigm) with little or no training.
When the jump was made from assembler to structured
programming, many developers wrote spaghetti code
until they were educated in structured programming
techniques. Now, for the same reason, many developers
are painting spaghetti visual parts. The one difference
today is that you can see the mess you’ve created for your-
self. However, with a little care, this need not be so. Visual
programming environments, such as IBM’s VisualAge,
provide an assortment of parts and facilities for decreas-
ing the complexity of visually programmed systems.

In this column, we examine one technique for manag-
ing the connection complexity of visual parts. This tech-
nique is called factoring. Too often we see a window, a
Client Profile Editor for example, containing every con-
nection to support editing of a client’s name, address,
phone numbers, credit history, and more, only to see
other windows provide the same support for viewing or
editing the identical information. One problem is that the
Client Profile Editor has too many connections to be

understandable, especially when you add those to sup-
port menu interction. Another problem is that the same
connections are used in every window that supports the
editing of the clients address.

The simple and easy solution to these problems is to
encapsulate the connections and parts that support the
editing and viewing of a business object into one
reusable part. The composite part can be placed in any
visual part, and connect to its required business and
supporting objects. One can significantly decrease the
number connections in any visual part that uses
reusable parts, because the reusable part manages its
own connections, and they are not visible to surround-
ing visual parts. Also, changes to the reusable part’s
behavior or visual appearance are immediately reflect-
ed in any part that uses it, avoiding any potential main-
tenance problems that might occur when having the
same functionality implemented in two or more places.

Here, we make use of two reusable forms to minimize
the connection complexity of a client profile editor. The
window supports editing of a client profile, including a
client’s name, age, and address. The reusable forms are
views of two business objects: a ClientProfile and a
CanadianAddress. Like the editor, they support the cancella-
tion of edit changes.

THE CLIENT PROFILE EDITOR APPLICATION
The Client Profile Editor lets one edit and, if desired, can-
cel any changes to an existing ClientProfile. For this exam-
ple, we do not show how the ClientProfile is loaded or
saved. Our goals are to minimize the number of visual
connections needed to meet the editor’s requirements,
and to permit Smalltalk code only when the operation
can’t be done visually. The rule-of-thumb, “less is better,”
is true when it comes to visual connections. Fewer con-
nections make a window’s implementation easier to
understand, and easier to maintain.

A ClientProfile contains a CanadianAddress, and it is from
this object that we begin our exercise. Although our
requirements have the address displayed from only a
Client Profile Editor, we decided to create a reusable
CanadianAddressForm to display it. We realize that addresses
are often modified, or simply displayed in many different
windows, and we want all future windows to display them
in the same format. Encapsulating the logic for viewing

Dwight Deugo and Wayne Beaton are senior members of the
development and educational staff at The Object People, in
Ottawa, Ontario, Canada. Dwight (dwight@objectpeople.on.ca) has
immersed himself in objects for more than 10 years and has helped
clients with their object immersions as a project mentor and as a
course instructor. Wayne (wayne@objectpeople.on.ca) is the coor-
dinator of course construction and a software developer.

Visual Programming

Managing Connection
Complexity

Wayne BeatonDwight Deugo

The Smalltalk Report20

VISUAL PROGRAMMING

http://www.sigs.com

and modifying an address in the CanadianAddressForm,
where it belongs, will also help later to decrease the con-
nections in the Client Profile Editor.

A CanadianAddress is a business object with the five
parts: a street number, a street name, a city name, a
province name, and a postal code. A CanadianAddressForm,
shown in Figure 1, is an editable view for the address.
Since a CanadianAddressForm requires an address to edit,
one variable part, called ‘canadianAddress’, is required to
reference the address. Also, since the form can be used for
both viewing and editing, another variable part, called
isReadWrite, is required to store a Boolean, which indicates
whether the form is for editing or strictly for viewing. To
enable or disable editing in the form’s Text parts, the ‘self’
attribute of the isReadWrite variable part is connected to
the ‘enabled’ attribute of every Text part. To support the
undoing of address changes, a Deferred Update part—a
VisualAge supplied part— is created from the
canadianAddress variable part. A connection between its
‘target’ attribute and the valueHolder attribute of the vari-
able links the two.

One can view a Deferred Update part as a copy of an
original that maintains a stack of changes, which can be
applied backwards and forwards to the original part. The
Deferred part’s interface is similar to the original, having
the same attributes, and connects to other parts in an
identical manner. In our CanadianAddressForm, we con-
nected the CanadianAddress’s attributes to the ‘object’
attribute on the corresponding Text parts. To permit
parts using the CanadianAddressForm to role back or apply
the changes from the Deferred Update part to the
canadianAddress, its apply and cancel actions are promot-
ed as applyChanges and cancelChanges actions of the
CanadianAddressForm.

The isReadWrite and canadianAddress variables are assigned
objects by other parts using the CanadianAddressForm.
However, to those using the CanadianAddressForm, the
isReadWrite and canadianAddress variables appear only as
attributes of the form and not as variables, and the connec-
tions between these variables and other parts in the form
are invisible. To achieve this effect in VisualAge, the vari-

ables’ self attributes are promoted as isReadWrite and
canadianAddress, respectively.

The part is now complete. It has two public attributes:
isReadWrite and canadianAddress, and supports two actions:
applyChanges and cancelChanges. Anyone using the part
must provide a Boolean value for the isReadWrite attribute
and a CanadianAddress object for the canadianAddress
attribute. To commit the edit changes to the
CanadianAddress object one can invoke the applyChanges
actions, and to undo any edit changes one can invoke the
cancelChanges action.

The exercise is repeated again, but this time for a
ClientProfileForm, and for the same reasons: to provide a
single format for the display of a ClientProfile, to encapsu-
late the logic for viewing and modifying it, and to
decrease the number of connections in the Client Profile
Editor.

A ClientProfile is a business object with three parts:
name, age, and address. A ClientProfileForm, shown in
Figure 2, is an editable view of the profile. Like the
CanadianAddressForm, the ClientProfileForm requires two vari-
able parts: isReadWrite and clientProfile. The purpose of the
isReadWrite variable is identical to the one in the
CanadianAddressForm, and it has similar connections. The
purpose of the clientProfile variable is to provide a refer-
ence to the form’s business object. To support the undo-
ing of client profile changes, a Deferred Update part is
again used, this time created from the clientProfile variable
part.

The Client profile form includes a CanadianAddressForm.
To use the CanadianAddressForm, the isReadWrite variable
part’s self attribute is connected to the CanadianAddressForm’s
isReadWrite attribute, and the clientProfile part’s address
attribute is connected to its canadianAddress attribute. These
connections provide the CanadianAddressForm with the
objects it requires to function—in only two connections!

Finally, we want the ClientProfileForm to support the
acceptance or cancellation of edit changes. Unlike the
CanadianAddressForm, the files have not been touched at all.
Where we promoted its deferred part’s corresponding
actions, this time we have to write two methods:
applyChanges and cancelChanges, and add them to the form’s
public interface. This means that to accept or cancel the
changes on this form is to have both its deferred part and
the CanadianAddressForm accept or cancel the changes,
which can’t be done visually. The code for the scripts are
as follows:

applyChanges
(self subpartNamed: ‘deferred ClientProfile’) apply.
(self subpartNamed: ‘Canadian Address Form’)
performActionNamed: #applyChanges.

cancelChanges
(self subpartNamed: ‘deferred ClientProfile’) cancel.
(self subpartNamed: ‘Canadian Address Form’)
performActionNamed: #cancelChanges

The part is now complete. It has two public attributes:

Figure 1. Canadian Address Form.

isReadWrite and clientProfile, and supports two actions:
applyChanges and cancelChanges. Anyone using the part
must provide a Boolean value for the isReadWrite attribute
and a ClientProfile object for the clientProfile attribute. To
commit the edit changes to the ClientProfile object, one can
invoke the applyChanges actions. To undo any edit changes
one can invoke the cancelChanges action.

We now have the parts required to build a Client Profile
Editor, shown in Figure 3: a ClientProfile, a ClientProfileForm,
and two buttons to invoke the ClientProfileForm’s apply and
cancel changes actions. In a finished application, these
buttons would be replaced with menu items. However, in
this article, we wanted to keep it simple and did not get
into a discussion on menus. The Editor’s connections are
as follows:

ClientProfileForm.clientProfile → clientProfile.self
Read/WriteToggleButton.selection →
ClientProfileForm.isReadWrite
AcceptButton.clicked → ClientProfileForm.acceptChanges
CancelButton.clicked → ClientprofileForm.cancelChanges

How many connections are required to edit a ClientProfile?
There are four: one to instruct the ClientProfileForm which
ClientProfile to work with; one to identify whether one is
viewing or editing the profile; and two to apply or cancel
the end-user’s changes to the existing ClientProfile. One
could argue that we would have the same number of con-
nections if we implemented all viewing and modification
operations in the ClientProfileEditor itself. We would accept
that argument.

However, a more important question to ask here is:
“Have we gained anything by layering those connections
in our ClientProfileForm and a CanadianAddressForm?” The
answer is an overwhelming YES! Our two forms and one
editor are easy to understand and maintain. We can reuse
our forms in any other windows that need to display or
modify CanadianAddresses or ClientProfiles. We have a frame-
work for canceling user changes to business objects.

Finally, we have achieved our original goal of minimizing
the connection complexity of our windows.

DO THE RIGHT THING
Minimizing connections and planning for reuse takes
some thought. Often, one is required to build a window
that manipulates a number of business objects. The
temptation is to have the display and modification logic
in one window, rather than factor the window into a num-
ber of reusable components and use them to construct
the window. As seen, factoring your windows into a num-
ber of components decreases the number of connections
and the complexity of each component, as well as the
final window. This makes your components easier to
understand and maintain. Even though you may not need
the components for any other window yet, you or some-
one else will! So why not do it the right way to begin with?

Remember, many objects that do little, is better than
few objects that do too much. Therefore, a window that is
composed of many simple, reusable components, is bet-
ter than a window that does everything itself. We strongly
suggest that every business object have a form built for its
display and editing.

Factoring is of course not a new idea. Good GUI
developers have been doing it for years with tools that all
GUI builders provide. For example, in Visual Works
reusable forms are called “subcanvases.” In ObjectShare’s
WindowBuilder they are called “composite panes,” and
in Digitalk’s Parts they are called “nested parts.” Whether
visually programming or using one of the layout-type
GUI builders, building and using reusable forms is not
just a good idea, it’s great object-oriented program-
ming.

THE CODE
The code presented in this column and in future columns
is available on the World Wide Web. Our URL is
http://www.objectpeople.on.ca.

September 1996 21http://www.sigs.com

Figure 3. Client Profile Editor.

Figure 2. Client Profile Form. S

The Smalltalk Report22 http://www.sigs.com

I
n our June and September 1995 columns, we intro-
duced a hyper–literate programming system we call
“SmallDoc.” In the last two issues, we sketched out how

to turn SmallDoc into HTML, and how to build a generic
TCP/IP server framework. This issue ties it all together so
you can begin serving your Smalltalk project documenta-
tion to anyone with a Web browser.

The generic TCP/IP server described earlier needs only
one or two blocks of Smalltalk code in order to implement
a complete server. A message is sent to the class that asso-
ciates a “service” block with a port number, and a second,
optional (but strongly encouraged!) message is sent to the
class to associate an “exception” block with the same port
number.

For example, a simple hypertext service can be imple-
mented by adding the following method to the TcpServer
class that we presented last month:

TcpServer class:
initializeForHttpd
“Set up a service and exception handler suitable for

servicing World Wide Web requests.”

selfdefaultHandlerFor: 80 is: [:exception :stream|
stream httpChattyHandle: exception];

defaultServiceFor: 80 is:[:stream |
stream htmlForSmallDocRequest]

httpd
“Answer the default hypertext transport protocol server.”

^self onPort: 80

Now, to start up a Hypertext Transfer Protocol server all
you need to do is evaluate “TcpServer httpd.” Of course,
if you do that right now it will crash, because we haven’t
really written the handler or service blocks yet.

If you are on a UNIX machine, remember that port 80
is privileged — you will have to run Smalltalk as root to

run this service. If that is not possible, choose some other
port above 1024, such as 8080.

When an error is encountered in the server, it should
alert the client so that things can be fixed. Our
httpChattyHandle:for: method assumes the person using the
Web browser might know something about Smalltalk, and
so it sends contextual information back to the client. For
non-developers, you might want to simplify this by report-
ing only that an error occurred.

PositionableStream
httpChattyHandle: exception
“Upon trouble with the request, attempt to send

back a contextual information from <exception> in HTML
format on <stream>.”

| ctx |
self

cr; nextPutAll: ‘HTTP/1.0 500’; cr;
nextPutAll: ‘Server: ‘; nextPutAll: (TcpServer

signatureIn: TcpServer controller); cr; cr;
nextPutAll:’<HTML><HEAD><TITLE>Unhandled

exception!</TITLE></HEAD><BODY><H1>’;
nextPutAll: exception errorString;
nextPutAll: ‘</H1><P>Your request had a

problem. Please copy the following stack and mail it to
the<A HREF=”mailto:’

nextPutAll: (EmUser called:’Supervisor’)
networkName;

nextPutAll: ‘“>ENVY Library
Supervisor.</P>’.

ctx := exception thisContext.
5 timesRepeat:

[ctx == nil ifFalse:
[self print: ctx;cr]].

self nextPutAll:’</BODY></HTML>’; cr; flush

Also, this example relies on ENVY repository information to
report the server version information, and to obtain the
email address of the repository supervisor. You should use
suitable substitutes if you use a different code manage-
ment system.

SERVICING REQUESTS
Now that we can handle failed requests, we should think

Managing Objects

SmallDoc Web Serving
Barbara YatesJan Steinman

Jan Steinman and Barbara Yates are co–founders of Bytesmiths,
a technical ser vices company that has been helping companies
adopt Smalltalk since 1987. Between them, they have over 22
years Smalltalk experience. They can be reached at
Barbara@Bytesmiths.com orJan@Bytesmiths.com, or at their
website at http://www.bytesmiths.com.

September 1996 23http://www.sigs.com

about servicing real requests! When the TcpServer sends
htmlForSmallDocRequest to the socket stream, the stream
may contain “GET” a space, and the URL the user entered
or clicked.

There is much more information in the typical HTTP
request, and this method can easily become complex. If
you want to process more of the request information, be
sure to factor this method into smaller methods that han-
dle particular request information.

In particular, this method only attempts to deal with
“GET” requests, which is the normal way a Web browser
passively requests a Web page. This method does not han-
dle “POST” requests, which is how a Web browser passes
information entered by the remote user.

PositionableStream
htmlForSmallDocRequest
“Assume I am a bi-directional stream on a socket

that is connected to a web browser. Process an incoming
SmallDoc GET request.”

| line path |
[(line := self nextLine) size > 0]whileTrue:

[(‘GET ‘ occursIn: line at: 1) ifTrue:
[path := line copyFrom: 5 to: line size]].

self nextPutAll: ‘HTTP/1.0 200’;
nextPutAll: ‘Server: ‘;nextPutAll: (TcpServer

signatureIn: TcpServer controller); cr; cr;
(path size = 0 or: [path = ‘/’])

ifTrue: [self httpHomePage]
ifFalse: [self htmlSmallDocGet: path]

This method looks for a line in the socket stream that
begins with GET, and saves the rest of the line as the URL
to fetch. If the URL is empty or if it is a single slash, then
some form of home page information should be sent back
to the Web browser, followed by closing the stream, which
lets the Web browser know the request is complete.

PositionableStream
httpHomePage
“An empty GET request is received,so give a hearty

welcome.”

self
nextPutAll: ‘This is an exercise for the reader.

Put some literal HTML here (or some Text asHtml!)that
explains how to navigate through your Smalltalk
documentation repository.’;

close

If the URL is not empty, there’s more work to do. We fol-
low ENVY’s existing structure for navigation; if you are
using some other source code management system, you
will have to implement a navigation strategy for your
repository.

We expect the first component of the URL to be a nam-
ing root that serves as a dispatcher for the remainder of
the URL.

PositionableStream
htmlSmallDocGet: pathString

“Place on myself valid top-level HTML for the given
<pathString>, which must begin with a slash ($/), and
therefore must have a size greater than zero, and must
consist of URLized path from some naming root, separated
by slashes.
Valid roots are:

1) Smalltalk,
2) EmUser,
3) EmConfigurationMap,
4) Application, or
5) SubApplication.

The second component of the path is always one of
the names that a root knows about. What follows is
dependent on processing by the root, which is sent the
rest of the path to play with.

A new root must either be handled by this method,
or it must be a global, and it must supply the methods
#htmlAsRootOn:, and #htmlForPath:on:.

This does minimal error checking —it assumes a
handler will catch exceptions.”

| path root |
“Parse the path, keeping the result.”
path := pathRequest splitOn: $/.
root := Smalltalk at: path first asSymbol.
1 = path size

ifTrue:
[self nextPutAll: ’Pragma: no-cache’; cr; cr.
root htmlAsRootOn: self]

ifFalse:
[root htmlForPath: path on: self]

Now we have a “naming root” that can be used for navi-
gation, and all that is left to do is implement htmlAsRootOn:
and htmlForPath:on: so that any global can serve Web infor-
mation. For example, a simple inspector can be imple-
mented by making “Smalltalk” a naming root by imple-
menting htmlAsRootOn:.

SystemDictionary
htmlAsRootOn: stream

“Place on the given <stream> HTML links for my
distinguished instances.”

stream htmlTitleAndH1: ‘Smalltalk Globals’.
^(self keys asSortedCollection

inject: stream
into: [:stream :globalName | |global |

global := Smalltalk at: global Name.
stream

nextPutAll: ‘<A HREF=”/Smalltalk/’;
nextPutAll: globalName; nextPutAll: ‘“>’;

nextPutAll: globalName; nextPutAll: ‘ ‘.
global class isMeta

ifTrue:
[stream nextPutAll: ‘(a class’.

(global class instSize > Object class
instSize or: [global classPool size > 0])ifTrue:

[stream nextPutAll: ‘ with state’].
stream nextPutAll: ‘)
’]

ifFalse: [stream nextPutAll: ‘(an instance
of ‘; print: global class; nextPutAll:’)
’].

stream]) htmlCloseBody

Now if htmlForPath:on: is implemented in Object, you can
inspect arbitrary objects from a Web browser. This
method uses a number of stream utility methods that
make the task easier, by providing pre-assembled snip-
pets of commonly used HTML.

PositionableStream
htmlBody: anObject

“Place on myself the proper HTML to make
<anObject> appear as body text. This must be preceded by
a ‘title’ statement. Answer myself.”

self nextPutAll: ‘<BODY>’; htmlFor:an Object;
htmlCloseBody

htmlCloseBody
“Place on myself the proper HTML to close off a

‘body’ statement. Answer myself.”

self nextPutAll: ‘</BODY></HTML>’

htmlTitle: string
“Place on myself the proper HTML to make <string>

a title. This must be followed by a ‘body’ statement.
Answer myself.”

self nextPutAll:’<HTML><HEAD><TITLE>’;
nextPutAll: string; nextPutAll:’</TITLE></HEAD>’

htmlTitleAndH1: string
“Place on myself the proper HTML to make <string>

a title, followed by a ‘body’ statement and <string> as a
top-level heading. Answer myself.”

self
htmlTitle: string;
nextPutAll: ‘<BODY><H1>’;
nextPutAll: string;
nextPutAll: ‘</H1>’

It would be easy to slip into gratuitous serving of all sorts
of objects over the Web at this point, but we’d neglect our
primary purpose: to serve Smalltalk project documenta-
tion over the Web. To do this, we need to allow
SubApplication to function as a naming root. (Since
Application is a subclass of SubApplication, this also
allows Application to serve as a naming root.)

SubApplication class
htmlAsRootOn: stream

“Place on the given <stream> HTML links for all

subapps or apps.”

stream htmlTitleAndH1: self name, ‘s’.
^(self allNames asSortedCollection

inject: stream
into: [:stream :appName |

stream
nextPutAll: ‘<A HREF=”/’; print: self;

nextPut: $/;
nextPutAll: appName; nextPutAll: ‘“>’;
nextPutAll: appName; nextPutAll:

‘
’.
stream]) htmlCloseBody

Now when a URL with a naming root, such as
<http://yourhost/Application>, is entered into a
Web browser, a page is returned that lists all Applications in
the repository, together with links that have the next path
component filled in. When one of the listed Applications is
clicked in the Web browser, the following method is sent in
the SmallDoc server:

SubApplication class
htmlForPath: path on: stream

“Place HTML for my components described by
<path> on the <stream>.”

| component |
2 = path size ifTrue:

[“This is dynamic information — do not cache it
in the client.”

stream nextPutAll: ‘Pragma:no-cache’; cr; cr.
self htmlEditionsForName: path last on: stream]

ifFalse:
[(path last conform: [:ch | ch isDigit]) ifTrue:

[path at: path size put: (Integer readFrom: path
last readStream)].

component := (Smalltalk classAt: path first)
hrefToLibraryComponentFor: path.

component isVersion ifFalse:[stream nextPutAll:
‘Pragma: no-cache’; cr].

stream cr.
3 = path size ifTrue:

[stream htmlBody:
(component commentOrTemplateIn: component)] ifFalse:

[4 = path size ifTrue:
[stream htmlBody: (component

commentOrTemplateIn: component application)] ifFalse:
[5 = path size ifTrue:

[stream htmlBody: component comment] ifFalse:
“path size > 5 ifTrue:”

[stream error: ‘bad URL’]]]]

This method is a case statement. Only one of the “path
size” cases will be evaluated in any given invocation. Also
note that if the last component of the path consists of
digits, it is converted to an Integer.

This sends two methods that we’re going to have to

The Smalltalk Report24

MANAGING OBJECTS

http://www.sigs.com

continued on page 36

leave you to implement yourself, due to space constraints.
The SubApplication method htmlEditionsForName:on: needs
to obtain all the editions for the SubApplication named by
the second part of the path, and render them into the
proper HTML so they will appear as links in the Web
browser. For example, if the Web browser user typed or
clicked <http://yourhost/Application/Kernel> ,
the server should place links for each edition of Kernel on
the socket stream.

The more interesting method to complete is
hrefToLibraryComponentFor:, which takes a collection of com-
ponent parts and fetches the proper component out of the
repository. For example, the URL <http://yourhost/
Kernel/Object/at:put:/3016057369> should cause
the comment for the Object method at:put: with the edition
time stamp of July 29, 19961:42:49 am to be placed on the
socket stream.

As hinted by the code, our treatment of the URL
depends on its number of path parts. For an individual
repository component, such as an app, subapp, class,
class extension, or method, the last part of the URL path
is always a second count from the component’s time
stamp, thus allowing you to browse version history from a
Web browser. These integers are meant to be “opaque ref-
erences” — the user should never have to type them in;
rather, they should be part of anchors that were generat-
ed from lists of editions.

Following the example of SubApplication, you can now

easily add htmlAsRootOn: and htmlForPath:on: to EmUser
and EmConfigurationMap, as well as any other global that
you want to use as a “naming root” for serving arbitrary
information from Smalltalk over the Web.

SATISFYING WITHOUT COMPROMISING
This completes our series on putting your Smalltalk project
documentation on the Web. This series enables our princi-
ples of hyper-literate programming by ensuring that:

1) the documentation for a thing is on the same
conceptual level as that thing;

2) the documentation for a thing constantly and
accurately describes that thing;

3) the documentation for a thing is accessible by
creators, their peers, re-users, reviewers, end-user
documenters, and the merely curious; and

4) the documentation for a thing is measurable,
quantitatively and especially qualitatively.

In addition, we hope we’ve shown you a few useful things
about developing frameworks and automatically generat-
ing HTML.

Maintaining your documentation in your Smalltalk
repository while exporting it “live” to Web browsers will
satisfy the needs of external parties without compromis-
ing the efficiency of your development team.

Next month, we’ll explore a topic close to our hearts —
the use and abuse of Smalltalk mentors.

MANAGING OBJECTS
continued from page 24

S

September 1996 25http://www.sigs.com

P
roduction applications need to be protected against
the possibility of catastrophic failure. Disks fill
up…hardware fails…operating systems crash… net-

works go down…but with proper foresight these situa-
tions do not have to lead to a loss of objects. This column
describes mechanisms to achieve fault tolerance and how
to recover when the bad things happen.

There are at least two ways in which systems achieve
fault tolerance. One is to prevent the system from going
down in the first place; the other is to bring the system
back to a consistent state if it does go down. The typical
way to avoid a system from going down is to duplicate, or
mirror, the state of the object repository on different hard-
ware, so that if the primary piece fails, the system will
automatically switch over to the duplicate. To bring the
system back up when it goes down, most transaction-
based systems employ backup files and transaction logs
to help the system recover to a consistent state. These
same approaches apply to Smalltalk applications.

In multi-user Smalltalk, the object repository is mani-
fested by one or more files (or possibly raw disk parti-
tions) called extents. These are where the state of objects
ultimately reside. For fault tolerance, as well as perfor-
mance reasons, information about objects may first be
written to other files, called transaction logs. Transaction
logs contain information to re-do transactions that have
been committed to the repository.

When a transaction is committed, all that’s necessary is
to completely write the transaction log records to consid-
er the transaction complete. The extent files do not have
to be updated with new or changed objects immediately,
which can improve overall system performance and
transaction throughput.

To avoid a multi-user Smalltalk system from going
down, the system administrator can specify that the
extent files are to be replicated. In addition to allocating
extent files across multiple disk drives on different
machines for performance and clustering reasons, the
system administrator can allocate the replicated extents

on multiple disk drives as well. While the system is run-
ning, if a client or server process should encounter a read
error on a primary extent file, the corresponding replicat-
ed extent file is automatically used instead.

In GemStone, the system administrator creates repli-
cated extents in two ways. One way is to specify them in
the configuration file used by the server process at startup
time. Another way is to dynamically create new replicates
at runtime by sending the message SystemRepository
createReplicateOf: extentFilename named: replicateFilename. In
both cases, you are mapping a primary extent file to a cor-
responding replicated extent. The replicated extent
should be located on a different disk spindle to reduce IO
contention, as well as to provide fault tolerance.

Even if the object repository is replicated for automat-
ic switchover, it is still good practice to plan for recovery if
the system goes down entirely. This planning involves
deciding how often to back up the system, and how quick-
ly the system must be back online. For 7 x 24 production
applications, it is imperative that backups be performed
while the system is online and other users are logged in.
Since backups may require considerable resources for
large object repositories, it is desirable to limit the IO rate
of the process performing the backup to reduce its inter-
ference with other sessions.

To plan for backups and recovery, it is necessary to
understand how transaction logging works. As mentioned
earlier, transaction logs contain the information to re-do
transactions that have been committed. Transaction logs
are used to recover from an unexpected shutdown or to
roll forward from a backup file. When configuring a sys-
tem, an administrator supplies multiple locations where
transaction logs are to be written. Therefore, if one disk
becomes full, the system can automatically switch over to
the next location. It is also possible to configure the max-
imum size of each transaction log file to balance the uti-
lization of the disk resources. Transaction logs can be
replicated to provide the same benefits as replicated
extents.

Recall that objects may not be written immediately to
extent files. To force the information in transaction logs to
be written to the extent files, an administrator performs a
checkpoint. Performing a checkpoint reduces the number
of transaction logs that have to be applied when the sys-

Getting Real

Jay Almarode

Using Smalltalk since 1986, Jay Almarode has built CASE tools, in-
terfaces to relational databases, multi-user classes, and query sub-
systems. He is currently a senior software engineer at GemStone
Systems Inc., and can be reached at almarode@gemstone.com.

Fault Tolerance

tem recovers from a crash, where the extent files are not
damaged.

Transaction logging can be set up to handle two kinds
of recovery situations. In the first situation, the system has
unexpectedly shut down, but the extent files are not cor-
rupt. To recover the object repository to the last commit-
ted state, only transaction log records that were written
since the last checkpoint are applied. This mode of trans-
action logging is called partial logging, since not all trans-
action logs are needed to recover. To free up space, an
administrator can remove any log files written prior to the
most recent checkpoint, usually leaving the current log
and the one immediately before.

In partial logging mode, the frequency of performing a
checkpoint helps control how long it takes to recover the
system. In GemStone, the system can be set up to auto-
matically perform checkpoints at specific intervals by set-
ting a configuration parameter; or, a checkpoint can be
performed explicitly by sending
System checkpoint. When the system
is in partial logging mode, a check-
point is also triggered when any
transaction writes a log record
whose size is greater than some
configurable threshold.

The second kind of recovery situ-
ation occurs when the system
crashes and the extent files are cor-
rupt. In this case, the object reposi-
tory must be recovered from back-
up files. To recover from this situa-
tion, all transaction logs that were written since the back-
up are needed. This type of recovery is supported by con-
figuring the system to be in full logging mode. Full trans-
action logging should be used for production applica-
tions, to guarantee recoverability in the face of media fail-
ure.

One factor determining the time to recover from a
backup is the frequency of backups performed. To per-
form a backup of the object repository in GemStone, a
user performs the message: SystemRepository fullBackupTo:
aFileOrDevice Mbytes: aByteLimit. The first argument specifies
the file, raw partition, or device where the backup is to be
created. The second argument specifies a byte limit so
that you can create multiple backup files by limiting the
size of each part.

When the first backup file is finally written, you con-
tinue writing the next part of the backup with the message
SystemRepository continueFullBackupTo: aFileOrDevice Mbytes:
aByteLimit. Since the backup procedure may consume sys-
tem resources, a user can control the IO rate of the cur-
rent backup session by sending System configurationAt:
#GemIOLimit put: 10. This example allows a maximum of 10
IOs per second.

To restore the object repository, a system administrator
first starts a server process on a new object repository.
Then the restore operation is performed by sending
SystemRepository restoreFromBackup: backupFilename. At this

point, the state of the repository is the same as when the
backup file was created. Now the administrator can apply
transaction logs to roll forward from the state of the back-
up to the state of the last committed transaction.

To find out the first transaction log file needed, the
administrator sends SystemRepository restoreStatus to get
the file id of the log file. When transaction log files are cre-
ated, they are given a filename that includes an increas-
ing numerical file id so that the sequence of file creation
is evident. This helps in determining which transaction
log files to archive (i.e. move somewhere else), and which
are needed for restoration. If the needed transaction log
files have been archived, the administrator sends
SystemRepository restoreFromLog: aTranLogFilename to explic-
itly specify their location. If the remaining log files are
located in their original location, then the administrator
performs SystemRepository restoreFromCurrentLogs. The
administrator sends the message SystemRepository

commitRestore to finish the restora-
tion and allow other users to log in.
It is also possible to restore to a
specific point in time, by sending
SystemRepository timeToRestoreTo:
aDateTime, before restoring from
transaction logs.
Using transaction logs, a ‘warm’
backup system can be built with
the mechanisms described above.
A ‘warm’ backup system is a dupli-
cated object repository not kept in
sync with the primary repository in

real time by the underlying system. Instead, the duplicat-
ed object repository is explicitly synchronized with the
primary repository at specific time intervals. The advan-
tage of a warm backup is that it places no burden on the
primary system to perform IO to multiple locations; the
disadvantage is that the warm backup is only up-to-date
based on the last time it was explicitly synchronized with
the primary system.

To build a warm backup system, a server process is
started up on a copy of the primary object repository (or
it could be started up on a new repository, then restored
from a backup file of the primary repository). This is the
warm backup server. Next, a process is spawned that con-
tinually looks for new transaction logs being created by
the primary server.

When a new transaction log file is created, this process
can copy the previous log file to the backup site and per-
form SystemRepository restoreFromLog: aTranLogFilename. If
the primary repository goes down, the warm backup site
performs SystemRepository commitRestore, and it is ready for
duty.

Fault tolerance is a necessary consideration for pro-
duction applications. System administrators need to plan
for disaster and have the mechanisms in place to recover.
Duplicated object repositories and transaction logging
are two mechanisms that provide the functionality need-
ed for 7 x 24 applications.

The Smalltalk Report26

GETTING REAL

http://www.sigs.com

“One factor determining the
time to recover from a

backup is the frequency
of backups performed..”

S

September 1996 27http://www.sigs.com

U
nderstanding recursion is a watershed in the life of
most software developers. The idea that you define
a computation, not in terms of other computations,

but in terms of itself, is a mind bender for most people. I
can remember carefully drawing stack frames with their
own local storage and program counter and painstaking-
ly following the progress of factorial and depth-first bina-
ry tree traversal. It was only when I found an obscure lit-
tle book in the science library that explained how to
transform recursion into iteration and vice versa, that I
really felt I understood recursion. Even then, it was
months before I could reliably use it as a programming
technique.

Such a powerful technique must be an important part
of programming objects, right? Well, yes and no.
Combining recursion with objects is powerful, more pow-
erful than its procedural counterpart, but you have to
manage it differently to make effective use of it.

TAKE ONE
Rule 1: Send the recursive message to different objects.
Procedural recursion is defined as a procedure that calls
itself with different parameters. At some point, you have to
reach the base or degenerate case of the recursion, at which
time you do not call the procedure further (not if you want
the program to terminate, anyway). Factorial implemented
with procedural-style recursion looks like this:

Object>>factorial: aNumber
^aNumber = 1

ifTrue: [1]
ifFalse: [aNumber * (self factorial: aNumber - 1)]

In this version of #factorial: the receiver of the message
plays no particular role. The existence of the receiver of a
message as the implicit first parameter motivates the first
change in the use of recursion with objects. Rather than
invoke what is in essence a subroutine over and over on
the same object with different parameters, object-orient-
ed recursion invokes the same routine, but with different
objects as the receiver. The object-oriented version of
factorial doesn’t need an additional parameter. The
receiver of the message is the number to be “factorialed.”

Number>>factorial
^self = 1

ifTrue: [self]
ifFalse: [self * (self - 1) factorial]

The resulting code is simpler by one argument, but other-
wise looks much like the procedural version.

WE PAUSE FOR A BIT OF MATHEMATICS
To illustrate the other difference between procedural and
object-oriented styles of recursion, we will turn to Peano’s
Axioms of Arithmetic. Zero is represented as “zero. ” Other
positive numbers are defined as nested invocations of the
function “succ” (for “successor”). For example, three is
represented as:

succ(succ(succ(zero)))

Given this definition of numbers, we can now define addi-
tion recursively. The base case of the recursion is adding
any number to zero, equals that number:

Case 1: add(X, zero) = X

Thus, adding zero and three results in three:

add(succ(succ(succ(zero))), zero) = succ(succ(succ(zero)))

The recursive case of the definition says that adding X to
a number which is the successor of Y is the same as
adding X to Y, then getting the successor of the sum.

Case 2: add(X, succ(Y)) = succ(add(X, Y))

Algebraically, this is the same as saying:
X + (1 + Y) = 1 + (X + Y)

Adding two to one results in the following invocations:

add(succ(zero), succ(succ(zero))) = succ(add(succ(zero), succ(zero))) by case 2
succ(add(succ(zero), succ(zero))) = succ(succ(add(succ(zero), zero))) by case 2
succ(succ(add(succ(zero), zero))) = succ(succ(succ(zero))) by case 1

Lo and behold, 2 + 1 = 3!

AXIOMS TO OBJECTS
We can turn Peano’s Axioms into objects by making a

successor object, which is linked to its predecessor. A

The Smalltalk Idioms

Kent Beck

Object-Oriented Recursion

linked list of three successors represents the number
three. The end of the list will be represented by nil.

Class: Succ
superclass: Object
instance variables: pred

We can provide a Constructor Method for Succ that
returns the Peano version of an Integer:

Succ class>>fromInteger: anInteger
^anInteger = 0

ifTrue: [nil]
ifFalse: [self of: (self fromInteger: anInteger - 1)]

We create the successor of a Peano number by creating a
new instance of Succ and setting its predecessor to the
number.

Succ class>>of: aPeanoNumber
^self new setPred:aPeanoNumber

Succ>>setPred: aPeanoNumber
pred := aPeanoNumber

We compute the predecessor of a Peano number by
simply returning the value of the instance variable
“pred.”

pred
^pred

We compute the successor by tacking on another succes-
sor object:

succ
^Succ of: self

For debugging purposes, we can define a printing method
that shows us the receiver in Peano format.

Succ>> printOn: aStream
aStream nextPutAll: ‘succ(‘.
self pred isNil

ifTrue: [aStream nextPutAll: ‘zero’]
ifFalse: [self pred printOn: aStream].

aStream nextPutAll: ‘)’

Three now prints as three nested invocations of “succ”:

(Succ fromIneger: 2)+ (Succ fromInteger: 1) succ(succ(succ(zero)))

Given the definitions of #pred and #succ, we can turn the
axioms of arithmetic into a method. Because we are
explicitly checking for the base case of the recursion, the
code is not quite a direct translation of the original
axioms.

+ aPeanoNumber
|subTotal|
subTotal:= self pred isNil

ifTrue: [aPeanoNumber]
ifFalse: [self pred+ aPeanoNumber].

^ subTotal succ

Adding two and one result in our now famous three:
(Succ fromInteger: 2) + (Succ fromInteger: 1) succ(succ(succ(zero)))

Take Two
Rule 2: Represent the base case of the recursion by a dis-
tinct object. Now we are finally ready to examine the sec-
ond difference between procedural and object-oriented
recursion. Procedural recursion relies on explicits checks
for the base case of the recursion. The previous code
shows this style in the #+method, where an explicit con-
ditional checks for a nil argument.

Every time I use recursion in the beginning, and dis-
tressingly often thereafter, I forget to check the base
case. You can use objects and messages to make such
errors less likely, and to simplify the code at the same
time.

The key is not to rely on the generic undefined object
to stop the recursion. Instead, you create your own
“undefined object,” then make sure it responds to the
same messages as the object representing the recursive
case.

To apply this principle here, we have to first replace nil
with a new object, Zero.

Class: Zero
superclass: Object
instance variables: <none>

Rather than returning a nil when we want to represent a
zero, we return an instance of our new object instead:

Succ class>>fromInteger:anInteger
^anInteger=0
ifTrue: [Zero new]
ifFalse: [self of: (self fromInteger: anInteger - 1)]

Adding a Zero and any number results in that number:

Zero>>+ aPeanoNumber
^aPeanoNumber

Adding a successor to a number now need not check for nil:

Succ>>+ aPeanoNumber
^(self pred + aPeanoNumber) succ

Once again, we can add two and one to get three:

The Smalltalk Report28

SMALLTALK IDIOMS

http://www.sigs.com

Figure 1. The number three, represented as objects.

Peano Objects for “3”

Succ
pred Zero

Succ
pred

Succ
pred

(Succ fromInteger: 2) + (Succ fromInteger: 1) succ(succ(succ(a Zero)))

Notice that the zero prints out a little differently than
before. We can easily fix that:

Zero>>printOn: aStream
aStream nextPutAll: ‘zero’

And we can get rid of the code in Succ that checks for nil.
I love bug fixes that involve removing code!

Succ>>printOn: aStream
aStream nextPutAll: ‘succ(‘
self pred printOn: aStream.
aSteam nextPutAll: ‘)’

Now two plus one prints correctly again:

(Succ fromInteger: 2) + (Succ fromInteger: 1) succ(succ(succ(zero)))

The addition code looks much more like the original
mathematics (taking postfix notation into account):

Case 1: add(zero, X) = X
Case 2: add(succ(X), Y) = Y = succ(add(X, Y))

Zero>>+ aPeanoNumber
^aPeanoNumber

Succ>>+ aPeanoNumber
^(self pred + aPeanoNumber) succ

We have been able to use polymorphism to write code
that communicates more clearly, because it translates
more directly from the original source. The code is more
like a specification and less like a computer program.

The Two Ways
We have seen two ways in which object-oriented recur-
sion differs from procedural recursion. First, rather than
invoke the same procedure with different arguments,
object-oriented recursion represents the invocations
themselves as objects, sending the same message to dif-
ferent objects.

In our example, this corresponded to creating a new
object to represent one invocation of the successor func-
tion. Most recursive routines don’t require this (somewhat

unnatural) step. If the recursive routine is operating over
a recursive data structure (trees or lists, for example), the
objects are likely to be there already.

The second difference between procedural and

object-oriented recursion is in the use of a special-pur-
pose object to represent the base case of the recursion.
Polymorphism’s ability to capture decision making in
what would otherwise be a simple procedure call comes
to the fore in this technique. The resulting code commu-
nicates, clearly even in the absence of explicity condi-
tionals.

You might ask, “Why don’t you use Smalltalk’s built-in
special object, nil, to represent the base case of the recur-
sion?” After all, in the example above, we could implement
#+ in UndefinedObject just as we did in Zero and the code
would work fine. The problem is that all developers share
the same UndefinedObject. If everyone added a handful of
methods to it, the result would be thousands of methods on
UndefinedObject, in other words, chaos. The chances of such
code communicating clearly, are slim, even if there weren’t
accidental disagreements about what UndefinedObject>>+
should do.

If you’d like to play around with recursion, you may
want to extend the code above. Try implementing #- or
#*. I found implementing negative numbers (hint, you
need a Pred class) to be quite challenging.

The Smalltalk Report30

SMALLTALK IDIOMS

http://www.sigs.com

Kent Beck has been discovering Smalltalk idioms for twelve years
at Tektronix, Apple Computer, and MasPar Computer. He is the
founder of First Class Software, which develops and distributes
developer tools for Smalltalk. He can be reached at First Class
Software, P.O. Box 226, Boulder Creek, CA 95006-0226,
408.338.4649 (voice), 408.338.3666 (fax), or by email at
70761,1216 (Compuserve).

S

“object-oriented recursion represents
the invocations themselves as objects,

sending the same message
to different objects.”

W
E WRITE THIS as we watch the Olympic
Games draw to a close. It is absolutely
amazing to witness the accomplishments
of the athletes in attendance, and to try to

comprehend the dedication they each have to their
sport. (We’re also still reveling over the Canadian gold
medal in the 4x100 relay!) The other amazing feat, from
our perspective, is the advances in technology that
were on display during the Games. Of course, the
problems experienced were well documented and
many criticized the technology as being a failure
(sound familiar to conversations with your users?), but
in many ways the criticisms are unfair, given what has
been attempted. It’s another case of unrealistic expec-
tations coupled with an unwill-
ingness and/or lack of opportuni-
ty to manage those expectations.

We have been told that the
software applications built by
IBM using VisualAge fared fairly
well at the Games, but we have
no confirmation of this fact. In
any event, I think if the public stopped to realize just
how far engineering has advanced in such a short
time, they would begin to see that things are heading
in the right direction. One might even draw the con-
clusion that we must be getting closer to building use-
ful technology, considering people have much
stronger opinions as to what is being built. In any
event, hats off to everyone involved!

Last month we touched on the problems faced by
many of us in managing the persistence aspect of our
applications. While for most, persistence is undoubt-
edly the number one enemy in today’s applications,
there are certainly other common problems facing a
large majority of us. One of the items heading this list
is report generation.

Report generation has always been, and will no
doubt remain, an extremely difficult problem.
Deciding how to best utilize an 8-1/2 x 11 sheet of
paper is an almost impossible task. Its limitations are
obvious—there is a fixed-size region in which to print,
and the items we wish to print do not have such lim-
its. Features such as proportional fonts and text for-
mats cause even more grief than what was faced by
those true warriors of report generation over the past
decades—the RPG programmers.

There are two aspects to the problem. The first is
the technology for laying out reports, specifying the

desired behavior and the final ‘look-and-feel’ of the
ultimate report. On this front, the news continues to
get better. Both ParcPlace-Digitalk and IBM provide
some sort of facilities for specifying reports, as do a
handful of third-party vendors. Each of these has both
strong and weak points, but the features being intro-
duced are allowing report designers to work at a bet-
ter level of abstraction for describing reports.

The second aspect of the problem comes from the
application itself. Actually attempting to describe
what is the desired behavior, from an application
point of view, is a monumental task. Each report, of
course, needs a header and a body (and perhaps a
footer), but the amount of space required may vary,

depending upon the type of
report and the contents con-
tained within it. Deciding how to
split a report that must run mul-
tiple pages is a real challenge.
What’s more, if the report con-
tains cross references to other
items within the report (as is

commonly found in insurance claims forms, for
example), an automated process for describing this is
extremely elusive.

In the end, one must remember that the problem
being addressed is in many ways not solvable, at least
not easily. The proof of this is simple: Just consider
describing how to draft a report, describing how to
handle every single possible configuration for the next
five years, guaranteeing you haven’t missed any case. If
you can’t solve it in English, you can’t solve it using any
modern computer language either. Having said this,
what we need to do is provide much better tools to
allow users to describe their solutions using abstrac-
tions, which make sense in terms of a report layout. We
believe these tools will continue to improve.

Finally, we should note this issue represents an
accomplishment we never envisioned when we
began. When we started The Smalltalk Report in
September 1991, we did it with the hope that it would
help people like you to utilize Smalltalk more effec-
tively, to serve as a place to share ideas, and hopefully,
in some small way, help the Smalltalk industry grow
and mature. After a full five years of it, we think we can
stand up and say we’ve achieved this goal. And we cer-
tainly look forward to writing an editorial after our
10th year of the Report!

Enjoy the issue.

Editors’ Corner
Paul WhiteJohn Pugh

Deciding how to split
a report that must run multiple

pages is a real challenge.

The Smalltalk Report2 http://www.sigs.com

October 1996

For more object
news and analysis,
check out SIGS
online at
http://www.sigs.com

1

Table of Contents
October 1996 Vol 6 No 2

Features:

Unblocking the Debugger 3
Joe Winchester and Mark Jones
Here is an enhancement to the IBM Smalltalk/Visual Age debugger that allows code within blocks
to be debugged more easily.

Externalizing Business-Object Behavior:
More On A Point-and-Click Rule Editor 8
Paul Davidowitz
In this issue the author continues to investigate the inner workings of a point-and-click rule editor,
which can be tailored by the end-user.

Just Cloning Around Subclass: # Cloning Extensions 13
Keith Piraino
All applications wrestle with the problem of copying objects at some point. Although Smalltalk
does not provide a way to distinguish between aggregation relationships and simple references,
the author offers a solution.

Visual programming: 18
Visual Programming and Reusable Parts:
The Marquee Part
Wayne Beaton and Dwight Deugo
The authors create a reusable marquee part, which is responsi-

ble for scrolling text that is too large for static display.

The Best of comp.lang.smalltalk 22
Two New Smalltalks
Alan Knight
Prerelease looks at Object Connect’s Smalltalk MT and Intuitive Systems’
Dolphin Smalltalk.

Managing Objects: 24
Mentoring
Jan Steinman and Barbara Yates
Not all Smalltalk gurus are cut out to be mentors. And not every
team member wants to be mentored. Here are some ideas
about how to make the most of mentors.

Departments
Editors’ Corner 2

Product News: 30
Smalltalk Broker, IBM connections to Notes and the Web, Dynamic Links
for code navigation, GUI components.

Recruitment 32

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, monthly except in Mar–Apr, July–Aug, and Nov–Dec. Published by
SIGS Publications Inc., 71 West 23rd St., 3rd Floor, New York, NY 10010. © Copyright 1996 by SIGS Publications. All rights reserved.
Reproduction of this material by electronic transmission, Xerox or any other method will be treated as a willful violation of the US
Copyright Law and is flatly prohibited. Material may be reproduced with express permission from the publisher. Bulk rate U.S. postage
paid Lancaster, PA, permit 161. Canada Post International Publications Mail Product Sales Agreement No. 290386.
Individual Subscription rates 1 year (9 issues):domestic $89;Mexico and Canada $114,Foreign $129;Institutional/Library rates:domestic
$199,Canada & Mexico $224,Foreign $239.To submit articles,please send electronic files on disk to the Editors at 885 Meadowlands Drive
#509,Ottawa,Ontario K2C 3N2,Canada,or via Internet to streport@objectpeople.on.ca.Preferred formats for figures are Mac or DOS EPS,
TIF, or GIF formats. Always send a paper copy of your manuscript, including camera-ready copies of your figures (laser output is fine).
POSTMASTER: Send domestic address changes and subscription orders to: The Smalltalk Report, P.O. Box 5050, Brentwood, TN 37024-
5050. For service on current domestic subscriptions call 1.800.361.1279 or fax 615.370.4845. Email: subscriptions@sigs.com. For foreign
subscription orders and inquiries phone +44(0)1858.435302. PRINTED IN THE UNITED STATES.

Columns

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS Publications Advisory Board
Tom Atwood, Object Design
François Bancilhon, O2 Technology
Grady Booch, Rational
George Bosworth, ParcPlace-Digitalk
Jesse Michael Chonoles, Lockheed Martin ACC
Stuart Frost, SELECT Software
Adele Goldberg, ParcPlace-Digitalk
Thomas Keffer, Rogue Wave Software
R. Jordan Kriendler, IBM Consulting Group
Thomas Love, Consultant
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

The Smalltalk Report Editorial Board
Jim Anderson, ParcPlace-Digitalk
Adele Goldberg, ParcPlace-Digitalk
Reed Phillips
Mike Taylor, ParcPlace-Digitalk
Dave Thomas, Object Technology International

Columnists
Jay Almarode, GemStone Systems Inc.
Wayne Beaton, The Object People
Kent Beck, First Class Software
Dwight Deugo, The Object People
Juanita Ewing, ParcPlace-Digitalk
Bob Hinkle, Consultant
Tim Howard, FH Protocol, Inc.
Ralph E. Johnson, University of Illinois
Alan Knight, The Object People
Mark Lorenz, Hatteras Software, Inc.
Jan Steinman, Bytesmiths
Rebecca Wirfs-Brock, ParcPlace-Digitalk
Barbara Yates, Bytesmiths

SIGS Publications Group, Inc.
Richard P. Friedman, Founder, President, and CEO
Chris Keating,Publishing Director–US Magazines
John McCormick, Editorial Director
Margherrita R. Monck, General Manager

Editorial/Production
Kristina Joukhadar, Senior Managing Editor
Elisa Varian, Director of Manufacturing
Jan Foster, Cover Design
Douglas Finlay, Associate Managing Editor
Serena Tesler, Production Editor
Erika Romero, Desktop Designer
Margaret Conti, Manufacturing Coordinator

Circulation
Elayne Glick, Circulation Director
Byron Scarlett, Assistant Circulation Manager

Advertising/Marketing
Gary Portie, National Sales Manager
Elisa Marcus, Advertising Manager,Central US
Michael W. Peck, Advertising Representative
Kristine Viksnins,West Coast Exhibit Sales
Sarah Olszewski, East Coast Exhibit Sales

212.242.7447 (v), 212.242.7574 (f)
Nancy Beuschel, Promotions Manager for Magazines

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Senior Accounting Manager
Bibi Budhram, Accounts Payable

Publishers of JOURNAL OF

OBJECT-ORIENTED PROGRAM-
MING, OBJECT MAGAZINE,
C++ REPORT, THE SMALLTALK

REPORT, THE X JOURNAL, JAVA REPORT, OBJECT CURRENTS and
THE X SPOT (ONLINE), OBJECT EXPERT (UK), JAVASPEKTRUM and
OBJEKTSPEKTRUM (GERMANY)

October 1996 3http://www.sigs.com

D
ebuggers are evolving from tools that trap and help
diagnose errors into an integral part of the develop-
ment environment. Their most useful task is

arguably the ability to step through code, line by line,
allowing the programmer to follow message flow. The
debugger supplied with IBM’s Smalltalk/Visual Age falls
short of this purpose where the code is embedded within
blocks. To locate this code often requires traversing the
internals of seemingly irrelevant methods. In this article
we describe an enhancement to the IBM Smalltalk/Visual
Age debugger that allows code within blocks to be
debugged more easily.

Our approach to solving the problem first involved
understanding the mechanics of the existing debugger,
and then observing and automating how a programmer
manually debugs his or her way through methods that
contain code as blocks.

THE WAY THINGS ARE
The supplied debugger comes with four buttons: into,
over, return, and resume. Pressing into allows the next
message about to be sent to be debugged, and pressing
over allows the message to be skipped past. When the
message contains a block as an argument or receiver,
pressing over skips past the message and past the code
contained within the block. There are some exceptions to
this, for example: Integer>>to: anInteger do: [], and
Boolean>>ifTrue: []. Pressing over on these messages takes
the programmer to the code within the block. This hap-
pens because the compiler inlines the code to implement
messages directly in the sender for optimization purpos-
es, and no actual message sent occurs at runtime. With all
other messages that contain blocks as receivers or argu-
ments, debugging the code within the block requires
pressing into and then traversing the method internals to
find the relevant value or value: message that will evaluate
the block. To do this with Dictionary>>at: aKey ifAbsent: []
requires pressing into once, over seven times, and a final
into to reach the block. If the message being debugged is a
loop, e.g. Collection>>detect: [] ifNone: [], repeated debug-

ging of the method internals is required to visit the code
within the block for each iteration of the loop. The prob-
lem here is that you should be concentrating on your
code, instead of worrying about reading and understand-
ing the internals of methods that are basically language
constructs.

THE WAY THINGS SHOULD BE
We found ourselves wishing for behavior that would act
the way over does for the inlined messages, i.e. it would
always take the programmer straight to the code within
the block. This functionality we decided to name through
and implement with a new button on the debugger.
Figure 1 shows how over takes the programmer past the
code within the Dictionary>>at: aKey ifAbsent: [] block.
Pressing through would go into the code within the block
and back to the method body without having to traverse
irrelevant method internals.

MIMIC REAL LIFE
As with any good OO solution, the answer lies in observ-
ing the real world and mimicking it in code. Therefore, let
us examine the scenario “How does a programmer debug
the method Dictionary>>at: aKey ifAbsent: [] .” If the pro-

Unblocking the
Debugger

Joe Winchester and Mark Jones

?
?
?

@@f?@@?hf@@ @@ ?@@?f@@hf?@@? ?@@? ?
@@L?eJ@@?h@@e@@ @@ ?@@Le?J@@h?@@??@@? ?@@? ?
@@1?e7@@?g?J@@L?@@ @@ ?@@1e?7@@hJ@@L?@@? ?@@? ?

@@@@@@@@6X?@@??@@?@@@L?J@@@?W2@@6X?@@@@?@@@@6X?W2@@6X?W2@@@@ ?@@@@@@@@6X?@@e@@?@@@L?J@@@?W2@@6X?@@@@?@@@@6X?W2@@6X?W2@@@@? ?
@@e@@e@1?@@??@@?@@@1?7@@@?7@e@1?N@@H?@@e@1?7@??@1?7@e@@ ?@@??@@??@1?@@e@@?@@@1?7@@@?7@??@1?N@@H?@@??@1?7@e@1?7@??@@? ?
@@e@@e@@?@@??@@?@@?@?@?@@?@@e@@e@@e@@e@@?@@??@@?@@e@@ ?@@??@@??@@?@@e@@?@@?@?@?@@?@@??@@??@@??@@??@@?@@e@@?@@??@@? ?
@@e@@e@@?@@??@@?@@?3@5?@@?@@@@@@e@@e@@e@@?@@??@@?@@e@@ ?@@??@@??@@?@@e@@?@@?3@5?@@?@@@@@@??@@??@@??@@?@@e@@?@@??@@? ?
@@e@@e@@?@@??@@?@@?N@H?@@?@@g@@e@@e@@?@@??@@?@@e@@ ?@@??@@??@@?@@e@@?@@?N@H?@@?@@?f?@@??@@??@@?@@e@@?@@??@@? ?
@@e@@e@@?3@??@@?@@e@??@@?3@?O2(e3@L?@@e@@?3@??@5?3@e@@ ?@@??@@??@@?3@e@@?@@??@e@@?3@?O2(??3@L?@@??@@?3@e@5?3@??@@? ?
@@e@@e@@?V4@@@@?@@f?@@?V4@@0YeV4@?@@e@@?V4@@0Y?V4@@@@ ?@@??@@??@@?V4@@@@?@@?f@@?V4@@0Y??V4@?@@??@@?V4@@0Y?V4@@@@? ?

?@@? @@ ?
?'6K?@5? '6K?@5 ?
?V4@@0Y? V4@@0Y ?

?
?
?
?
?
?
?
?
?
?
?
?
?

W2@@6X ?
?W.MeI/X? ?
W.Y?e?N1? ?
7Hg@? ?

?@@? ?J5?g@@6Xe@@e?O2@@??@6T2@ ?
?@@? ?7H?f?J(?'1eN@e@(M?@?e@(R' ?
?@@@@@@@@@@@@@@@e@@@(MW@@@@@@@@@@@@@@@@@@@@@@@@@?fI'@@@??@@@@@@@@@@@@@@@e@@@? ?@g?7H?N@eJ5?J(Y?C5??7(Y ?@@?eW2@? @@@@@6X?e@@ ?@@? ?
?@@@@@@@@@@@@@@@e@@@H?7@@@@@@@@@@@@@@@@@@@@@@@@@??@@6XV'@@??@@@@@@@@@@??@@@e@@@? ?@gJ5e?@?W.Y?7YO20Y??@H? ?@@?e7@H? @@eI')Xe@@he@@e?@@? ?
?@@@@@@@@@@@@@@@e@@5??3@@@@@@@@@@@@@@@@@@@@@@@@@??@@@1?N@@@@@@@@@@@@@5??3@@@? ?3L?e?W.Ye?@W.Y??@@0M?eJ5 ?@@??J@@L? @@e?N@1hf?J@@L? ?
?@(MeI'@(M??I'@e@@f@@@@@@@?g?I'@e@@e@??@@@@??@@??@@(M??I'@f@@e@@(MeI'@?e?I'@(MeI'@?eW@e@@e@@@@@@@@@? ?V/KeO.Y?e?@(Ye?3X?O.e7H ?W2@@6X?W2@@6X?@@??@@@@?g@@@@@@@@6X?@@??@@?@@f@@e@@eW2@@6X?@@@@??@@??W2@@6X?@@@@6X?W2@@6X?@@@(?@@??@@? ?
?@H?@6KV@H?@@?N@e@@1??7@@@@@@@??@@??@@?N@e@@e@??@@@@??@@??@@H?@6KV@1??7@@e@@H?@@?N@??@@?N@YO2@?N@??W&@e@@e@@@@@@@@@? V4@@0Yf?(Y?e?V4@0Ye@? ?7@?I4)?7@e@1?@@??N@@H?g@@e@@e@1?@@??@@?@@f@@e@@e7@?I4)?N@@H??@@??7@??@1?@@e@1?&0M?@1?@@(Y?@@??@@? ?
?@L?@@@@@??@@??@e@@@??@@@@@@@@??@@??@@??@e@@e@??@@@@??@@??@@??@@@@@@??@@@e@@e@@e@??@@??@@@@@e@??7@@e@@e@@@@@@@@@? ?3@?f@@e@@?@@?e@@h@@e@@e@@?@@??@@?@@f@@e@@e@@g@@e?@@??@@??@@?@@e@@f?@@?@@H??@@??@@? ?
?@)KeI'@?f?@e@@@??@@@@@@@@??@@??@@??@e@@e@??@@@@??@@??@@??@@@@@@??@@@e@@e@@e@??@@??@(Mf@??@@@e@@e@@@@@@@@@? ?V4@@6X?@@@@@@?@@?e@@h@@e@@e@@?@@??@@?@@f@@e@@e@@g@@e?@@??@@??@@?@@e@@?W2@@@@?@@e?@@??@@? ?
?@@@@@?N@??@@@@@e@@@??@@@@@@@@??@@??@@??@e@@e@??@@@5?J@@??@@??@@@@@@??@@@e@@e@@e@??@@??@H?@@e@??@@@e@@e@@@@@@@@@? ?@1?@@f?@@?e@@h@@e@@e@@?@@??@@?@@e?J@5e@@e@@g@@e?@@??@@??@@?@@e@@?7@??@@?@@e?@@??@@? ?
?@XI4@?J@L?@0MW@L?3@@??@@@@@@@@??@@??@@??@L?@@e@??@@0YW&@@??@@L?@0MW@@L?3@@e@@L?@@?J@??@@??@L?@@e@??@@@L?@@e@@@@@@@@@? ?'6K?@5?3@?O2(?3@Le@@h@@e@@e@@?3@??@@?@@eO&(Ye@@e3@?O2(e3@L??@@??3@??@5?@@e@@?3@??@@?@@e?3@??@@? ?
?@)KeO&@)K??O&@)KV@@??@@@@@@@@??@@??@@??@)Kf@?fO&@@@??@@)K??O&@@)KV@@e@@)KeO&@??@@??@)Kf@??@@@)Kf@@@@@@@@@? ?V4@@0Y?V4@@0Y?V4@e@@h@@e@@e@@?V4@@@@?@@@@@0Y?e@@eV4@@0YeV4@??@@??V4@@0Y?@@e@@?V4@@@@?@@e?V4@@@@? ?
?@@@e@@e@@@@@@@@@? ?@@? ?@@? ?
?@@@XI4@?J@@XI4@?J@@@@@@@@@? ?/X? ?'6K?@5? ?'6K?@5? ?
?@@@)KeO&@@)KeO&@@@@@@@@@? ?V/X ?V4@@0Y? ?V4@@0Y? ?
?@@? V/X? ?

@@@? ?V/X ?
@@eW@@Xe@? V/X? ?@@@ @@@?hf?
@@0M?@@@@@@@@@@??@@@(MW@@@@??@@@@??@@@e7@@@@@@@@@@@@@@@@@@@@@@??@@@(MW@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@??@@@@@@@@@@@@@@@@??@h@@@@@@@@f?I'@@@@@@@@@e@@@@@@@@@@@@@@@@@@@@@@@@@1e@? ?V)X ?O2@he@@e?W2@f@@f@@ ?@@H @@e?W2@ @@ @@?@@@@@@@@?g?@@@@@6Xh?@@? N@@?hf?
@@e@@@@@@@@@@@@@?e?@@@@@@@@@@??@@@H?7@@@5??3@@@??@@@@@@@@@@@@@@@@@@@@@@@@@@@e@@@@@@@@@@@@e@@@@@@@@@@@@@@@@@@@@@@@??@@@H?7@@@@@@@@@@@@@@@@@@@@@@@@@@??@@??@@@@@@@@@@@@@@@@??@@@@??@@@@@@@@@@@e@@6XV'@@@@@@@@e@@@@@@@@@@@@@@@@@@@@@@@@@@e@? @@@, ?@@?hf@@@@he@@e?7@He?J@@L?e@@ ?@@?he?@@? @@e?7@H @@e@@ @@f@@he?@@??I')X?g?@@? ?@@?hf?
@@@5e3@@@@@@@@@@@@@@??@@@@@@@@@@@@@@5e3@@@H??N@@@??@@@@@@@@@@@@@@@@@@@@@@@@@@5e3@@@@@@@@@@@e@@@@@@@@@@@@@@@@@@@@@@@??@@5e3@@@@@@@@@@@@@@@@@@@@@@@@@5??3@??@@@@@@@@@@@@@@@@??@@@@??@@@@@@@@@@@e@@@1?N@@@@@@@@e@@@@@@@@@@@@@@@@@@@@@@@@@@e@? ?W(Y J@@L @@ J@@Le?7@@1?e@@ J@@Lhe?@@? @@eJ@@L ?J@@L?@@ @@f@@he?@@?eN@1?g?@@? ?@@?hf?
@@(MeI'@?e?@e@@@@@@@@@@@??@@@@@@@@@@??@@?e?@@@f@@@?e?I'@(MeI'@(M??I'@fI'@?e?@e@@@@@@@@e@@@@@@@@@(M??I'@(MeI'@??@@?e?@@@@@@@hI'@(M??I'@f@?e?I'@(MeI'@(M?e?@@@@??@@@@(M??I'@e@@@@e@(M??I'@fI'@??@@??@(Mf@@@@@@@@ @? W.Y? ?W2@@6X?@@@@?@@?he@@he@@e@@@@e?@@@@?e@@@@6X?W2@@6X?W2@@6X?@@@@6X?@@@@?@@?g?@@?hW2@@6X?W2@@6X?@@e@@@@g?@@@@@@@@6X?W2@@6X?@@@@?@@@@6X?W2@@6X?W2@@@@f@@fW2@@6X?@@?e?@@?W2@@6X?@@@@6X?@@e@@?W2@@@@?g?@@?hf?
@@YO2@?N@1e7@e@@@@@@@@@@@??@@@@@@@@@@??@@1e7@@5?@@?3@@??@@?N@H?@6KV@H?@@?N@e@@?N@1e7@e@@@@@@@@e@@@@@@@@@H?@6KV@H?@@?N@??@@1e7@@@@@@@e@@e@@?N@H?@@?N@1??7@??@@?N@H?@@?N@H?@@??@@@@??@@@@H?@@?N@e@@@@e@H?@@?N@e@@?N@??@@??@H?@@e@@@@@@@@e@? ?W.Y ?&0M?@1?N@@H?@@?he@@he@@eN@@HeJ@e@Le@@e@1?7@?I4)?7@e@1?@@??@1?N@@H?@@?g?@@?h7@?I4)?7@??@1?@@eN@@Hg?@@??@@??@1?7@e@1?N@@H?@@e@1?7@??@1?7@e@@f@@f7@e@1?@@?e?@@?7@e@1?@@??@1?@@e@@?7@??@@?g?@@?hf?
@@e@@e@@@@@@@@@@@@@@@??@@@@@@@@@@??@@@e@@@H?@@?N@@??@@??@L?@@@@@??@@??@e@@e@@e@@@@@@@@@@@@e@@@@@@@@@L?@@@@@e@@e@??@@@e@@@@@@@@e@@e@@e@??@@??@@??@@??@@??@e@@e@??@@??@@@@??@@@@??@@??@e@@@@e@??@@??@e@@e@??@@??@e@@e@@@@@@@@e@? W.Y? ?@@??@@? @@he@@e?@@?e7@e@1e@@e@@?3@?f@@e@@?@@??@@??@@?he?@@?h3@f?@@??@@?@@e?@@?g?@@??@@??@@?@@e@@e@@e@@e@@?@@??@@?@@e@@f@@f@@e@@?@@?e?@@?@@e@@?@@??@@?@@e@@?@@??@@?g?@@?hf?
@@(Mf@@e@@@@@@@@@@@@@@@??@@@@@@@@@@??@@@e@@@??@@??@@??@@??@)KeI'@?f?@e@@e@@e@@@@@@@@@@@@e@@@@@@@@@)K??I'@g@??@@@e@@@@@@@@e@@e@@e@?f?@@??@@??@@??@e@@e@??@@??@@@@??@@@@??@@??@e@@@@e@?f?@e@@e@??@@??@e@@e@@@@@@@@e@? ?W.Y ?W2@@@@??@@? @@he@@e?@@?e@@e@@e@@e@@?V4@@6X?@@@@@@?@@??@@??@@?he?@@?hV4@@6X?@@@@@@?@@e?@@?g?@@??@@??@@?@@@@@@e@@e@@e@@?@@??@@?@@e@@f@@f@@e@@?@@?e?@@?@@@@@@?@@??@@?@@e@@?@@??@@?g?@@?hf?
@@H?@@e@@e@@@@@@@@@@@@@@@??@@@@@@@@@@??@@@e@@5?f?3@??@@??@@@@@?N@??@@@@@e@@e@@e@@@@@@@@@@@@e@@@@@@@@@@@@@?N@e@@@@@??@@@e@@@@@@@@e@@e@@e@??@@@@@@??@@??@@??@e@@e@??@@??@@@@??@@@@??@@??@e@@@5?J@??@@@@@e@@e@??@@??@e@@e@@@@@@@@e@? W.Y? ?7@??@@??@@? @@he@@e?@@??J@@@@@@L?@@e@@f?@1?@@f?@@??@@??@@?he?@@?hf@1?@@?f@@e?@@?g?@@??@@??@@?@@g@@e@@e@@?@@??@@?@@e@@f@@f@@e@@?@@?eJ@5?@@f?@@??@@?@@e@@?@@??@@?g?@@?hf?
@@L?@@e@@L?3@e@@@@@@@@@@@??@@@@@@@@@@??@@@e@@H?@@@@?N@??@@?J@XI4@?J@L?@0MW@e@@e@@L?3@e@@@@@@@@e@@@@@@@@@XI4@?J@L?@0MW@L?3@@e@@@@@@@@e@@e@@e@L?@0MW@@L?3@??@@??@L?@@?J@L?@@??@@@@??@@@@L?@@?J@e@@0YW&@L?@0MW@e@@?J@L?@@??@L?@@e@@@@@@@@e@?@@ ?W.Y ?3@??@@??3@L?@@?he@@he@@e?@@??7@?e?@1?@@e@5?'6K?@5?3@?O2(?@@??@@??3@L?@@?g?@@?h'6K?@5?3@?O2(?3@L??@@?g?@@??@@??@@?3@?O2(e3@L?@@e@@?3@??@5?3@e@@f@@f3@e@5?@@??O&(Y?3@?O2(?@@??@5?3@e@@?3@??@@?g?@@??@@?h?
@@)Kf@@)KV@e@@@@@@@@@@@??@@@@@@@@@@??@@@e@@e@@@@e@?e?O&@)KeO&@)K??O&@e@@e@@)KV@e@@@@@@@@e@@@@@@@@@)K??O&@)KeO&@)KV@@e@@@@@@@@e@@e@@e@)K??O&@@)KV@??@@??@)KeO&@)K?e?@@@@??@@@@)K??O&@f?O&@@)K??O&@fO&@)K?e?@)Kf@@@@@@@@e@?@@ ?.Y? ?V4@@@@??V4@?@@?he@@he@@e?@@??@@?e?@@?@@@@0Y?V4@@0Y?V4@@0Y?@@??@@??V4@?@@?g?@@?hV4@@0Y?V4@@0Y?V4@??@@?g?@@??@@??@@?V4@@0YeV4@?@@e@@?V4@@0Y?V4@@@@f@@fV4@@0Y?@@@@@0YeV4@@0Y?@@@@0Y?V4@@@@?V4@@@@?g?@@??@@?h?
@@e3@@@e@@@@@@@5e@? ?@@L ?@@?gJ@@?hf?
@@eV@@@XI4@?J@@@@@@@Ye@? ?@@@ ?'6K?@5?g@@@?hf?
@@)KeO&@@@@@@@@@@@? ?V4@@0Y? ?
@@@? ?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

@@@? ?
@@@? ?

@@e?W2@ ?@@? @@f?@@?hf@@ @@ @@@@@@@@@@@@@@@??@@@(MW@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e@@@@@@@@@@@@@@@@@??@@@@@e@@@@@@@@@@@@@??@@@@@@@@@@@@@@@@? ?
@@e?7@H ?@@??@@? @@L?eJ@@?h@@e@@ @@ @@@@@@@@@@@@@@@??@@@H?7@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e@@e@@@@@@@@@@@@@@@@@??3@@@5e@@@@@@@@@??@@??@@@@@@@@@@@@@@@@? ?
@@eJ@@L J@@L?@@? @@1?e7@@?g?J@@L?@@ @@ @@@@@@@@@@@@@@@??@@5e3@@@@@@@@@@@@@@@@@@@@@@@@@@@@5e3@e@@@@@@@@@@@@@@@@@??N@@@He@@@@@@@@5??3@??@@@@@@@@@@@@@@@@? ?

W2@@6X?W2@@6X?@@e@@@@g?W2@@6X?@@@@6X?W2@@6X?@@@@?@@@@6X?W2@@6X?@@@(?@@@L?J@@@?W2@@6X?@@@@?@@@@6X?W2@@6X?W2@@@@ @(M??I'@(MeI'@??@@?e?@@@@@@@(MeI'@?e?I'@(MeI'@?e?@fI'@(M??I'@e?W@?e3@5?e@(M??I'@f@?e?I'@(MeI'@(M? ?
7@?I4)?7@??@1?@@eN@@Hg?&0M?@1?@@e@1?7@??@1?N@@H?@@??@1?7@e@1?@@(Y?@@@1?7@@@?7@e@1?N@@H?@@e@1?7@??@1?7@e@@ @H?@6KV@H?@@?N@??@@1e7@@@@@@@YO2@?N@??@@?N@H?@@?N@1e7@e@@?N@H?@@?N@eW&@?eN@H?e@H?@@?N@1??7@??@@?N@H?@@?N@H?@@? ?
3@f?@@??@@?@@e?@@?he?@@?@@e@@?@@??@@??@@??@@??@@?@@e@@?@@He@@?@?@?@@?@@e@@e@@e@@e@@?@@??@@?@@e@@ @L?@@@@@e@@e@??@@@e@@@@@@@@@@@@e@??@@??@e@@e@@e@@e@@e@??@@??@e7@@??@?@?@e@??@@??@@??@@??@@??@e@@e@??@@? ?
V4@@6X?@@@@@@?@@e?@@?g?W2@@@@?@@e@@?@@??@@??@@??@@??@@?@@@@@@?@@?e@@?3@5?@@?@@@@@@e@@e@@e@@?@@??@@?@@e@@ @)K??I'@g@??@@@e@@@@@@@@(Mf@??@@??@e@@e@@e@@e@@e@?f?@e@@@??@L?J@e@?f?@@??@@??@@??@e@@e@??@@? ?

@1?@@?f@@e?@@?g?7@??@@?@@e@@?@@??@@??@@??@@??@@?@@f?@@?e@@?N@H?@@?@@g@@e@@e@@?@@??@@?@@e@@ @@@@@?N@e@@@@@??@@@e@@@@@@@@H?@@e@??@@??@e@@e@@e@@e@@e@??@@@@@e@@@??@1?7@e@??@@@@@@??@@??@@??@e@@e@??@@? ?
'6K?@5?3@?O2(?3@L??@@?g?3@??@@?@@e@@?3@??@5??3@L?@@??@@?3@?O2(?@@?e@@e@??@@?3@?O2(e3@L?@@e@@?3@??@5?3@e@@ @XI4@?J@L?@0MW@L?3@@e@@@@@@@@L?@@e@??@@??@L?@@?J@@L?3@e@@e@L?@0MW@e@@@??@@?@@e@L?@0MW@@L?3@??@@??@L?@@?J@L?@@? ?
V4@@0Y?V4@@0Y?V4@??@@?g?V4@@@@?@@e@@?V4@@0Y??V4@?@@??@@?V4@@0Y?@@?e@@f?@@?V4@@0YeV4@?@@e@@?V4@@0Y?V4@@@@ @)K??O&@)KeO&@)KV@@e@@@@@@@@)Kf@??@@??@)KeO&@@)KV@e@@e@)K??O&@e@@@??@@@@@e@)K??O&@@)KV@??@@??@)KeO&@)K? ?

@@@? ?
@@@? ?
@@@? ?
@@@? ?

?
?
?
?
?
?
?
?
?
?
?
?

?@ ?W-X ?
?@ W&@)X? ?
?@ ?W.Y@V/X ?
?@ W.Y?@?V/X? ?
?@ ?W.Ye@??V/X ?
?@ W.Y?e@?eV/X? ?
?@ ?W.Yf@?e?V/X ?
?@ W.Y?f@?fV/X? ?
?@ ?W.Yg@?f?V/X ?
?@ W.Y?g@?gV/X? ?
?@ ?W.Yh@?g?V/? ?
?@ W.Y?h@? ?
?@ .Yhe@? ?
?@ @@@@@@@@@@@? ?@@? @? ?
?@ ?J(Me@??W(Y@? ?N@? @? ?
?@ ?.Y??J5??.YJ5? ?J5? @?hf?@@@@@@@@@@@ @@ ?
?@ ?7H?e?7H? ?7H? @?hfJ(M??@eW(Y@ N@ ?
?@ ?@f?@?W2@e@6T2@??O2@6X?W2@e?@e?O2@@@@??@?W2@ @?hf.YeJ5e.YJ5 J5 ?
?@ J5fJ@T.Y@e?@(R'?@(M?B1?*>5eJ5e@(M??@H?J@T.Y@ @? 7Hf7H 7H ?
?@ 7Hf7>(YJ5e7(Y??J(Ye?@?N@He7He@HeJ5e7>(YJ5 @? @?f@?W2@??@6T2@eO2@6X?W2@?e@?eO2@@@@e@?W2@? ?
?@ @?f@(Y?7He@He?7H?eJ5e@??J@?e3=?O.Ye@(Y?7H @? ?J5?e?J@T.Y@?e@(R'?@(M?B1?*>5??J5??@(Me@H?J@T.Y@? ?
?@ ?J5?e?J(Y?J@L?J5?e?@e?W&H?J5?W&@LeS@@0Y??J(Y?J@L @? ?7H?e?7>(YJ5??7(YeJ(Y?e@?N@H??7H??@H??J5??7>(YJ5? ?
?@ W&Y?e?7H??7>,?7H?e?3=?O&@??7YO&@S,e7Yf?7H??7>, @? ?@f?@(Y?7H??@H?e7He?J5??@eJ@e?3=?O.Y??@(Y?7H? ?
?@ &@@@e?@e?@0Y?@f?V4@0Me?@@0R40Y?J@@@6K??@e?@0Y @? J5fJ(Y?J@L?J5f@?eW&H?J5?W&@L??S@@0YeJ(Y?J@L? ?
?@ ?7<??I'@ @?hf?W&Yf7He7>,?7Hf3=?O&@e7YO&@S,??7Y?f7He7>,? ?
?@ ?3=?eS5 @?hf?&@@@?e@?e@0Y?@?fV4@0M?e@@0R40Y?J@@@6Ke@?e@0Y? ?
?@ ?V4@@@0Y @? 7<eI'@? ?
?@ @? 3=e?S5? ?
?@ @? V4@@@0Y? ?
?@ @? ?
?@ @? ?

?/X?h?@heW. @? ?
?V/Xh?@h?W.Y @? ?
V/X?g?@hW.Y? @? ?
?V/Xg?@g?W.Y @? ?
V/X?f?@gW.Y? @? ?
?V/Xf?@f?W.Y @? ?
V/X?e?@fW.Y? @? ?
?V/Xe?@e?W.Y @? ?
V/X??@eW.Y? @? ?
?V/X?@?W.Y @? ?
V/X@W.Y? @? ?
?V'@(Y @? ?
V+Y? @? ?

?
?
?
?
?
?
?
?
?
?

?@@?f@@hf?@@? ?@@? ?
?@@Le?J@@h?@@??@@? ?@@? ?
?@@1e?7@@hJ@@L?@@? ?@@? ?

@@f?@@?hf@@ @@ ?@@@@@@@@6X?@@e@@?@@@L?J@@@?W2@@6X?@@@@?@@@@6X?W2@@6X?W2@@@@? ?
@@L?eJ@@?h@@e@@ @@ ?@@??@@??@1?@@e@@?@@@1?7@@@?7@??@1?N@@H?@@??@1?7@e@1?7@??@@? ?
@@1?e7@@?g?J@@L?@@ @@ ?@@??@@??@@?@@e@@?@@?@?@?@@?@@??@@??@@??@@??@@?@@e@@?@@??@@? ?

@@@@@@@@6X?@@??@@?@@@L?J@@@?W2@@6X?@@@@?@@@@6X?W2@@6X?W2@@@@ ?@@??@@??@@?@@e@@?@@?3@5?@@?@@@@@@??@@??@@??@@?@@e@@?@@??@@? ?
@@e@@e@1?@@??@@?@@@1?7@@@?7@e@1?N@@H?@@e@1?7@??@1?7@e@@ ?@@??@@??@@?@@e@@?@@?N@H?@@?@@?f?@@??@@??@@?@@e@@?@@??@@? ?
@@e@@e@@?@@??@@?@@?@?@?@@?@@e@@e@@e@@e@@?@@??@@?@@e@@ ?@@??@@??@@?3@e@@?@@??@e@@?3@?O2(??3@L?@@??@@?3@e@5?3@??@@? ?
@@e@@e@@?@@??@@?@@?3@5?@@?@@@@@@e@@e@@e@@?@@??@@?@@e@@ ?@@??@@??@@?V4@@@@?@@?f@@?V4@@0Y??V4@?@@??@@?V4@@0Y?V4@@@@? ?
@@e@@e@@?@@??@@?@@?N@H?@@?@@g@@e@@e@@?@@??@@?@@e@@ @@ ?
@@e@@e@@?3@??@@?@@e@??@@?3@?O2(e3@L?@@e@@?3@??@5?3@e@@ '6K?@5 ?
@@e@@e@@?V4@@@@?@@f?@@?V4@@0YeV4@?@@e@@?V4@@0Y?V4@@@@ V4@@0Y ?

?@@? ?
?'6K?@5? ?
?V4@@0Y? ?

?
?
?
?
?
?
?
?
?
?
?
?
?

@@@@@@@@@@@? ?@@? ?
?J(Me@??W(Y@? ?N@? ?
?.Y??J5??.YJ5? ?J5? ?

?7H?e?7H? ?7H? ?@@?eW2@? @@@@@6X?e@@ ?@@? ?
?@f?@?W2@e@6T2@??O2@6X?W2@e?@e?O2@@@@??@?W2@ ?@@?e7@H? @@eI')Xe@@he@@e?@@? ?
J5fJ@T.Y@e?@(R'?@(M?B1?*>5eJ5e@(M??@H?J@T.Y@ ?@@??J@@L? @@e?N@1hf?J@@L? ?

@@e?W2@ ?@@@@@6Xe?@@? @@ 7Hf7>(YJ5e7(Y??J(Ye?@?N@He7He@HeJ5e7>(YJ5 ?W2@@6X?W2@@6X?@@??@@@@?g@@@@@@@@6X?@@??@@?@@f@@e@@eW2@@6X?@@@@??@@??W2@@6X?@@@@6X?W2@@6X?@@@(?@@??@@? ?
@@e?7@H ?@@??I')X??@@?h?@@?e@@ @?f@(Y?7He@He?7H?eJ5e@??J@?e3=?O.Ye@(Y?7H ?7@?I4)?7@e@1?@@??N@@H?g@@e@@e@1?@@??@@?@@f@@e@@e7@?I4)?N@@H??@@??7@??@1?@@e@1?&0M?@1?@@(Y?@@??@@? ?
@@eJ@@L ?@@?eN@1?hfJ@@L ?J5?e?J(Y?J@L?J5?e?@e?W&H?J5?W&@LeS@@0Y??J(Y?J@L ?3@?f@@e@@?@@?e@@h@@e@@e@@?@@??@@?@@f@@e@@e@@g@@e?@@??@@??@@?@@e@@f?@@?@@H??@@??@@? ?

W2@@6X?W2@@6X?@@e@@@@g?@@@@@@@@6X?@@e@@?@@?e?@@??@@??W2@@6X?@@@@e@@eW2@@6X?@@@@6X?W2@@6X?@@@(?@@e@@ W&Y?e?7H??7>,?7H?e?3=?O&@??7YO&@S,e7Yf?7H??7>, ?V4@@6X?@@@@@@?@@?e@@h@@e@@e@@?@@??@@?@@f@@e@@e@@g@@e?@@??@@??@@?@@e@@?W2@@@@?@@e?@@??@@? ?
7@?I4)?7@??@1?@@eN@@Hg?@@??@@??@1?@@e@@?@@?e?@@??@@??7@?I4)?N@@He@@e7@e@1?@@??@1?&0M?@1?@@(Y?@@e@@ &@@@e?@e?@0Y?@f?V4@0Me?@@0R40Y?J@@@6K??@e?@0Y ?@1?@@f?@@?e@@h@@e@@e@@?@@??@@?@@e?J@5e@@e@@g@@e?@@??@@??@@?@@e@@?7@??@@?@@e?@@??@@? ?
3@f?@@??@@?@@e?@@?g?@@??@@??@@?@@e@@?@@?e?@@??@@??@@?f?@@?e@@e@@e@@?@@??@@?f@@?@@He@@e@@ ?7<??I'@ ?'6K?@5?3@?O2(?3@Le@@h@@e@@e@@?3@??@@?@@eO&(Ye@@e3@?O2(e3@L??@@??3@??@5?@@e@@?3@??@@?@@e?3@??@@? ?
V4@@6X?@@@@@@?@@e?@@?g?@@??@@??@@?@@e@@?@@?e?@@??@@??@@?f?@@?e@@e@@e@@?@@??@@?W2@@@@?@@?e@@e@@ ?3=?eS5 ?V4@@0Y?V4@@0Y?V4@e@@h@@e@@e@@?V4@@@@?@@@@@0Y?e@@eV4@@0YeV4@??@@??V4@@0Y?@@e@@?V4@@@@?@@e?V4@@@@? ?

@1?@@?f@@e?@@?g?@@??@@??@@?@@e@@?@@?eJ@5??@@??@@?f?@@?e@@e@@e@@?@@??@@?7@e@@?@@?e@@e@@ ?V4@@@0Y ?@@? ?@@? ?
'6K?@5?3@?O2(?3@L??@@?g?@@??@@??@@?3@e@@?@@??O&(Y??@@??3@?O2(??3@Le@@e3@e@5?@@??@@?3@e@@?@@?e3@e@@ ?'6K?@5? ?'6K?@5? ?
V4@@0Y?V4@@0Y?V4@??@@?g?@@??@@??@@?V4@@@@?@@@@@0Ye?@@??V4@@0Y??V4@e@@eV4@@0Y?@@??@@?V4@@@@?@@?eV4@@@@ ?V4@@0Y? ?V4@@0Y? ?

@@ @@ ?
'6K?@5 '6K?@5 @@he?
V4@@0Y V4@@0Y ?/X? @??W@@X??@he?

?V/X ?O2@he@@e?W2@f@@f@@ @??7@@@@@@@@@@@@@@@@@@@@@@e@@@(MW@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e@@@@@@@@@@@@@@@@e@?g?@@@@@@@@?fI'@@@@@@@@@??@@@@@@@@@@@@@@@@@@@@@@@@@1??@he?
@@ V/X? ?@@?hf@@@@he@@e?7@He?J@@L?e@@ ?@@?he@??@@@@@@@@@@@@@@@@@@@@@@@e@@@H?7@@@@@@@@@@@@@@@@@@@@@@@@@@e@@e@@@@@@@@@@@@@@@@e@@@@e@@@@@@@@@@@??@@6XV'@@@@@@@@??@@@@@@@@@@@@@@@@@@@@@@@@@@??@he?

@@@?g@@g?@@@ ?V/X J@@L @@ J@@Le?7@@1?e@@ J@@Lhe@??@@@@@@@@@@@@@@@@@@@@@@@e@@5??3@@@@@@@@@@@@@@@@@@@@@@@@@5e3@e@@@@@@@@@@@@@@@@e@@@@e@@@@@@@@@@@??@@@1?N@@@@@@@@??@@@@@@@@@@@@@@@@@@@@@@@@@@??@he?
O2@?h?@@?eW2@?e?@@?e?@@? @@H?g@@@@@@@@@@@@@@@??@@@(MW@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@??@@@@@@@@@@@@@@@@??@h@@@@@@@@f?I'@@@@@@@@@e@@@@@@@@@@@@@@@@@@g?N@@ V/X? ?W2@@6X?@@@@?@@?he@@he@@e@@@@e?@@@@?e@@@@6X?W2@@6X?W2@@6X?@@@@6X?@@@@?@@?g@??@@@@@@@@@(MeI'@(M??I'@e@@f@@@@@@@?g?I'@(MeI'@?e?@fI'@(M??I'@(Mf@@@@e@@@@(MeI'@??@@@@??@(MeI'@?e?I'@e@@e@(M?e?@@@@@@@@??@he?

@@hf?@@@@?h?@@?e7@H?eJ@@Le?@@? @@hf@@h@@@@@@@@@@@@@@@??@@@H?7@@@@@@@@@@@@@@@@@@@@@@@@@@??@@??@@@@@@@@@@@@@@@@??@@@@??@@@@@@@@@@@e@@6XV'@@@@@@@@e@@@@@@@@@@@@@@@@@@h@@ ?V/X ?&0M?@1?N@@H?@@?he@@he@@eN@@HeJ@e@Le@@e@1?7@?I4)?7@e@1?@@??@1?N@@H?@@?g@??@@@@@@@@@H?@6KV@H?@@?N@e@@1??7@@@@@@@??@@??@@?N@H?@@?N@1e7@e@@?N@H?@@?N@H?@@e@@@@e@@@@H?@@?N@??@@@@??@H?@@?N@??@@?N@e@@e@H?@@??@@@@@@@@??@he?
?J@@L?hf?@@?hf?J@@L?e7@@1e?@@? ?J@@L?he@@h@@@@@@@@@@@@@@@??@@5e3@@@@@@@@@@@@@@@@@@@@@@@@@5??3@??@@@@@@@@@@@@@@@@??@@@@??@@@@@@@@@@@e@@@1?N@@@@@@@@e@@@@@@@@@@@@@@@@@@h@@ V/X? ?@@??@@? @@he@@e?@@?e7@e@1e@@e@@?3@?f@@e@@?@@??@@??@@?he@??@@@@@@@@@L?@@@@@??@@??@e@@@??@@@@@@@@??@@??@@??@e@@e@@e@@e@@e@??@@??@e@@e@@@@e@@@@e@@e@??@@@@??@e@@e@??@@??@e@@e@??@@??@@@@@@@@??@he?

W2@@6X?@@@@?@@he?@@?h?@@??@@@@?e@@@@e?@@@@6X?W2@@6X?W2@@6X?@@@@6X?@@@@?@@h@@h@(M??I'@(MeI'@??@@?e?@@@@@@@hI'@(M??I'@f@?e?I'@(MeI'@(M?e?@@@@??@@@@(M??I'@e@@@@e@(M??I'@fI'@??@@??@(Mhf@@ ?V)X ?W2@@@@??@@? @@he@@e?@@?e@@e@@e@@e@@?V4@@6X?@@@@@@?@@??@@??@@?he@??@@@@@@@@@)KeI'@?f?@e@@@??@@@@@@@@??@@??@@??@g@@e@@e@@e@??@@??@e@@e@@@@e@@@@e@@e@??@@@@??@g@??@@??@e@@e@??@@??@@@@@@@@??@he?
&0M?@1?N@@H?@@he?@@?h?@@??N@@H??J@??@L??@@??@1?7@?I4)?7@??@1?@@e@1?N@@H?@@h@@h@H?@6KV@H?@@?N@??@@1e7@@@@@@@e@@e@@?N@H?@@?N@1??7@??@@?N@H?@@?N@H?@@??@@@@??@@@@H?@@?N@e@@@@e@H?@@?N@e@@?N@??@@??@H?@@he@@ @@@, ?7@??@@??@@? @@he@@e?@@??J@@@@@@L?@@e@@f?@1?@@f?@@??@@??@@?he@??@@@@@@@@@@@@@?N@??@@@@@e@@@??@@@@@@@@??@@??@@??@e@@@@@@e@@e@@e@??@@??@e@@e@@@@e@@@@e@@e@??@@@5?J@e@@@@@??@@??@e@@e@??@@??@@@@@@@@??@he?

@@e@@ ?@@?h?@@?e@@e?7@??@1??@@??@@?3@f?@@??@@?@@e@@e@@hf@@h@L?@@@@@e@@e@??@@@e@@@@@@@@e@@e@@e@??@@??@@??@@??@@??@e@@e@??@@??@@@@??@@@@??@@??@e@@@@e@??@@??@e@@e@??@@??@e@@he@@ ?W(Y ?3@??@@??3@L?@@?he@@he@@e?@@??7@?e?@1?@@e@5?'6K?@5?3@?O2(?@@??@@??3@L?@@?g@??@@@@@@@@@XI4@?J@L?@0MW@L?3@@??@@@@@@@@??@@??@@??@L?@0MW@@L?3@e@@e@L?@@?J@L?@@e@@@@e@@@@L?@@?J@??@@0YW&@L?@0MW@??@@?J@L?@@e@L?@@??@@@@@@@@??@?@@?g?
W2@@@@e@@ ?@@?h?@@?e@@e?@@??@@??@@??@@?V4@@6X?@@@@@@?@@e@@e@@hf@@h@)K??I'@g@??@@@e@@@@@@@@e@@e@@e@?f?@@??@@??@@??@e@@e@??@@??@@@@??@@@@??@@??@e@@@@e@?f?@e@@e@??@@??@e@@he@@ W.Y? ?V4@@@@??V4@?@@?he@@he@@e?@@??@@?e?@@?@@@@0Y?V4@@0Y?V4@@0Y?@@??@@??V4@?@@?g@??@@@@@@@@@)KeO&@)K??O&@)KV@@??@@@@@@@@??@@??@@??@)KeO&@@)KV@e@@e@)K??O&@)Kf@@@@e@@@@)KeO&@?fO&@@)KeO&@?e?O&@)Kf@)K?e?@@@@@@@@??@?@@?g?
7@e@@e@@ ?@@?h?@@?e@@eJ@@@@@@L?@@??@@?f@1?@@?f@@e@@e@@hf@@h@@@@@?N@e@@@@@??@@@e@@@@@@@@e@@e@@e@??@@@@@@??@@??@@??@e@@e@??@@??@@@@??@@@@??@@??@e@@@5?J@??@@@@@e@@e@??@@??@e@@he@@ ?W.Y @??3@@@??@@@@@@@5??@he?
3@e@@e3@L?@@he?@@?h?@@?e@@e7@f@1?@@??@5?'6K?@5?3@?O2(?@@e@@e3@L?@@h@@h@XI4@?J@L?@0MW@L?3@@e@@@@@@@@e@@e@@e@L?@0MW@@L?3@??@@??@L?@@?J@L?@@??@@@@??@@@@L?@@?J@e@@0YW&@L?@0MW@e@@?J@L?@@??@L?@@he@@e@@ W.Y? @??V@@@XI4@?J@@@@@@@Y??@he?
V4@@@@eV4@?@@he?@@?h?@@?e@@e@@f@@?@@@@0Y?V4@@0Y?V4@@0Y?@@e@@eV4@?@@h@@h@)K??O&@)KeO&@)KV@@e@@@@@@@@e@@e@@e@)K??O&@@)KV@??@@??@)KeO&@)K?e?@@@@??@@@@)K??O&@f?O&@@)K??O&@fO&@)K?e?@)Khf@@e@@ ?W.Y @@@)K??O&@@@@@@@@@@@he?

@@L?g@@h?J@@ W.Y? @@he?
@@@?g@@XI4@h?@@@ ?W.Y ?

@@)KeO@ ?.Y? ?
@@ ?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?@@?eW2@? @@ ?@@?f@@hf?@@? ?@@? ?
?@@?e7@H? @@e@@ ?@@Le?J@@h?@@??@@? ?@@? ?
?@@??J@@L? ?J@@L?@@ ?@@1e?7@@hJ@@L?@@? ?@@? ?

@@e?W2@ ?@@? @@f?@@?hf@@ @@ ?W2@@6X?W2@@6X?@@??@@@@?gW2@@6X?@@@@6X?W2@@6X?@@@@?@@@@6X?W2@@6X?@@@(?@@@L?J@@@?W2@@6X?@@@@?@@@@6X?W2@@6X?W2@@@@? ?
@@e?7@H ?@@??@@? @@L?eJ@@?h@@e@@ @@ ?7@?I4)?7@e@1?@@??N@@H?g&0M?@1?@@??@1?7@e@1?N@@H?@@e@1?7@??@1?@@(Y?@@@1?7@@@?7@??@1?N@@H?@@??@1?7@e@1?7@??@@? ?
@@eJ@@L J@@L?@@? @@1?e7@@?g?J@@L?@@ @@ ?3@?f@@e@@?@@?e@@hf@@?@@??@@?@@e@@e@@e@@e@@?@@??@@?@@H??@@?@?@?@@?@@??@@??@@??@@??@@?@@e@@?@@??@@? ?

W2@@6X?W2@@6X?@@e@@@@g?W2@@6X?@@@@6X?W2@@6X?@@@@?@@@@6X?W2@@6X?@@@(?@@@L?J@@@?W2@@6X?@@@@?@@@@6X?W2@@6X?W2@@@@ ?V4@@6X?@@@@@@?@@?e@@hW2@@@@?@@??@@?@@e@@e@@e@@e@@?@@@@@@?@@e?@@?3@5?@@?@@@@@@??@@??@@??@@?@@e@@?@@??@@? ?
7@?I4)?7@??@1?@@eN@@Hg?&0M?@1?@@e@1?7@??@1?N@@H?@@??@1?7@e@1?@@(Y?@@@1?7@@@?7@e@1?N@@H?@@e@1?7@??@1?7@e@@ ?@1?@@f?@@?e@@h7@e@@?@@??@@?@@e@@e@@e@@e@@?@@?f@@e?@@?N@H?@@?@@?f?@@??@@??@@?@@e@@?@@??@@? ?
3@f?@@??@@?@@e?@@?he?@@?@@e@@?@@??@@??@@??@@??@@?@@e@@?@@He@@?@?@?@@?@@e@@e@@e@@e@@?@@??@@?@@e@@ ?'6K?@5?3@?O2(?3@Le@@h3@e@@?@@??@@?3@e@5e3@L?@@e@@?3@?O2(?@@e?@@??@e@@?3@?O2(??3@L?@@??@@?3@e@5?3@??@@? ?
V4@@6X?@@@@@@?@@e?@@?g?W2@@@@?@@e@@?@@??@@??@@??@@??@@?@@@@@@?@@?e@@?3@5?@@?@@@@@@e@@e@@e@@?@@??@@?@@e@@ ?V4@@0Y?V4@@0Y?V4@e@@hV4@@@@?@@??@@?V4@@0YeV4@?@@e@@?V4@@0Y?@@e?@@?f@@?V4@@0Y??V4@?@@??@@?V4@@0Y?V4@@@@? ?

@1?@@?f@@e?@@?g?7@??@@?@@e@@?@@??@@??@@??@@??@@?@@f?@@?e@@?N@H?@@?@@g@@e@@e@@?@@??@@?@@e@@ ?
'6K?@5?3@?O2(?3@L??@@?g?3@??@@?@@e@@?3@??@5??3@L?@@??@@?3@?O2(?@@?e@@e@??@@?3@?O2(e3@L?@@e@@?3@??@5?3@e@@ ?
V4@@0Y?V4@@0Y?V4@??@@?g?V4@@@@?@@e@@?V4@@0Y??V4@?@@??@@?V4@@0Y?@@?e@@f?@@?V4@@0YeV4@?@@e@@?V4@@0Y?V4@@@@ ?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

Figure 1. Depicting how over takes the programmer past the code within
the Dictionary>>at: aKey if Absent: [] block.

The Smalltalk Report4

UNBLOCKING THE DEBUGGER

http://www.sigs.com

grammer wishes to reach the code within the block, they
step into the method. An inexperienced programmer
might then continue to step into each successive mes-
sage until the block’s embedded code is reached. A more
experienced programmer knows to only examine mes-
sages that are likely candidates to evaluate the block. In
both cases, the programmer succeeds once the original
method that contains their source becomes active again.

We shall attempt to automate the behavior of the rook-
ie Smalltalker. The key to our solution will come from an
understanding of the mechanics behind the debugger
and attempting to leverage this to implement the request
“Step into a message with a block and continue to step into each
successive message send until the code within the block is about
to be executed.”

DEBUGGER BASICS
Source code written in Smalltalk is compiled into
instances of CompiledMethod, each of which contains a
stream of bytecodes. Each bytecode is an intermediate
representation of an instruction that is interpreted by the
virtual machine. Instances of class Process execute code,
and the distinguished instance of ProcessorScheduler is
responsible for controlling process execution.1,2,3

The supplied debugger runs in its own process separate
from the method being debugged. It uses the method,

ProcessorScheduler>>debugResume: aProcess when:
aConditionBlock do: aContinueBlock,

to cause the process being debugged to execute until
aConditionBlock evaluates true. Once this has occurred
aContinueBlock is evaluated. While aConditionBlock is being test-
ed the debugger must wait until aContinueBlock is evaluated.
This is achieved with a semaphore, which the process that
the debugger executes waits on, and is signaled by the
ContinueBlock. To ensure that aConditionBlock is tested between
each message send, the messages breakEveryByteCode: true
and useByteCodeMask: true to the process being debugged.
Each process has a number of frames that can be thought of
as a stack of CompiledMethod instances.

THE ENHANCED DEBUGGER
To begin adding our new behavior we will subclass the
supplied debugger and provide a new button “Through.”

EtDebugger subclass: EnhancedDebugger
instanceVariableNames: ‘throughButtonWidget’
classVariableNames: ‘’
poolDictionaries: ‘’

To automate our rookie’s behavior we will use
ProcessorScheduler>>debugResume: aProcess when: aConditionBlock
do:aContinueBlockand construct aConditionBlockthat evaluates true
when the method being debugged is active once more. A
process can derive its active method using its start frame:

Process>>#activeMethod

^self methodAtFrame: self startFrame

It is equally important to check that it is still possible to
return to the method in which through is being processed.
This is because, during execution, a return may have been
processed, causing the method to be exited.

The test can be accomplished by determining if the
method is still in the frame stack.

Process>>#cannotReturnTo: aMethod

“Loop around the frames and get the method at
each. Return false

if any of these are the method argument”

self startFrame to: self numberOfFrames - 1 do: [:index |
(self methodAtFrame: index) == aMethod

ifTrue: [^false]].
^true

We are ready to implement a method on the enhanced
debugger to process through.

EnhancedDebugger>>#processStepThrough

| sem currentProcess currentMethod |

“don’t continue if selected process is not resumable”
self isSelectedProcessResumable ifFalse: [^self].

“don’t continue if a source change has been specified”
self changeRequest ifFalse: [^self].

“ensure there is a selected method”
self selectTopFrameIfNone.
currentProcess := self selectedProcess.
currentMethod := self selectedMethod.

“Break every byte code of the process and resume execution
until the method is active once more or is not in the method
stack”

currentProcess
breakEveryBytecode: true ;
useBytecodeMask: true.

sem := Semaphore new.
Processor

debugResume: currentProcess
when: [

currentProcess activeMethod == currentMethod or: [
currentProcess cannotReturnTo: currentMethod]]

do: [:hasStackOverflowOccured |
hasStackOverflowOccured

ifTrue: [self removeProcess: currentProcess].
sem signal].

sem wait.

“refresh debugger”
self isOneProcessSelected ifTrue: [self refreshAfterStep].

THROUGH VERSUS OVER
This implementation automates how the rookie program-

mer debugs methods with source as block arguments. If
through is used instead of over to debug a method contain-
ing a block with inlined source, the debugger takes the pro-
grammer straight into the code within the block. Once
inside the block over can be used to step past each mes-
sage send. However, it becomes easy to break out and into
the method internals we are attempting to bypass, by
pressing over after the last message inside the block where
through should have been pressed. With methods that
loop such as Collection>>detect: [] ifNone: [], switching
between through and over to debug each iteration became
an unnecessary distraction, the very thing we are trying to
remove. The through button is needed to perform only our
new processing when it is required, and to process over
otherwise. This way the programmer can repeatedly press
through to visit every message send within their source,
with the over button being the exception required to gen-
uinely skip past the source within a block.

A BETTER SOLUTION
We shall improve our solution by repeating the earlier
principle of observing real life and mimicking it in code.
Understanding as to whether through or over is required
(when using the debugger) comes from looking at the
highlighted portion of the source.

The three situations when through, rather than over, is
required are:

• Sending a message in which the receiver is a block
containing inline source;

• Sending a message in which any one of the arguments
is a block containing inline source; and

• Leaving a block on completion of the inline source.
A segment of highlighted source is equivalent to a

parse node. Different classes of parse node represent dif-
ferent code constructs. Thus, we will ask each parse node
#isThroughRequired and specialize to recognize the three
situations.

The superclass of all parse nodes is EsParseNode. By
default through is not required.

EsParseNode>>#isThroughRequired

^false

The node representing the first two of our code constructs
is EsMessageExpression. The decision is deferred to the
receiver node to determine if it is a block and to the mes-
sage pattern node to determine if any argument is a block.

EsMessageExpression>>#isThroughRequired

^self receiver isThroughRequired
or: [self messagePattern isThroughRequired]

The block node is EsBlock.

EsBlock>>#isThroughRequired

^true

The message pattern node for a keyword message is
EsKeywordPattern. The decision is deferred to each argu-
ment node to determine if any are blocks.

EsKeywordPattern>>#isThroughRequired

self arguments
detect: [:anArgument |

anArgument isThroughRequired]
ifNone: [^false].

^true

The third of our situations is already covered by the block
node EsBlock.

BACK TO THE ENHANCED DEBUGGER
The next step is for the debugger to determine the parse
node for the next message to be sent within the currently
selected method.

EnhancedDebugger>>#currentParseNode

^self parseTree == nil ifFalse: [
self parseTree
nodeWhichContainsPC: (self currentPC: self

selectedFrameIndex)
hasDropped: self selectedProcess hasDropped]

Finally, we are ready to implement a method on the
debugger that will perform through processing when
required and over at all other times. This is the method
that will be called by the through button, allowing the user
to have a single button that permits them to visit every
message sent within their source.

EnhancedDebugger>>#processThrough

| aNode |

aNode := self currentParseNode.

“process as through if selected method is the active method”
(self selectedFrameIndex ==
self selectedProcess startFrame

“and, if node requires through”
and: [aNode notNil and: [aNode isThroughRequired]])

ifTrue: [self processStepThrough]
ifFalse: [self processStepOver]

CHANGING THE USER INTERFACE
The new ‘through’ button is placed between the existing
‘into’ and ‘over’ buttons. To achieve this the method
#createWorkRegion is specialized as follows:

EnhancedDebugger>>#createWorkRegion

super createWorkRegion.

throughButtonWidget := self

The Smalltalk Report6

UNBLOCKING THE DEBUGGER

http://www.sigs.com

newButtonWidget: ‘Through’
selected: #processThrough.

self stepIntoButtonWidget setValuesBlock: [:w |
w rightWidget: throughButtonWidget].

throughButtonWidget setValuesBlock: [:w |
w

topAttachment: XmATTACHOPPOSITEWIDGET;
topWidget: self stepToReturnButtonWidget;
leftAttachment: XmATTACHPOSITION;
leftPosition: 11;
rightAttachment: XmATTACHWIDGET;
rightWidget: self stepOverButtonWidget;
bottomAttachment: XmATTACHWIDGET;
bottomWidget: self textWidget parent].

self stepOverButtonWidget setValuesBlock: [:w |
w leftPosition: 22].

self stepToReturnButtonWidget setValuesBlock:
[:w |w leftPosition: 33].

self resumeButtonWidget setValuesBlock: [:w |
w leftPosition: 44].

To switch over to the enhanced debugger, the following
method must be evaluated on the Transcript.

System startUpClass debuggerClass: EnhancedDebugger

Evaluating with EtDebugger will reset to the original sup-
plied debugger.

LIMITATIONS
The implementation now combines the way the rookie
programmer debugs methods containing source inlined
as blocks, with the decision process made by the more
experienced programmer who knows when such debug-
ging is required.

However, there are two situations to be aware of:

• Exceptions raised while through processing in the
receiving block of methods such as Block>>#when:do:
do not lead to stepping through the exception
handling block code. This situation occurs because
through processing is not required to debug all code
constructs within a block. In these cases the exception
is raised during the supplied over processing.
Therefore, the exception handling block is not stepped
through. Due to a feature of the supplied
implementation of over if an exception is raised, the
debugger reactivates prematurely resulting in a
mismatch between the method being displayed in the
debugger and the active method.

• A performance problem exists if many messages are
sent between the point when through processing
starts and the block that caused through processing to
be required is evaluated. This occurs because through
processing involves executing the intervening code
one bytecode at a time, and this has a performance
overhead. Methods where this is noticeable are rare,
and are generally outside the standard block messages
included with the core IBM Smalltalk. A hypothetical
method of the type that would be affected is
DataBaseFile>>readAt: aKey ifNoRecordFound: []. Here,
many messages will potentially be sent before the
block is evaluated.

CONCLUSIONS
The enhanced debugger fulfills all the initial goals, namely
to enable the developer to focus on tracing the execution of
the code in which they are interested. To see how effective it
can be try to debug the method shown in Figure 2, with
and without the use of the through button. All of the
code required to implement the debugger is included in
this article, and can also be downloaded from the Visual
Age CompuServe member-supplied forum, and from
ftp://ftp.smalltalk.com/pub/ibm.smalltalk/win_debug.zip.
Having used the through button for some time we now
find it to be an invaluable aid to debugging. We hope you
will find it as useful, and we welcome all feedback.

The authors would like to thank Tim Morrison of Unity
Software and David Cotton for their imput in preparing
this article, as well as Doug Shaker of The Smalltalk Store
for putting the source code on his ftp server.

References
1. Goldberg, Adele, and Robson, David, Smalltalk-80: The

Language, Addison Wesley ISBN 0-201-13688-0.
2. IBM Smalltalk Programmer’s Reference, SC34-4493-02.
3. Budd, Timothy, A LITTLE SMALLTALK, Addison-

Wesley ISBN 0-201-10698-1, 1987.

Figure 2. Represents a method that shows the effectiveness of the
through button.

S

Joe Winchester and Mark Jones are consultants working for
Computec International, Costa Mesa, CA.They are currently working
on building application frameworks using Visual Age for a healthcare
company.They can be contacted at 103276, 233@Compuserve.com.

The Smalltalk Report8 http://www.sigs.com

I
n the previous article (Smalltalk Report, September, p. 4),
we introduced a point-and-click rule editor that manip-
ulates the ProgramNode tree. We continue to investigate

how it works.

TYPING
The tool’s type system is based on the types as sets of
classes approach used by Graver and Johnson.1,2 A
ProgramNodeType is defined as a set of zero or more
ProgramNodeTypeOptions. A ProgramNodeTypeOption has a class
name and a taxonomy. Taxonomy indicates whether an
exact match with the class is required (isMember) or whether
a subclass can also be used (isKind). For example, a type
option for Boolean or Number has the isKind taxonomy
because these are abstract classes. The ProgramNodeType is
depicted with angle brackets, with a vertical bar between
options, as in <ByteSymbol | (kindOf: Number)>; the vertical
bar is read as or. If kindOf> is notated, the taxonomy is isKind:
otherwise, it is isMember.

A type can be said to satisfy another type. For example,
<kindOf: Number> is satisfied by <Integer>; and <ByteSymbol |
ByteString> is satisfied by <ByteSymbol>. Two types can be
merged by adding their unique type options.

There are two special types, <‘Anything’> and <‘Nothing’>.
<‘Anything’> is shorthand for <kindOf: Object>. <‘Nothing’> has
zero options and is used exclusively for either an out-of-
scope condition, or for an unknown type inside a
nonevaluated block. To illustrate:

[: aBoolean | | t1 |
t1 := ‘abc’.
t1 “<‘Nothing’> out-of-scope” := aBoolean

ifTrue: [^123]
ifFalse: [^#xyz]].

[| t1 |
t1 := ‘abc’.
[t1 “<‘Nothing’> non-evaluated-block”]]

Selector Information. One of the MorphConstructs a
MessageNodeWrapper knows how to perform is Change mes-

sage selector and arguments only (123 + 456 →123 * nil). The
user is usually presented with a set of this construct, with
each element of the set having selector information that
includes the selector, argument types (if any), and the
return type. Where does this set of selector information
come from?

For a given type option of the receiver, if the type-option’s
class is not a business object, the information comes from
hardcoded information on the base classes; otherwise it is
generated from the business-object’s logical-schema
attribute/type specification. The set of selector information
presented to the user is the intersection of sets from all the
type options; therefore, for distant options this may mean
selector information from Object only.

Let’s say the selection is a MessageNodeWrapper of receiv-
er SmallInteger, for example, 123 isNil. The receiver knows
its type (<SmallInteger>), so we ask the class, whose name
we get from the single type option, for selector informa-
tion. This information will come from SmallInteger class
and its superclasses.

This is an example of selector information from the
class side of Number:

^TypedSelector
singleArgumentSelector: #<
receiverRequiredType: ProgramNodeType number
argumentType: ProgramNodeType number
returnType: ProgramNodeType boolean

The selector, required type for receiver, required type for
argument, and return type are all specified (via an instance
of class TypedSelector). Selector information is inherited
and can be overridden. It is specified for operators of those
base classes which are used as business-object attribute
types (e.g. Boolean, ByteString, Number).

OTHER TYPE OPTIONS

ProgramNodeTypeOption lives in a hierarchy:
AbstractProgramNodeTypeOption

ReifiedBlockValueTypeOption (argumentIndex)
ProgramNodeTypeOption (className, taxonomy)

Externalizing
Business-Object Behavior:
More on a Point-and Click Rule Editor

Paul Davidowitz

9http://www.sigs.com

BlockClosureTypeOption (valueType,
argumentTypes)

HomogeneousCollectionTypeOption
(elementType)

HomogeneousCollectionTypeOption describes a homoge-
neous collection, meaning all elements have the same
elementType. Homogeneous can be very flexible, as the
type can be <‘Anything’>, for example. This type option
takes selector information from the instance side, as well
as the class side. An instance of the collection is created
and given one element: a copy of elementType.

Here’s an example of selector information from the
instance side of Collection:

^TypedSelector
singleArgumentSelector: #select:
receiverRequiredType: (ProgramNodeType

homogeneousCollectionOfName: self class name
elementType: self first copy)

argumentType: (ProgramNodeType
blockClosureSingleArgument: self first copy
valueType: ProgramNodeType boolean)

isArgumentPrototyping: true
blockArgumentEvaluator:

MessageWrapperBlockArgumentEvaluator nothingOrLoop
returnType: (ProgramNodeType

homogeneousCollectionOfName: self class name
elementType: self first copy)

The argument of the #select: message is specified as a
block whose single argument is a copy of elementType. The
return type is specified as a collection of this type. Note
that this selector information specifies using a prototype
argument; that is, the argument instead of being nil will be
a block with an argument of the correct type.

ReifiedBlockValueTypeOption is used to determine the
return type of a message. Here’s the selector information
for #ifTrue: from the class side of Boolean:

^TypedSelector
singleArgumentSelector: #ifTrue:
receiverRequiredType: ProgramNodeType boolean
argumentType: (ProgramNodeType

blockClosureNoArgumentsAndValue:
ProgramNodeType anything)

isArgumentPrototyping: true
blockArgumentEvaluator:

MessageWrapperBlockArgumentEvaluator onOrOff
returnType: (ProgramNodeType options:

(OrderedCollection
with: (ReifiedBlockValueTypeOptiononArgumentIndex: 1)
with: ProgramNodeTypeOption nil))

This states that the return type for #ifTrue: consists of type
options for nil, and for the value of the block expected as
the message’s first argument. For example, the type of mes-
sage aBoolean ifTrue: [123] is <UndefinedObject | SmallInteger>;
for aBoolean ifTrue: [‘abc’], it is <UndefinedObject | ByteString>.

TRAVERSAL OF THE WRAPPER TREE
Traversal of the wrapper tree yields valuable information
such as node-wrapper type. Traversal is done in postorder
fashion.

A wrapper knows the order in which to traverse its chil-
dren. For example, A MessageNodeWithArgumentsWrapper has
the child traversal order: {receiver, argument-collection}.

The Block Evaluator. If at least one of the arguments of a
MessageNodeWithArgumentsWrapper is a block defined (via
selector information) as potentially evaluating, we
append pseudo-child MessageWrapperBlockArgument
Evaluator to the child traversal order (pseudo in the sense
that the MessageNode itself has no such child). The evalu-
ator serves to simulate evaluation of a block by travers-
ing it. Without the evaluator, the BlockNodeWrapper is
treated as a leaf wrapper and is not traversed. The evalu-
ator poses as having the block-argument grandchildren
of its parent, as its own children.

The evaluator is defined with a collection of
EvaluationMetaSpecs. An EvaluationMetaSpec is a descrip-
tion for one step through of the method specified in the
message. This spec is used to produce a collection of
child traversal orders. An EvaluationMetaSpec, in turn, is
defined with a collection of ArgumentMetaSpecs. The
ArgumentMetaSpec states whether the block argument is
optional, and whether it is possibly a looping block;
this spec is identified by the message-argument index.

For example, here is Boolean>>ifTrue:
ifFalse: with its two EvaluationMetaSpecs:

• {required, noLoop, index 1}
• {required, noLoop, index 2}

The ifTrue: argument is the first argument of the message,
and thus is designated by index 1; the ifFalse: being the
second is designated by index 2. These EvaluationMetaSpecs
produce the two traversal orders: {{1},{2}}; in other words,
we must either evaluate the first message argument, the
ifTrue: block; or else we must evaluate the second mes-
sage-argument, the ifFalse> block.

Here is Collection>>detect:ifNone: with its two
EvaluationMetaSpecs:

• {required, loop, index 1}
• {optional, loop, index 1}, {required,
noLoop, index 2}

We either loop one or more times evaluating the detect:
block or we possibly loop one or more times evaluating
the detect: block, followed by definitely evaluating the
ifNone: block once.

BRANCHING AT THE EVALUATOR
The evaluator always terminates the current traversal.
The result for the evaluator is obtained by branching new
traversals and combining the results; each child traversal
order of the evaluator produces another branch.

Let’s find a block’s value type.
[2 even

October 1996

The Smalltalk Report10

EXTERNALIZING BEHAVIOR

http://www.sigs.com

ifTrue: [^123]
ifFalse: [‘abc’].

#xyz] “what is value-type for the block?”

We start at the first terminal node wrapper of the block
and perform a forward traversal on the lookout for either
a ReturnNodeWrapper or the very last statement of the
block. We eventually arrive at the evaluator and pro-
ceed to find its result, which in this case will be our
answer. Because the evaluator has two child traversal
orders, it branches two traversals. We take the first tra-
versal and find a ReturnNodeWrapper of type
<SmallInteger>. The second takes us past the confines of
the ifFalse: block. We visit a MessageNodeWithArgu-
mentsWrapper, the final outer block statement and stop
with a type of <ByteSymbol>. We combine the results to
get our answer of <SmallInteger | ByteSymbol>. This traver-
sal is depicted in Figure 9. The first branch occurs in vis-
itations 8.1x shown in dark grey; the second, in 8.2x
shown in light grey. Note that although 2 even is always
true, the tool is unaware of this.

Looping. Let’s look at type inferencing for a temporary
variable. Let’s find the type of t2 in the final statement of:

[: a1 | | t1 t2 t3 |

t1 := 123.
t2 := ‘abc’.

a1 myCollection
detect: [: a2 |

t3 := t1.
t1 := $a.
t2 := t3]

ifNone: [nil].
t2 “what is my type?”]

If we don’t loop at all, t2 type =
<ByteString>; if we make one pass, t2 type
= <SmallInteger>; if we make two passes,
t2 type = <Character>. Thus, results differ
depending on the number of times the
detect: block is traversed.
The EvaluationMetaSpecs generate the
appropriate child traversal orders,
based on the number of descendent
assignment statements (excluding
those found in child block descen-
dents). Each assignment generates
another child traversal order. In the
example, we find three assignments
in the detect: block. The first
EvaluationMetaSpec for #detect:ifNone:
therefore generates {{1}, {1,1}, {1,1,1}},
and the second generates {{2}, {1,2},
{1,1,2}, {1,1,1,2}}. (We play it safe to loop
the maximum amount, even though in
this case only two passes are needed.) If
we had no assignments, the resulting
child traversal orders would simply be
{{1}} from the first spec, and {{2}, {1,2}}

from the second.
This brute-force technique is of exponential order, but

this is not a concern for minimal branching. The standard
technique for type inferencing uses polynomial-order
symbolic-execute via solution of equations.3

Type inferencing for a temporary variable involves travers-
ing the wrapper tree backwards from the VariableNodeWrapper.
Let’s find the result for a double pass by walking the child tra-
versal order {1,1} branch of the #detect:ifNone: evaluator. As
shown in Figure 10, we proceed backwards on the lookout for
AssignmentNodeWrappers with VariableNodeWrapper t2, and eventu-
ally reach the detect: block’s third statement and stop at the
AssignmentNodeWrapper. The result of the AssignmentNodeWrapper
is the type of its righthand side, VariableNodeWrapper on t3. So we
trigger a new traversal for inferencing the type of t3 (shown in
dark grey), but the technique is to continue using the current
child traversal order of the evaluator. This new traversal in turn
triggers another for inferencing the type of t1 (shown in light
grey), again keeping the child traversal order. We know to tra-
verse the detect: block once more, and find type t1 to be
<Character>.

TREATMENT OF BLOCKS
The contents of a block are treated as live, whether the
block is evaluated or not. This is not an oversight, but a

Figure 9. Branching.

necessity. Remember that the rule block itself is dead if it is
not being evaluated; surely we want this type checked, as
this is the whole point. Likewise for any descendent block.

Also, remember that due to the morphing process,
what is currently not a block can perhaps be morphed to
a block’s first statement, and vice versa (construct Enclose
statement in block (123→[123]) and construct Return
block’s first and only statement ([123]→123)).

Traversal beyond the confines of a block depends on
the situation. If the block is a statement, then there is no
traversal beyond it. If the block is a message argument,
then it depends on the block evaluator EvaluationMetaSpec
acknowledging the block. Even if the block evaluator
knows that a given block is never evaluated, the contents
of the block are treated as fully viable (e.g., if the user
selects inside the block); if it is not evaluated we simply
don’t traverse past the confines of the block. (An unknown
type in this situation is defined as <‘Nothing’> as dis-
cussed). Currently, all block-evaluator EvaluationMetaSpecs
have live blocks.

CREATION OF THE WRAPPER TREE
Creation of the wrapper tree occurs on string input to
the tool, as well as acceptance of text from the FreeStyle
text view. The creation is achieved in iterative fashion,
using forward traversal, during which we force our-

selves into blocks in order to traverse
them.

The MessageNodeWrapper does the main
job. It finds the appropriate selector infor-
mation based on the type of its receiver.
From this information, the required types
of its arguments are instated, as well as
the type of the message itself.

Validation is performed, ensuring that
a wrapper conforms to syntax and the
limitations of the tool. For example, a
ReturnNodeWrapper ensures that it is last in
a sequence of statements, and an
AssignmentNodeWrapper ensures that its
value child is not a BlockNodeWrapper. A
faulty wrapper is highlighted in the
FreeStyle text view along with the appro-
priate error.

CONCLUSION
Eagle needed a rule language, and
Smalltalk itself was chosen. A point-and-
click rule editor was developed that con-
strains the user to produce valid syntax
with valid message selectors, via selec-
tion of valid ProgramNode tree manipula-
tions. The user is responsible for valid
message arguments by selecting from
manipulations that satisfy type require-
ments. State and behavior wrapped
around the ProgramNode tree make it type
aware and traversable.

Can such a tool be generalized for editing Smalltalk in
general? Probably not. Several issues would quickly get
out of hand, such as specifying and maintaining selector
information for all selectors. But for a rule language sub-
set, the tool has a niche.

References
1. Graver, J. O. and Johnson, R. E., “A Type System for Smalltalk,” In

Proceedings of the ACM Symposium on Principles of
Programming Languages, pp. 136-150, Jan. 1990.

2. Graver, J. O. Type-CHECKING AND TYPE-INFERENCE FOR OBJECT-
ORIENTED PROGRAMMING LANGUAGES, PhD thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign,
Aug. 1989. UIUCD-R-89-1539.

3. Palsberg, J. and Schwartzbach, M. I., OBJECT-ORIENTED TYPE

SYSTEMS, John Wiley and Sons, New York, 1994.

October 1996 11http://www.sigs.com

Figure 10. Looping.

Figures 9 and 10 inadvertently ran as Figures 6 and 7 in part 1
of this article in September. We apologize for any confusion.

Paul Davidowitz is a senior developer at Andersen Consulting. He
can be reached at paul.davidowitz@ac.com.

S

October 1996 13http://www.sigs.com

A
ll applications wrestle with the problem of copying
objects at some point. In the course of some recent
work, I used a variation of the cloning approach pub-

lished in the Journal of Object-Oriented Programming
(JOOP) two years ago.1 This article will describe two
extensions I added:

• Allow for customized behavior after the deep copy
(#postDeepCopy:); and

• Provide ability to NOT copy certain instance
variables.

JUSTCLONINGAROUND
The JOOP article described an
implementation of a deep copy that
can handle arbitrarily deep object
structures in all three major
Smalltalk dialects. Circularities are
handled by keeping track of the
objects copied in an
IdentityDictionary. The keys are the original object and
the values are the copies.

As the title suggests, I look at this article as a “subclass”
of the JOOP article. Just as you wouldn’t expect to under-
stand a class without browsing its superclass, you should-
n’t expect to understand this article without having read
the JOOP article. I’ll present a complete implementation
in code,* but I won’t cover the concepts from the original
article.†

EXAMPLE
Consider the OMT2 style diagram in Figure 1. Each cus-
tomer contains a collection of invoices. Each invoice con-
tains a collection of ordered items. These are aggregation
or ownership3 relationships.

Each invoice holds a reference to the customer as well
as to the salesperson that created the invoice. Each
ordered item holds a reference to the product it is order-

ing. These are not aggregation relationships. For example,
an invoice does not own the salesperson.4

Consider the instance diagram in the top half of Figure
2.‡ Jane Profit might use this existing invoice as the basis
for creating a new one. The bottom half of Figure 2 shows
the resulting instance diagram, if the JOOP approach had
been used to copy the invoice. There are two problems
with this result. The first is that everything is copied when
what we want is to copy only the objects referenced by

aggregation relationships. For
example, what we don’t, want is a
new instance of Jane Profit.
The second problem is that when
we copy an invoice we want to reset
the quote to the customer. The
quote is what the customer actually
pays, and it might be higher or
lower than the actual cost.
Determining the quote is up to the

salesperson. In this particular case the customer has been
given a $25 discount on an order for three “blue widgets;”
however, that doesn’t mean he or she will always get that
discount. In this application we’ve established the rule
that all quotes should be set to zero when copies are made.

After copying, what we actually want is shown in
Figure 3.
‡ I’m not showing the Customer to Invoice relationship for now.

JustCloningAround subclass:
#CloningExtensions

Keith Piraino

We need a class method
that will traverse the

superclass chain and collect
the names of all instance

variables to not copy.

Figure 1. Example Object Model.

Customer Invoice Orderedltem

SalesPerson Product

u ● u ●

* I used VisualWorks, but this should work in other dialects if
you keep in mind the issues raised in the JOOP article.
† The JOOP article also describes how to implement a deep
equal, which I don’t cover at all.

The Smalltalk Report14

CLONING EXTENSIONS

http://www.sigs.com

#POSTDEEPCOPY:
Of our two problems, resetting the quote is the easier
one so let’s tackle that first. Our generic problem is being
able to have customized behavior after an instance is
copied. Using the normal VisualWorks mechanisms, this
would be done via #postCopy. The equivalent to this in
our generic mechanism is a method called
#postDeepCopy: that is sent to the new instance after the
deep copy is done. Listing 1 shows the implementation
of the generic copy mechanism. It’s been factored a little
differently, but other than #postDeepCopy: this is the same
code as published in the JOOP article.

Below would be the implementation of this method
for OrderedItem:

postDeepCopy: anObject
super postDeepCopy: anObject.
self quote: 0.

The anObject parameter is the original object. I’ve had no
cause to use it yet, but I thought this parameter might
come in handy in certain cases. For instance, we could use
#postDeepCopy: as a way to solve the problem with copying
objects that aren’t owned. After the copy is made, we sim-
ply set the appropriate instance variable to refer back to
the original object. Below is an example for Invoice:

postDeepCopy: anObject
super postDeepCopy: anObject.

original

275

3

anOrderedItem

quote ●

qty ●

product ●

anInvoice

customer ●

orderedItems ●

salesPerson ●

'blue widget'

100

aProduct

name ●

unitPrice ●

anOrderedCollection

1 ●

'Jane Profit'

aSalesPerson

name ●

aCustomer

invoices

name ●

'Mega Corp'

clone

anOrderedItem

quote ●

qty ●

product ●

anInvoice

customer ●

orderedItems ●

salesPerson ●

'blue widget'

100

aProduct

name ●

unitPrice ●

anOrderedCollection

1 ●

aSalesPerson

name ●

aCustomer

invoices

name ●

'Mega Corp'

275

3

'Jane Profit'

Figure 2. Cloning an invoice using the JOOP approach.

self salesPerson: anObject salesPerson
One problem with this approach is that there could be
side effects to copying a salesperson object, which we
want to avoid. Let’s see if we can come up with a better
approach.

#DONTCOPYVARS
For any given object we want only to copy some of its
instance variables. We have a choice, though. We can cre-
ate a mechanism that forces us to specify what should be
copied, or that requires us to specify what should NOT be

copied. I’ve taken the latter approach because, in prob-
lem domains I’ve been exposed to, it appears that more
things get copied than not.

This mechanism will also assume that we can specify
this information on a class basis. In other words, no
instance of Invoice will ever need to create a new instance
of SalesPerson when it is copied.

Every class can optionally define a class method called
#dontCopyVars that answers a collection of the named
instance variables that should not be copied. Below are
examples from our object model in Figure 1:

Invoice class>>dontCopyVars
^#(#customer #salesPerson)

OrderedItem class>>dontCopyVars
^#(#product)

Customer, SalesPerson, and Product would not have to define
a #dontCopyVars method.

#ALLDONTCOPYVARS
In our example we don’t have to worry about inheritance, but
most structures aren’t this simple. We need a class method
that will traverse the superclass chain and collect the names
of all instance variables to not copy. The code below is pat-
terned after #allInstVarNames§ and #accumulateInstVarNames but,
takes into account that not every class will implement
#dontCopyVars:

Object class>>allDontCopyVars
| vars |
vars := OrderedCollection new.
self accumulateDontCopyVars: vars.
^vars

Object class>>accumulateDontCopyVars: aCollection

self superclass notNil
ifTrue: [self superclass accumulateDontCopyVars:

aCollection].
(self class includesSelector: #dontCopyVars)
ifTrue: [aCollection addAll: self dontCopyVars].

These two methods ensure that every class can answer a
collection of the instance variables that should not be
copied. All that’s left is a little bit of code to utilize this
information during copying. See Listing 2.

MISCELLANEOUS
Every object should answer a copy of itself when sent the
message #copy. Users of the object should not have to
worry about whether it uses the deep copy mechanism.
To account for this, I usually redefine #copy for all my
domain objects as follows:

copy
^self deepCopy

When we copy an invoice we need to know whether we
are making a copy for use with the customer that owns the
original invoice, or for a different customer. To handle this
I defined a #copyFor: method in Invoice that takes the
Customer as a parameter:

copyFor: aCustomer
| aCopy |
aCopy := self copy.
aCustomer invoices add: aCopy.
aCopy customer: aCustomer.
^aCopy.

Avoid the temptation to specify #dontCopyVars based on the
current functionality of your application. As an example,
assume that OrderedItem instances have a reference to their
containing Invoice. Also assume that the application cur-
rently allows Invoices to be copied, but not OrderedItems.
You might be tempted to not include #invoice in
#dontCopyVars for OrderedItem. Because of the support for
circularities in the copy mechanism, if Invoice is copied
before OrderedItem the OrderedItem will end up pointing to
the correct Invoice anyway.

However, at some point these kinds of assumptions
will come back to haunt you. Every object should be able
to answer a reasonable copy of itself.

CONCLUSION
Unfortunately, Smalltalk does not provide a way to distin-
guish between aggregation relationships and simple ref-
erences. What I’ve provided is one way of doing this.
Ideally, the vendors should standardize on some way of
specifying “ownership” and make use of it in their copy
mechanisms. This kind of standard would, for example,
allow CASE vendors to output this information during
code generation.

LISTING 1
instance methods in Object

deepCopy

October 1996 15http://www.sigs.com

Ideally, the vendors should
standardize on some way of

specifying “ownership” and make use
of it in their copy mechanisms.

§ You can find a lot of good solutions if you try to think of how
your problems are similar to something already in the image.

^self deepCopyWithoutRecopying: IdentityDictionary new.

deepCopyWithoutRecopying: anIdentityDictionary
^anIdentityDictionary

at: self
ifAbsent: [self doDeepCopyWithoutRecopying:

anIdentityDictionary]

doDeepCopyWithoutRecopying: anIdentityDictionary
| aCopy |
aCopy := self shallowCopy.
aCopy == self ifTrue: [^self].
anIdentityDictionary at: self put: aCopy.
self class isPointers ifFalse: [^aCopy].
aCopy releaseCopyDependents.
aCopy copyNamedVarsWithoutRecopying:

anIdentityDictionary.
aCopy copyUnnamedVarsWithoutRecopying:

anIdentityDictionary.
aCopy postDeepCopy: self.

^aCopy.

releaseCopyDependents
^self breakDependents

copyNamedVarsWithoutRecopying: anIdentityDictionary
| newPart |
1 to: self class instSize do:

[:idx |
newPart := (self instVarAt: idx)
deepCopyWithoutRecopying: anIdentityDictionary.

self instVarAt: idx put: newPart].

copyUnnamedVarsWithoutRecopying:
anIdentityDictionary

| newPart |
1 to: self basicSize do:

[:idx |
newPart := (self basicAt: idx)

deepCopyWithoutRecopying:

The Smalltalk Report

CLONING EXTENSIONS

16 http://www.sigs.com

clone

anOrderedItem

quote ●

qty ●

product ●

anInvoice

customer ●

orderedItems ●

salesPerson ●

'blue widget'

100

aProduct

name ●

unitPrice ●

anOrderedCollection

1●

'Jane Profit'

aSalesPerson

name ●

aCustomer

invoices

name ●

'Mega Corp'

original

anOrderedItem

quote ●

qty ●

product ●

anInvoice

customer ●

orderedItems ●

salesPerson ●

0

3

anOrderedCollection

1 ●

275

3

Figure 3. Cloning an invoice using both extensions.

anIdentityDictionary.
self basicAt: idx put: newPart].

postDeepCopy: anObject
“The receiver is a deeply copied instance of anObject.
Subclasses may override this method to provide

behavior after copy is done”

LISTING 2
instance methods in Object

copyNamedVarsWithoutRecopying: anIdentityDictionary
| newPart |
self class allVarIndicesToCopy do:

[:idx |
newPart := (self instVarAt: idx)

deepCopyWithoutRecopying:
anIdentityDictionary.

self instVarAt: idx put: newPart].

class methods in Object

allVarIndicesToCopy
“Answer a collection of the indices of all named

variables to copy for the receiver”
^self allVarNamesToCopy collect:
[:each | self allInstVarNames indexOf: each]

allVarNamesToCopy
“Answer a collection of all variable names to copy for

the receiver”
^self allInstVarNames reject:
[:each | self allDontCopyVars includes: (each asSymbol)]

dontCopyVars
“Answer a collection of instance variables defined in

this class that should not be copied when a deep copy is
made of an instance of the receiver or one of its
subclasses. The collections should contain symbols, not
strings.

Only classes that define instance variables that shouldn’t
be copied need to define this method”

^#()

REFERENCES

1. Lalonde, W. and Pugh, J., “Just Cloning Around,” JOOP, 7(5);
1994.

2. Rumbaugh, J. et al., OBJECT-ORIENTED MODELING AND DESIGN,
Prentice Hall, Englewood Cliffs, NJ, 1991.

3. Weir, C., “Improve Your Sense of Ownership: Exploring a Design
Principle,” ROAD, 2(6); 1996.

4. Check out www.sigs.com/publications/docs/oc/9608/oc9608.d.dia-
log.html for an interesting discussion of aggregation vs. association.

October 1996 17http://www.sigs.com

S

Keith Piraino is a consultant who can be reached at
keith.piraino@bug.com.

The Smalltalk Report18 http://www.sigs.com

C
onstructing reusable parts is a difficult task. You have
to know what tools are available to use, and you must
be familiar with existing reusable parts. Most impor-

tantly, you have to know the process to construct them.
The task is not impossible, and with experience it
becomes easier.

In this column, we will help you gain experience creat-
ing reusable parts by discussing the creation of a marquee
part. A marquee is a relatively simple part designed to
reflect the operation of a light board appearing in the
front of many sport facilities. The marquee scrolls text
that is too large to display statically. Our implementation
scrolls right-to-left by repeatedly removing the first char-
acter of its message, and tacking it on to the end.

CONSTRUCTING A MARQUEE
It is simple to construct a window containing a Scrolling label.
We constructed one called a MarqueeDemonstrationWindow,
using both a label part and a timer part. Two connections
between the window and the timer ensured that the timer
started when the window opened and stopped when the
window closed. Another connection updated the con-
tents of the label when the timer ticked. Figure 1 shows
the appearance of the MarqueeDemonstrationWindow in
the Composition Editor.

IBM’s VisualAge for Smalltalk Version 3.0 provides a
timer part in the Multimedia Package. Version 2.0 includes
the same part with an exercise. The timer has several fea-
tures that can be set using the Settings Editor, shown in
Figure 2. These features include the timer’s period in mil-
liseconds, and whether or not the timer should fire repeat-
edly. In our example, the timer is set to repeatedly fire
every 100 milliseconds.

To support the scrolling mechanism in the Marquee
DemonstrationWindow, we made the following connec-
tions in the Composition Editor. First, we connected the

window part’s openedWidget event to the timer’s start action,
and then connected the window’s closedWidget event to the
timer’s stop action. With these connections, the timer fires
one hundred milliseconds after the window opens, and
continues to fire every one hundred milliseconds until the
window closes. Finally, we connected the timer’s timerFired
event to the following script titled scroll:

scroll
| oldText newText |
oldText := (self subpartNamed: ‘Label1’) labelString.
newText := (oldText copyFrom: 2 to: oldText size),
(String with: oldText first).

(self subpartNamed: ‘Label1’) labelString: newText

The script retrieves the label’s current string, con-
structs a new one containing the current string’s first
character removed and appended to the end of it, and
then updates the label with the new string. As this script
executes ten times a second, the label’s string cycles con-
tinuously.

We made further embellishments to permit the user
to dynamically change the label’s string. We added a
push button and an entry field to our window so that the
user could click the push button to set the label’s string
to the entry field’s current string. To support this func-
tionality, we connected the push button’s clicked event to
the label’s labelString attribute and connected the
clicked/labelString connection’s value attribute to the
entry field’s object attribute.

WIDGET LAYOUT
Part of constructing a complete application includes
specifying how parts react when a window is resized.
Figure 3 shows the MarqueeDemonstrationWindow in
action. When the window is resized, the entry field clings
to the top of the window and the scrolling label clings to
the bottom. The left and right sides of each part remain
constant distances from the sides of the window.

Specifying a part’s layout attachments in VisualAge is
simple. In the a part’s Settings Editor there is a page
labeled Layout. On this page, you can specify layout
information for the part’s top, bottom, left, and right
sides. For the input field part, we specified that its top

Visual Programming

Visual Programming and Reusable Parts:
The Marquee Part

Dwight DeugoWayne Beaton

Dwight Deugo and Wayne Beaton are senior members of the devel-
opment and educational staff at The Object People, in Ottawa,
Ontario. Dwight (dwight@objectpeople.on.ca) has immersed him-
self in objects for more than 10 years and has helped clients with
their object immersions as a project mentor and as a course instruc-
tor.Wayne (wayne@objectpeople.on.ca) is the coordinator of course
construction and a software developer.

edge is attached to the “Parent top edge,” and that there
is a four-pixel separation between them (the top edge of
the input field part is a constant four
pixels away from the top edge of its
parent). The parent of any part is the
canvas (typically a window) where
the part is situated. If the part is
positioned on a form, then the form
is its parent. Similar attachments
were specified for the input field’s
left and right edges (connecting
them to the parent left and right
edges, respectively).

The input field part’s bottom edge used a different
attachment. Specifying “No” attachment for any part indi-
cates to VisualAge that the part should use whatever
amount of space is appropriate. In the case of an input
field part, the appropriate amount of space depends on
its current font—the bottom edge will be far enough away
from the top edge to accommodate the font, plus an
appropriate amount of gutter space. Be aware that the
“No attachment” attachment type makes sense only if the
opposite edge is attached. For example, it is not possible
to have both the top and the bottom unattached.

The “Target attachment” type is also
very powerful. It permits you to constrain
one part’s edge to another part’s edge. In
Figure 3, the push button’s top edge is
attached to the input field’s bottom edge.
By using all of these arrangements, it is
possible to design a window in which the
parts always resize correctly, because they
are dependent on the positioning of other
parts, the current font, and the monitor
resolution—fonts sometimes have differ-
ent metrics in different monitor resolu-
tions.

MAKING A REUSABLE PART
TheMarqueeDemonstrationWindow demon-

strates one possibility in VisualAge: a scrolling mar-
quee. However, anyone wanting the same marquee fea-
ture must drop the appropriated parts and make the
correct connections. Since the marquee feature has
potential for reuse, we built a reusable Marquee part
for others to use, in which its construction was trans-
parent to them.

The construction of the Marquee part began by cre-
ating a new visual part named Marquee. In the
Composition Editor, we removed the default window
and copied to it the label and timer parts from the
MarqueeDemonstrationWindow, as shown in Figure 4.
The script was also copied to the new part.

Next, we restored the timer’s timerFired: event connec-
tion to the script named scroll. However, we had to
change the way the timer started and stopped—there
was no longer a window to trigger openedWidget and
closedWidget events. These events still exist because all
visual parts give notice, via the triggering of events, that
they have opened. The Marquee part is no different. The

context menu on the free-form sur-
face area (the white space in the
Composition Editor) contains the
connect menu for the Marquee part.
We connected the openedWidget
event from the Marquee part to the
timer’s start action, and connected
the closedWidget event to the timer’s
stop action.
This new Marquee part was
now ready to use in the

MarqueeDemonstrationWindow. First, we removed the
old label and the timer parts from the window. Since the
new Marquee part was not accessible in the palette, we
added it using the Composition Editor’s Options menu
entry “Add” part. We placed the Marquee part in the win-
dow, opened the window, and it worked!

PRIMARY PARTS
Visual parts do not necessarily contain a window.
However, all parts created with the Composition Editor
have a Primary Part. The primary part is the first thing the

19http://www.sigs.comOctober 1996

Figure 1. The MarqueeDemonstrationWindow as it appears in the
Composition Editor.

Our implementation scrolls
right-to-left by repeatedly

removing the first character
of its message, and tacking

it on to the end.

Figure 2. The Settings Editor for a Timer part.

The Smalltalk Report20

VISUAL PROGRAMMING

http://www.sigs.com

user sees, which is usually a window. Sometimes the pri-
mary part can be another visual part. In our Marquee part,
the primary part is the label. There is no special reason to
have a window part as default primary part, short of win-
dows being useful.

In the Composition Editor all visual parts that are not
the primary part have an entry “Become” primary part in
their context menu. We used this menu item to change
the label to the new primary part.

In the original MarqueeDemonstrationWindow, the
user could change the contents of
the marquee. That ability is still
available in our new Marquee part.
Every part created using the
Composition Editor has the same
public features as those of its prima-
ry part. Therefore, the Marquee part
has the same features as the label,
including the labelString attribute. In
fact, if you open the settings for the
Marquee part, you will see entries for most of the label’s
attributes, including labelString.

As with the previous version of the
MarqueeDemonstrationWindow, we connected the push
button’s clicked event to the Marquee part’s labelString
attribute and connected the value attribute of the result-
ing connection to the object attribute of the text field.

PROMOTE PART FEATURE
The connection between the push button and the
Marquee part’s labelString attribute identifies several prob-
lems with the Marquee part. First, should a Marquee part
actually have a labelString attribute? We tend to think of a
marquee as having a message that is displayed. Second,
the name labelString implies something about the inter-
nals of the Marquee part that should be irrelevant, espe-
cially if those internals may change at some point in the
future.

Two improvements are required. We need a new name
for the labelString attribute (perhaps message). Also, the
labelString attribute, along with the other inappropriate
features, should be removed from the Marquee’s public
interface. The first problem is easy to correct, the second
is not. We will now address the first problem and defer the
second problem for a future discussion.

VisualAge can promote a part’s features to features of
its parent part. In our case, we wanted the label’s
labelString attribute promoted as a message attribute of the

Marquee part. The benefit is that users of the Marquee
part no longer know about the Marquee’s internal repre-
sentation, and, if at a later time we decide to change the
implementation, we only have to ensure that the message
feature persists.

In the current version of VisualAge, features of the pri-
mary part cannot be promoted. We assume that the
designers built this into the product because all those
features are made available anyway. Apparently, the
designers did not have our reasoning. One workaround
was to make another part become the primary part, pro-
mote the required feature of the label, and then change
the primary part back to the label.

COMPOSITION EDITOR VARIABLES
Another workaround requires the use of variables. First,
create a variable and connect its self attribute to the
label’s labelString attribute with an attribute-to-attribute
connection. With this connection in place, the contents
of the labelString attribute will always be reflected in the

variable, and vice-versa. Rather
than “fudging” the feature promo-
tion as before, you can now directly
promote the variable’s self as the
feature message. The self attribute of
a variable actually refers to the con-
tents of the variable, in this case a
string. With the connection between
the variable and the label, promot-
ing the variable’s self attribute has

the same effect as promoting the label’s labelString
attribute.

VisualAge makes these tasks easy. The pop-up menu
for the label part contains an entry “Tear-Off Attribute.”
When this entry is selected for a part such as a label,
VisualAge prompts you to select an attribute from the
label’s attribute list. Based on your selection, VisualAge
creates an appropriate variable and an attribute-to-

Figure 3. The MarqueeDemonstrationWindow in action.

Figure 4. The Marquee part in the Composition Editor.

The notion of a primary part
permits one to have more

than one window in a single
Composition Editor.

21http://www.sigs.com

attribute connection between the label’s selected
attribute and the variable’s self attribute.

To promote the variable’s self attribute as the Marquee’s
message attribute, position the mouse over the newly created
variable in the Marquee part, pop up the menu and then
select “Promote Part Features….” In the promote window,
shown in Figure 5, select the self attribute and provide mes-
sage as the feature name. Finally, click the Promote button to
add the feature to the public interface of the Marquee part.

After saving the Marquee part, its feature list will include
the promoted feature message. Further, the Marquee part’s

Settings Editor automatically includes the promoted mes-
sage feature for you to initialize.

SUMMARY
We’ve discussed the construction of one reusable part: the
Marquee part. Although its use is limited, what is interest-
ing about it is the process and the VisualAge’s features
used for its construction. The notion of a primary part
permits one to have more than one window in a single
Composition Editor. It also makes it possible to have a pri-
mary part that is not a window (perhaps a push button
that opens a window might find some application as a
reusable part). Promoting part features is a wonderful
mechanism for selectively granting access to the internals
of objects. The Composition Editor’s variables are useful
for passing values from one part to another. They also
permit access to parts of parts.

In future columns we intend to discuss more about
each of these mechanisms, and many others, in the con-
texts of other interesting reusable parts we have created.

THE CODE
The code presented in this column and in future columns
is available at http://www.objectpeople.com. The code is
presented as an IBM Smalltalk library file, containing two
versions of the software. Version one provides the single-
class implementation of the Marquee; version two pre-
sents the reusable form with an example.

October 1996

Figure 5. The Promote Part Features window.

S

The Smalltalk Report22 http://www.sigs.com

S
malltalk is a very loose term. While there are some
clear, defining characteristics, there are also many
variations as well. This is important because software

development is a large field, with different solutions
appropriate to different problems. This article will discuss
some of these possible variations, with reference to two
promising new implementations.

The first of these new implementations is Object
Connect’s “Smalltalk MT,” a high-performance imple-
mentation for Windows NT 4.0, with full compilation and
true multithreading. The second is Intuitive Systems’
“Dolphin Smalltalk,” which boasts a low cost and a very
low memory footprint.

Neither one has been officially released yet, but free
prerelease copies are available for download from their
Web sites (see contact information at the end). Even if
you’ve missed the free periods, both companies are aiming
at product prices in the low hundreds (of U.S.) dollars.

Note that I looked at prerelease versions, and that I’ve
only played with them, so all I can do is relay first impres-
sions and generalities about their implementation choic-
es. I hope you’ll see a full review in these pages once they
are officially released.

COMPILATION
Most current Smalltalks use dynamic compilation, now
commonly referred to as Just-In-Time (JIT) compilation.
This is an example of a process I call “cross-domain buzz-
word hybridization.” In this process, a recognized buzz-
word from one domain crosses over to another, where it
attaches to a concept almost, but not quite, entirely
unlike the original. If you don’t like it, think of it as pay-
back for the term “object-oriented.”

In dynamic compilation, the methods are stored in
bytecode form. At runtime, some (or all) of these byte-
codes are translated into machine code. This can provide
most of the speed of machine code with a much smaller
executable size, comparable to that of bytecodes.

Although this is a good approach, it’s not a perfect solu-
tion for every circumstance. It takes more space than byte-
codes (you now have to store both compiled forms) and

still won’t run as quickly as compiled code (you have to
spend CPU cycles to translate, and you can’t afford to think
too hard about optimization). Finally, it requires a VM to
do the translating, which makes it more difficult to create
standalone executables, DLLs, and callback functions.

Smalltalk MT is fully compiled, and has “an optimizing
compiler that generates fast, compact code.” Full compi-
lation should give significantly better performance than
existing implementations, and the absence of a VM allows
simple programs to be very small indeed. MT claims to be
able to make DLLs (which, to my knowledge, no existing
Smalltalk can do), and to fit a trivial windows application
into a 100K executable (their runtime-support DLL adds
only 52K).

Dolphin Smalltalk is bytecode interpreted. I would
expect this to offer significantly slower performance than
current implementations, but with much lower space
consumption, even for significant-sized applications. The
company states that it “will be producing an optional JIT
in future.” When space is more important than speed, this
is a very reasonable option, and this is often true in
applets. The firm also says it will shortly have its VM
encapsulated as an ActiveX downloadable.

SIZE
Both companies advertise their ability to make very small
executables. Traditionally this has been a weak area for
Smalltalk. In many of the application areas for which
Smalltalk is used, one can argue that size doesn’t matter as
long as it does the job. But with the growing importance of
small applets over monolithic applications, size is becom-
ing more significant.

Dolphin’s approach to minimizing size uses bytecod-
ing and a very small interpreter (I counted 155K including
all the DLLs) with a relatively standard (but small) image.
Their prerelease packaging support wasn’t very sophisti-
cated, but when a development image starts at only 1.4
MB a good stripper is more of a luxury.

Smalltalk MT can provide extremely small sizes for
simple programs, but for larger programs the space cost
of full compilation becomes significant. The firm tries to
combat this through modular class libraries and a mini-
malist framework.

The typical Smalltalk programmer doesn’t think too

The Best of comp.lang.smalltalk

Alan Knight

Alan Knight is a Smalltalk guru with The Object People. He can be
reached by email as knight@acm.org, or at 613. 225. 8812.

Two New Smalltalks

October 1996 23http://www.sigs.com

much before using something that’s in the development
image. This is nice for development but bad for packag-
ing. Everything depends on everything else, and all you
can do is remove the compiler and development tools.
MT claims to have kept the base classes small and mod-
ular, so if you don’t use a particular class or subsystem it
can easily be removed. They also claim to have a sophis-
ticated packager, though I’m skeptical. Packaging is a dif-
ficult problem. I figure their base image, including the
compiler and development DLLs, is 1.3 MB. “Image gen-
eration is largely automatic. An Image Builder com-
putes the set of referenced classes and methods, start-
ing with the image-entry point.”

MT has also minimized the size of the runtime by stick-
ing very close to the OS functionality.

“All GUI and operating system-related classes present
a Win32-like protocol. This ensures that applications
run with minimum overhead on the Windows family of
operating systems, and leverage
on existing know-how.”

FRAMEWORKS
A Win32-like protocol for window-
ing is definitely a two-edged feature.
It makes Windows programmers
who have programmed in other
languages feel right at home, and it
minimizes the amount of code you need to map a
Smalltalk framework onto the operating system. I think
there’s no question that this reduces the amount of code in
the image.

On the other hand, frameworks that are written with
C or C++ in mind look really ugly compared to those
designed for Smalltalk. Look at Visual Smalltalk vs. IBM.
Visual Smalltalk has tight integration with Windows, to
the point where you can implement your own wm:what-
ever: messages, but provides a very clean, simple,
Smalltalk-like framework above that. IBM has its
X/Motif layer, which translates into calls to the real OS. It
works very well, and it’s extremely portable, but it’s way
too close to C programming for my taste. IBM’s saving
grace is that with VisualAge or WindowBuilder you rarely
have to descend to that level. Smalltalk MT doesn’t
appear to have a GUI builder. On the other hand, I’m
sure there are lots of people using C/C++ for whom a
Win32-like framework in Smalltalk (especially a
Smalltalk that can produce fast, compact executables)
would be a big step up.

Dolphin Smalltalk, in contrast, uses MVC. This is the
oldest and best known of the Smalltalk frameworks, and
has been passed down from PARC into VisualWorks.
Dolphin has adapted it to a native-widget, event-driven
form, but it still has Views, Controllers, and even
ValueModels. They’ve also included a mediator class
(called Tool) analogous to the Application Model of
VisualWorks. I haven’t tried building a window with either
dialect but I’d expect to feel more comfortable with
Dolphin.

THREADS
One of the most innovative features of Smalltalk MT is its
full support for operating system threads (“true” multi-
threading). Making a decent compiler isn’t that hard, but
there are many issues involved in making Smalltalk use
OS threads. The only other implementation I know of is
OTI’s embedded systems implementation, and it only
supports threads for real-time operating systems.

I believe OS threads are often given too much impor-
tance. For 90% of applications, the standard Smalltalk
process model will suffice, along with the ability to make
system calls without blocking. The critical issue is that
when one Smalltalk process waits on a system service, the
entire Smalltalk system should not wait. Given this capa-
bility, which most implementations provide, it’s not diffi-
cult to render demanding applications like Web or termi-
nal servers, and you don’t have to deal with the addition-
al complexities of OS threads. With the Smalltalk model

you can even have thread-manipu-
lating code that’s portable between
operating systems.
That’s a very good solution when it
works, but there are times when you
really need OS threads. One example is
symmetric multiprocessing (SMP).
Operating systems that support multi-
ple CPUs in one machine can map OS

threads to different processors, but not Smalltalk processes.
Presently, this affects only very high-end machines, but it will
become more and more important in the future.

Given that there are lots of implementations out there
with the standard threading model, the choice of using OS
threads in Smalltalk MT is a very welcome one indeed.

PLATFORMS AND PRICE
By now I ‘ll bet you are impatient to get your own copy of
either or both of these implementations for your favorite
platform. Unless you’re a Microsoft fan you’re out of luck.
Both of these implementations have opted away from
portability in favor of close integration with Win32. In fact,
the first version of Smalltalk MT runs only on Windows NT
4.0 due to problems with Win95’s threads, but they expect
to have a Windows 95 version soon .

Dolphin Smalltalk has gotten more attention on the
Net, because it can also run on older versions of NT and
Windows 95. Don’t expect them to expand their list of
platforms too much. In response to a number of calls for
an OS/2 version, Andy Bower of Dolphin’s support group
(Dolphin.support@intuitive.co.uk) wrote:

“The initial design aims for Dolphin were firmly
directed to producing a great Win32 development system
and this assumption is built into the product at a low
level….we’d be reluctant to compromise this for compat-
ibility with other environments.”

As for pricing, both are very low compared to the current
standards. Neither has fixed a firm price yet, but from what
I’ve heard MT is approximately U.S. $300, and Dolphin at
under U.S. $200.

Smalltalk is a very loose term.
While there are some clear,

defining characteristics, there
are also many variations as

well.

continued on page 26

never really “get OO.” After a reasonable time period (per-
haps as long as nine months), the people who still haven’t
gotten it need to be given alternatives. Neither the mentor
nor the developer is to blame. Not all people are able to
think abstractly, and they need to be given the chance to
contribute to the organization in a job for which they are
suited.

CONCLUSION
“Smalltalk guru” is not the equivalent to Smalltalk men-
tor. Not all team members will accept mentoring, and
not all team members will get OO. Do the best you can as
a mentor and as a developer, and try to keep egos out of
the equation. If personality clashes are a problem,
maybe the mentor has to go. This is a tough call that the
manager will have to make. Good luck and happy men-
toring!

References
1. THE WORDSWORTH CONCISE ENGLISH DICTIONARY,

Hertfordshire. Wordsworth Editions Ltd., 1994.
2. Steinman, Jan, and Yates, Barabara, “Secrets to Building

Successful Smalltalk Teams,” tutorial at Smalltalk Solutions,
March 1996, New York, N.Y.

3. Steinman, Jan, and Yates, Barbara, “Special” Team Members,”
The Smalltalk Report, V5N6, February 1996, pp. 15-17, 28.

OVERALL
Overall I’m quite impressed with both of these implementa-
tions. As prerelease products, they’re obviously immature in
some areas. For example, I had difficulty with the debugger
in both of them. The GUI builder in Dolphin didn’t work yet,
and MT doesn’t appear to have one. On the other hand, in a
lot of areas, they’re surprisingly mature. They already have
advanced features like finalization and exception handling
in place. Inevitably, it will be a while before they’re fully
loaded with those features that have nothing to do with a
language, and everything to do with a successful project:
industrial-strength source code control, native database
connections, extra widgetry, report writers, business graph-
ics, and so forth. Nevertheless, they show enormous poten-
tial, and are well worth your while to investigate.

Of the two, I expect MT to be the first choice for those
looking for cool new features, and for those doing things
that are traditionally difficult in Smalltalk (e.g. server-
based Smalltalk, very tiny apps). Restriction to the newest
version of NT will lessen their impact in the short term.
Dolphin Smalltalk, with a very low price, Win95 support,
MVC, and ActiveX applet support, has real potential to
become the Smalltalk for the masses.

Both are filling niches that are under-represented by
current implementations, and I hope they will enjoy great
success.

The Smalltalk Report26 http://www.sigs.com

S

THE BEST OF COMP.LANG.SMALLTALK

continued from page 23

S

MANAGING OBJECTS

The Smalltalk Report24 http://www.sigs.com

D
oes anyone out there think the word mentor is
overused and abused in our industry? We are often
dismayed at the ads we see from companies trying

to recruit Smalltalk “mentors.” Judging by some of these
ads, it appears that anyone with a year or more of
Smalltalk experience is deemed capable of mentoring. We
want to tell you that it just ain’t so!

WHAT A MENTOR DOES
A dictionary defines a mentor as “a wise counsellor (one
who advises and warns).”1 A good mentor gets great per-
sonal satisfaction from helping oth-
ers to learn and grow. They can be
compared to good teachers; they are
not Smalltalk gurus who take over
your keyboard and write your code
for you. Mentors need patience and
excellent communication skills, and
must know the technical content of
the subject they are mentoring.
Mentoring is a one-on-one activity,
so it is important that there be a
“personality click” for the mentoring to be successful.

When managers want to recruit one or more mentors
for a team, it’s important that they check references.
When talking to a manager of a team the mentor has
worked with, it would be useful to ask to speak with some
of the team members about their experiences. Given the
time crunch most managers are in, there might be little
time for checking references. At a minimum, here are
some questions to ask the candidate–mentor :

• How would you handle a team member who doesn’t
want to ask for your help?

• How would you deal with a team member who asks
very low-level questions most of the time?

• What aspect of mentoring do you like most?
• What percentage of your time would you expect to

spend programming in Smalltalk vs. mentoring?

• What is the hardest problem you’ve had to deal with as
a mentor and how did you solve it?

Mentoring is a lot more difficult (and sometimes a lot
less fun, to be honest) than programming in Smalltalk.
Every mentor can probably tell a few horror stories
about his or her experiences. We’ll briefly share a couple
with you.

We were called upon to mentor a small team of novice
Smalltalkers. We were not supposed to mentor full time,
having major architecture and development responsibili-
ties as well. We found that the proportion of mentoring to

other tasks would vary in different
stages of the project, so that when
people were deeply into coding, our
mentoring would only be about 30%
of our work load. (More mentoring
occurs at the early stages, and then it
gradually tapers off.)
The project had one team member
who was a very smooth manipula-
tor. This person would ask for help
with a given problem and within a

few hours we would find ourselves sitting at the key-
board writing their code! This keyboard switchover took
place without our intention. Regardless of the men-
toree’s hypnotic abilities, it was our responsibility to
help the team member to learn, not to do the coding for
him.

This is where patience comes in. Of course the mentor
can do it faster (maybe 10 or 20 times faster!), but that’s
not why the project needs a mentor. If the project
required just cranking out code, management wouldn’t
have given you a mentoring role.

The second horror story points out the importance of
having communication skills and being able to anticipate
peoples’ actions. In the course of a six-week iterative cycle
on another project, one of us worked with a select group
from the team on a special prototype. One member of this
prototyping group appears to be unable to deal with
abstraction at all. He repeatedly asked extremely low-level
questions that had the mentor stumped. The prototyping
group had a tight schedule and a lot to accomplish. The
low-level questions didn’t need immediate and exhaustive
answers because, well, this is Smalltalk and we trust that

Managing Objects

Mentoring
Barbara YatesJan Steinman

Jan Steinman and Barbara Yates are cofounders of Bytesmiths, a
technical services company that has been helping companies
adopt Smalltalk since 1987. Between them, they have over 22
years of Smalltalk experience. They can be reached at
Barbara@Bytesmiths.com, Jan@Bytesmiths.com, or at their web-
site at http://www.bytesmiths.com.

A good mentor gets great
personal satisfaction from

helping others to learn
and grow.

October 1996 25http://www.sigs.com

the longstanding base classes do what they are supposed
to do.

The mentor’s response to many of these questions
was, “Don’t worry about that right now. You don’t need to
know that level of detail.” It wasn’t until several weeks
later that the mentor found out the team member inter-
preted those answers as condescending. Unfortunately,
the mentor wasn’t told how the member felt early on, and
the mentor had no clue he had caused problems with
those answers.

The subsequent resolution came about when a third
person on the team talked to both the mentor and the
mentoree about how the prototyping project had gone,
and discovered the communication
impasse. So, for the mentors out
there (and the mentor wannabes!),
be careful about the way you phrase
things, and pay close attention to the
reactions of your mentorees. Epilog:
Once the mentor was told of the
problem, the mentor-mentoree rela-
tionship became productive again.

It is crucial in a project featuring
mentors that there be a regular
mechanism for mentorees to be told of their progress, and
for mentors to be told of their progress. In a previous col-
umn we touched on the subject of end-of-cycle reviews. If
the team is reflecting about what went well and what
needs improvement at the end of each iteration, then
telling the mentors how it is doing should be incorporat-
ed into this process. If necessary, make this feedback
anonymous to encourage people to be honest in their
comments.

MENTOREES
Just because a manager has recruited one or more men-
tors for a team doesn’t mean they will be well utilized. The
old expression “You can lead a horse to water but you
can’t make him drink” appears to be applicable to men-
toring. No matter who the mentor is and how terrific he or
she might be in that role, some people just won’t drink! No
doubt there are various reasons for it, and it is not some-
thing the manager can mandate. It might be helpful for
managers and would-be mentors to know that team
members typically fall into one of three categories when it
comes to mentoring: eager, neutral, and (dare we say it)
hostile or suspicious.

Mentor-Eager. The mentor–eager developer doesn’t
fear looking “dumb.” He or she doesn’t hesitate to ask
questions, being concerned about proper OO design and
learning how to do things “right.” This sort of team mem-
ber asks the mentor for reading suggestions, explores the
class library, and doesn’t want the mentor to do the work
for them. The member wants reviews of decisions about
design, algorithms, and so forth and requests design and
code reviews. Working with this kind of team member is a
pleasure—it’s what gets the mentor through the tough
assignments!

Mentor-Neutral. The mentor–neutral developer
needs to be shown the mentor’s value. If there is a good
personality match, the neutral developer might become
eager. If there’s a personality clash, he or she can
become mentor–hostile. If personalities are not an
issue, this developer might still not make much use of
the mentor.

A “neutral” might simply be a person who always
prefers to figure out things for themselves. Regardless of
how good the mentor is, a “leave me alone” developer will
not make use of him or her. There’s no point in the man-
ager or mentor forcing the issue.

If a neutral feels comfortable “picking the mentor’s
brain” on his own terms, then short
periods (a couple of hours) of “two-
on-a-tube” might be the best way to
work with him. Our Smalltalk team
used this technique at Tektronix in
the 1980s. The mentor sat with the
mentoree, with the mentoree in con-
trol of the keyboard and mouse. They
both worked through a specific
problem, making use of the white
board and exploring in the image.

This short-term, focused activity, aimed at solving a specif-
ic problem, was very effective in demonstrating the men-
tor’s value to a neutral.

Some people thoroughly enjoy working together
closely, and two-on-a-tube periods can sometimes be
over a week in duration, depending on the problem to be
solved. We recently used this technique for several days
in a Smalltalk boot camp we ran, and some people
enjoyed it so much they did it for almost the entire two
weeks!

Mentor-Hostile. A senior person in nonOO areas who
lands back at the beginning of the learning curve with
Smalltalk will sometimes reject any attempts at mentor-
ing him. We’ve found that sometimes the mentor-hostile
feels so threatened or insecure that he becomes down-
right hostile. The mentor hostile is used to being the men-
tor, not learning from a mentor.

In other cases, team members pay lip service to the
value of mentoring, but are in fact disguising the desire to
prove they can do it without help. They express this desire
as needing “the freedom to make my own mistakes.” This
is a sure indication that the mentor-hostile developer is
one who challenges all suggestions the mentor makes,
and delights in finding and pointing out bugs in the men-
tor’s code (hey, no one is perfect).

As we already said, there is no point in trying to force
these developers to accept mentoring. The manager
needs to determine whether their insistence on making
their own mistakes is hurting the project. If it is, perhaps
the person belongs back in a role that makes use of their
existing expertise.

Organizations that adopt object technology—Smalltalk
in particular—must realize that their whole team might
not learn and progress at the same rate. Some people may

S

Just because a manager has
recruited one or more

mentors for a team
doesn’t mean they will be

well utilized.

never really “get OO.” After a reasonable time period (per-
haps as long as nine months), the people who still haven’t
gotten it need to be given alternatives. Neither the mentor
nor the developer is to blame. Not all people are able to
think abstractly, and they need to be given the chance to
contribute to the organization in a job for which they are
suited.

CONCLUSION
“Smalltalk guru” is not the equivalent to Smalltalk men-
tor. Not all team members will accept mentoring, and
not all team members will get OO. Do the best you can as
a mentor and as a developer, and try to keep egos out of
the equation. If personality clashes are a problem,
maybe the mentor has to go. This is a tough call that the
manager will have to make. Good luck and happy men-
toring!

References
1. THE WORDSWORTH CONCISE ENGLISH DICTIONARY,

Hertfordshire. Wordsworth Editions Ltd., 1994.
2. Steinman, Jan, and Yates, Barabara, “Secrets to Building

Successful Smalltalk Teams,” tutorial at Smalltalk Solutions,
March 1996, New York, N.Y.

3. Steinman, Jan, and Yates, Barbara, “Special” Team Members,”
The Smalltalk Report, V5N6, February 1996, pp. 15-17, 28.

OVERALL
Overall I’m quite impressed with both of these implementa-
tions. As prerelease products, they’re obviously immature in
some areas. For example, I had difficulty with the debugger
in both of them. The GUI builder in Dolphin didn’t work yet,
and MT doesn’t appear to have one. On the other hand, in a
lot of areas, they’re surprisingly mature. They already have
advanced features like finalization and exception handling
in place. Inevitably, it will be a while before they’re fully
loaded with those features that have nothing to do with a
language, and everything to do with a successful project:
industrial-strength source code control, native database
connections, extra widgetry, report writers, business graph-
ics, and so forth. Nevertheless, they show enormous poten-
tial, and are well worth your while to investigate.

Of the two, I expect MT to be the first choice for those
looking for cool new features, and for those doing things
that are traditionally difficult in Smalltalk (e.g. server-
based Smalltalk, very tiny apps). Restriction to the newest
version of NT will lessen their impact in the short term.
Dolphin Smalltalk, with a very low price, Win95 support,
MVC, and ActiveX applet support, has real potential to
become the Smalltalk for the masses.

Both are filling niches that are under-represented by
current implementations, and I hope they will enjoy great
success.

The Smalltalk Report26 http://www.sigs.com

S

THE BEST OF COMP.LANG.SMALLTALK

continued from page 23

S

MANAGING OBJECTS

W
e have literally just gotten off the plane
from attending the ParcPlace-Digitalk
Users Conference in Anaheim, CA. It’s
deadline time, but we thought we would

try to squeeze some thoughts and news from the con-
ference into this issue. In our next issue, Ron Charron
will provide us with an in-depth review.

The major news and a surprise, we’re sure to many of
you, is that there will be new releases of VisualWorks,
VisualWave, and Visual Smalltalk Enterprise. Yes, this is
not a typo, we said Visual Smalltalk Enterprise. This will
be good news to Digitalk customers, but we wonder
whether we would have seen far fewer defections by
these customers to IBM had this announcement been
made at last year’s conference, rather than the
announcement that support for Visual Smalltalk would
end with the first release of “Jigsaw.” So what of the
merged product? The strategy remains the same—to
move to a common image—but it will be a gradual
process culminating in a future VisualWorks 4.0 (or
Jigsaw 1.0) release. Some features of the “Jigsaw” tech-
nology were previewed, such as native widgets (initial-
ly for Windows only), a much enhanced ADE known as
Cascade, a small base image augmented by SLL tech-
nology, and solutions to the “namespace” problem.

PP-D’s plans are both Web-and server-centric. It
describes itself as a client/server/Web company that
would like to occupy the application server space dom-
inated currently by GemStone, but with a heavy empha-
sis on Web technology. VisualWave and Distributed
Smalltalk were dominant in demonstrations of forth-
coming technology, and a VisualWorks server product
was promised.

So what of Java? PP-D has handed responsibility for
its Parts for Java product, and the development of Java
components (Java Beans), to ObjectShare Inc. (of
WindowBuilder/Pro fame). The guys from OSI have
long demonstrated their ability to deliver quality
components in the Smalltalk world, and this would
appear to be a smart move on the part of PP-D, which
should allow it to concentrate on its core Smalltalk
business.

So what of merging Smalltalk and Java technolo-
gies? This is clearly going to (and needs to) happen—in
some form or another. It was a delight to listen to the
venerable George Bosworth describe the plusses and
minuses of various possibilities, such as Java running
in a Smalltalk engine or a Smalltalk plug-in for
Netscape. Unfortunately, it appears that we will have
to wait awhile before we see any significant happen-
ings from PP-D in this area. There was also an excellent
keynote talk from a Mr. Peter Coffee (no kidding!), but
we’ll leave that to our correspondent Ron Charron.

Smalltalk did meet Java in an interesting third-
party product called Route 1 from Applied
Reasoning, which allows existing VisualWorks and
VisualWave applications to deploy on the web using
a Java-based client. An advantage of this approach is
that the constraints of HTML are removed. The real
application—multiple windows, dialogs, and all—
runs inside a Web browser; Java objects on the client
side are connected via a lightweight ORB to a
VisualWorks server. Performance is enhanced, since
there is no longer a need to send an entirely new
Web page across the network with each user inter-
action. Java widgets (clones of the Smalltalk wid-
gets) reside on the client side, which again enhances
the speed.

PP-D has plans to beef up its Partners Program,
an announcement that is long overdue. But PP-D
clients will not move to a new release until third-
party products such as Envy and TOPLink also have
new releases to match. Working with its partners is
essential.

In summary, PP-D is on the way to merging the dis-
parate technologies embedded within the Visual
Smalltalk and VisualWorks product lines, using an
interesting technology in the pipeline. While it takes
shape, the existing product lines will continue to be
supported.

Oh, and thanks to PP-D for giving us the run of
Disneyland for an evening. No lines! We “big kids”
were in Disney Heaven.

Enjoy this issue.

Editors’ Corner
Paul WhiteJohn Pugh

The Smalltalk Report2 http://www.sigs.com

News from the PP-D Users Conference

Smalltalk-Based ORB
Features Tools

DNS Technologies Inc. is
releasing SmalltalkBroker for
IBM VisualAge. Developed

with assistance from the IBM Object
Connection Program, SmalltalkBro-
ker is a Smalltalk-based CORBA 2.0-
compliant Object Request Broker
(ORB) and a set of supporting devel-
opment tools. The ORB provides
standard CORBA interoperability
between VisualAge Smalltalk objects
and other CORBA ORBs, connecting
objects written in Smalltalk, C++,
and Java.

DNS Technologies Inc.,
160 Spear Street, Suite 740,

San Francisco, CA 94105;
v:415.536.1600, f:415.536.1616;

http://www.dnssf.cfs.com.

IBM Connects
Smalltalk to Web

IBM announces connections to
Lotus Notes and the Web for its
Visual Age for Smalltalk applica-

tion development tool. The VisualAge
for Smalltalk directly accesses and
modifies Lotus Notes databases, and
uses Lotus Notes data alongside a
relational database. In addition, users
can create reports and multimedia
applications or access data across
networks, using the communication
protocols supported by VisualAge for
Smalltalk. IBM has also expanded its
family of VisualAge tools: VisualAge
for BASIC for Windows (code-named
BART) introduces an easy-to-use
object-oriented scripting technology
that supports multiple platforms
and component models (a version
was also announced for OS/2);
TeamConnection for Windows brings
enterprise-level management ser-
vices for application development
to the Windows desktop, and offers
an advanced object repository.

VisualAge for COBOL is a rapid appli-
cation development tool that gener-
ates C++ and COBOL applications
from a Windows desktop.

IBM, Route 100, PO Box 100,
Somers, N.Y. 10589;

v:914.766.1211, info@ibm.com

Providing Smalltalk
Dynamic Links

Virtuality Corp.’s EyeClasses 2.0
is a significant upgrade to its
code navigation tool for IBM’s

VisualAge Smalltalk environment. As
a special promotion, any site can
receive one copy free of charge.
EyeClasses turns Smalltalk into a
dynamically linked hypertext envi-
ronment. This upgrade works with
whatever browser you’ve chosen,
standard or Trailblazer, and brings up
part editors for VisualAge parts and
class browsers for other classes. Links
can also be followed from method
names, pool constant names, and
other symbols.

Virtuality Corporation,
682 Mason Road, Milford, NH 03055;

v:603.672.3731, f:603.672.3743

Booking on
VisualAge

Walter Fang’s VISUALAGE FOR

SMALLTALK DISTRIBUTED: DE-
VELOPING DISTRIBUTED OBJECT

APPLICATIONS describes and explains
the entire process of designing and
building a distributed object appli-
cation with the Visualage Smalltalk
Distributed feature. The book con-
tains an overview of the features
and architecture of Smalltalk’s
Distributed feature; sample applica-
tions components with supporting
documentation to illustrate design
and coding; and recommendations
for building distributed object
applications with VisualAge. The
target audience includes software

development managers, designers,
and other planning to develop client/
server and peer-to-peer applications
with distributed objects when using
VisualAge.

ISBN 0-13-570805-2, $40.00
Prentice Hall PTR, Order Processing Ctr.,

PO Box 11070, Des Moines, IA 50336;
v:800.947.7700, v:515.284.6751,

f:515.284.2607; orders@prenhall.com

Smalltalk Tool
Analyzes Behavior

Arbor Intelligent Systems Inc.
announces Probe, a tool used
to determine the exact be-

havior and performance character-
istics of VisualWorks Smalltalk
applications. Probe collects runtime
performance data including meth-
od invocation, process activity,
instance creation and life span,
memory usage, garbage collection,
and exception tracking. Probe is
also useful for tasks such as code
review, architecture review, reverse
engineering, learning Smalltalk the-
ory, and testing.

Arbor Intelligent Systems Inc.,
538 North Division, Ann Arbor, MI 48104;

v:313.996.4238, f:313.996.4241;
http://www.aisys.com

GUI Components
For Visual Smalltalk

BOK Technologies Incorporated
announces ObjectSchedule, a
set of advanced GUI compo-

nents for Visual Smalltalk for Win32,
and OS/2. ObjectSchedule includes
advanced Smalltalk GUI components
for scheduling, resource manage-
ment, and project monitoring appli-
cations.

BOK Technologies Inc.,
5476 Trans-Island Avenue,

Montreal, PQ, Canada H3W 3A8;
v:514.485.6690, f:514.485.2095;
72730.655@compuserve.com

The Smalltalk Report30 http://www.sigs.com

Product Announcements

November/December 1996

For more object
news and analysis, check
out SIGS online at
http://www.sigs.com

1

Table of Contents
November/December 1996 Vol 6 No 3

Features

Controlling the VisualWorks NewSpace 4
John McIntosh
This article is the first in a series on how Garbage Collection is done
in VisualWorks. It focuses on how to improve the performance of
your application and reduce its memory footprint by altering
NewSpace Thresholds.

Class Naming and Privacy in Smalltalk 11
Nik Boyd
Smalltalk lacks mechanisms for defining private classes, and private
methods. Without private classes, class naming conflicts can occur.
Without private methods, encapsulation suffers. First class subsys-
tems with private classes can resolve both problems.

Columns

Getting Real: 18
Putting it All Together
Jay Almarode

Facing intense competition and a changing market-
place, the IS department has been given the direc-
tive to reengineer its software systems to be more
flexible and easier to maintain. Here’s what its going
to do. . .

Conference Review 24
ParcPlace-Digitalk User Conference
Ron Charron

PP-D seems to have some very good engineers, and
hopefully they will manage to bring all of this mar-
velous technology together. If PPD can pull it off, it is
likely to become a major vendor in the new OO CSW
arena.

Departments
Editors’ Corner 2

Recruitment 28

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, monthly except in Mar–Apr, July–Aug, and
Nov–Dec. Published by SIGS Publications Inc., 71 West 23rd St., 3rd Floor, New York, NY 10010. © Copyright 1996
by SIGS Publications. All rights reserved. Reproduction of this material by electronic transmission,Xerox or any other
method will be treated as a willful violation of the US Copyright Law and is flatly prohibited. Material ma y be
reproduced with express p ermission from the publisher. Bulk rate U.S. postage paid Lancaster, PA, permit 161.
Canada Post International Publications Mail Product Sales Agreement No. 290386.
Individual Subscription rates 1 year (9 issues): domestic $89; Mexico and Canada $114, Foreign $129;
Institutional/Library rates: domestic $199, Canada & Mexico $224, Foreign $239. To submit articles, please send
electronic files on disk to the Editors at 885 Meadowlands Drive #509, Ottawa, Ontario K2C 3N2, Canada, or via
Internet to streport@objectpeople.on.ca.Preferred formats for figures are Mac or DOS EPS,TIF, or GIF formats.Always
send a paper copy of your manuscript, including camera-ready copies of your figures (laser output is fine).
POSTMASTER: Send domestic address changes and subscription or ders to: The Smalltalk Report, P.O. Box 5050,
Brentwood,TN 37024-5050. For service on current domestic subscriptions call 1.800.361.1279 or fax 615.370.4845.
Email: subscriptions@sigs.com. For foreign subscription orders and inquiries phone +44(0)1858.435302.PRINTED
IN THE UNITED STATES.

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS Publications Advisory Board
Tom Atwood, Object Design
François Bancilhon, O2 Technology
Grady Booch, Rational
George Bosworth, ParcPlace-Digitalk
Jesse Michael Chonoles, Lockheed Martin ACC
Stuart Frost, SELECT Software
Adele Goldberg, ParcPlace-Digitalk
Thomas Keffer, Rogue Wave Software
R. Jordan Kriendler, IBM Consulting Group
Thomas Love, Consultant
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

The Smalltalk Report Editorial Board
Jim Anderson, ParcPlace-Digitalk
Adele Goldberg, ParcPlace-Digitalk
Reed Phillips
Mike Taylor, ParcPlace-Digitalk
Dave Thomas, Object Technology International

Columnists
Jay Almarode, GemStone Systems Inc.
Wayne Beaton, The Object People
Kent Beck, First Class Software
Dwight Deugo, The Object People
Juanita Ewing, ParcPlace-Digitalk
Bob Hinkle, Consultant
Tim Howard, FH Protocol, Inc.
Ralph E. Johnson, University of Illinois
Alan Knight, The Object People
Mark Lorenz, Hatteras Software, Inc.
Jan Steinman, Bytesmiths
Rebecca Wirfs-Brock, ParcPlace-Digitalk
Barbara Yates, Bytesmiths

SIGS Publications Group, Inc.
Richard P. Friedman, Founder, President, and CEO
Chris Keating, Publishing Director–US Magazines
John McCormick, Editorial Director
Margherita R. Monck, General Manager

Editorial/Production
Kristina Joukhadar, Senior Managing Editor
Elisa Varian, Director of Production and Manufacturing
Jan Foster, Cover Design
Douglas Finlay, Assistant Managing Editor
Serena Tesler, Production Editor
Erika Romero, Desktop Designer
Margaret Conti, Manufacturing Coordinator

Circulation
Elayne Glick, Circulation Director
Byron Scarlett, Fulfillment Manager

Advertising/Marketing
Gary Portie, National Sales Manager
Elisa Marcus, Advertising Manager, Central US
Michael W. Peck, Advertising Representative
Allesandra Kath, Exhibit Sales

212.242.7447 (v), 212.242.7574 (f)
Nancy Beuschel, Promotions Manager for Magazines

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Senior Accounting Manager

Publishers of JOURNAL OF OBJECT-
ORIENTED PROGRAMMING, OBJECT

MAGAZINE, C++ REPORT, THE

SMALLTALK REPORT, THE X JOURNAL,
JAVA REPORT, OBJECT CURRENTS and

THE X SPOT (ONLINE), OBJECT EXPERT (UK), JAVASPEKTRUM and
OBJEKTSPEKTRUM (GERMANY)

The Smalltalk Report4 http://www.sigs.com

R
ecent discoveries made while building a system that
worked as a server instead of as a typical GUI applica-
tion have led me to write this article. During the test-

ing phase, I was surprised to see that the image grew from
a starting size of about 8 MB to roughly 18 MB before it
stopped requesting memory from the operating system.
This behavior lead to the questions: Why does it grow? Why
does it stop growing? A manual garbage collection usually
returned the response that 8 MB of memory had been
freed. Most puzzling. Although the
image didn’t grow continuously, I
thought I had understood how it
used memory, and now was forced
to take a closer look at the problem.
This article is the first of a series
explaining how Garbage Collection
(GC) is done in VisualWorks.

My starting point was extensive
reading of the ParcPlace-Digitalk
manuals and examination of the image. I ran across the
MemoryPolicy class comment, which states: “A typical mem-
ory policy might be to run the Incremental Garbage
Collector (IGC) in the idle loop, in low-space conditions,
and periodically in order to keep up with the OldSpace
death rate.” Light bulbs! My application does not fit the
regular pattern of GUI applications! Idle times are a rarer
event for server applications, since they do not enjoy
human interface pauses. Instead, they might service many
users, and always have a high-activity level. Armed with
my apparent lack of memory-management knowledge, I
embarked on a journey to discover exactly how Smalltalk
deals with memory beyond the Scavenge.

GARBAGE COLLECTION
To understand how the MemoryPolicy class interacts with
the image, one first needs to step back and understand
how garbage collection works. Some background informa-
tion can be found in Kent Beck’s “Garbage Collection
Revealed,” The Smalltalk Report, Vol. 4, No. 5, Feb. 1995,
which talks about VisualSmalltalk, and gives the reader a

detailed introduction into GC theories. More information
can be found on the Web at ftp://ftp.netcom.com/
pub/hb/hbaker/home.html, which contains access to a
number of papers on GC theories. Hewitt and Lieberman’s
paper “Lifetimes of Objects,”1 and David Ungar’s classic
paper “High Performance Smalltalk Systems,”2 also lay
groundwork for the GC logic used by current commercial
Smalltalk systems. These papers point to a key discovery:
namely, that most objects are short lived. In fact, 80 to 98

percent of objects die shortly after
birth. The survivors generally live for
a long time.
With this observation in mind, a
typical Smalltalk system divides
memory into two areas: NewSpace
for object creation and OldSpace for
long-lived objects. The objective of
a memory-management system is
to aggressively do GC work on a

small area of memory. This activity can be done within the
pause time between keyboard keystrokes, so the impact
on the user isn’t noticed. From time to time, checking all
objects in a multimegabyte image for survivors is done, by
using an incremental GC that runs when the system isn’t
doing more important work. Running short on memory
will trigger more drastic measures to find and remove
dead objects, before declaring a critical memory shortage.
An application that doesn’t match well with the expected
behavior will suffer from pauses, and possibly use exces-
sive swap space as the OldSpace GC logic attempts to fix a
problem that might be solvable within the domain of the
NewSpace GC logic.

NEWSPACE GC LOGIC
NewSpace is really three areas, with a tenuring extension3

to make four. These areas are used as a base for the
garbage-collection algorithm. ‘Eden’ is where objects are
first allocated, or born. The next two areas are Survivor
spaces. One contains live objects, while the other is empty,
being used during an event called “The Scavenge.” A

Controlling VisualWorks’NewSpace
A space for everything in its space

John M. McIntosh

The objective of a memory-
management system is to

aggressively do GC work on
a small area of memory.

November/December 1996 5http://www.sigs.com

fourth space, ‘LargeSpace’, is used to handle large objects
as a modification to the original algorithm, and attempts
to reduce the movement of large byte objects between
Survivor spaces. Strings that exceed roughly 1K are created
in LargeSpace with a link to Eden.

In a small VW 2.5 Windows NT image, the sizes of the
various spaces are:

THE SCAVENGE
When Eden fills to the Eden byte-used threshold, the
VirtualMachine (VM) invokes an event called a scavenge.
The verb “to scavenge” is aptly defined in the Webster’s
New Collegiate Dictionary as: “to remove (as dirt or refuse)
from an area, or to salvage from discarded or refuse mate-
rial.” During a scavenge, the VM locates all objects in Eden
and the active SurvivorSpace reachable by the systems
roots, and copies them into the empty SurvivorSpace.
Once the scavenge examines Eden and the original active
SurvivorSpace, those spaces now only contain dead
objects, and are deemed empty. Memory allocation starts
again, with objects being placed into Eden.

As you can see, survivor objects are shuffled between
the two SurvivorSpaces on each scavenge, with new
objects being added from Eden. Objects that die in

SurvivorSpace are not copied during the scavenge, and
overall growth is based on how good or bad your applica-
tion is in creating and holding new objects. You will notice
that 40K or so of memory isn’t very big, so once the num-
ber of bytes in SurvivorSpace reaches the defined thres-
hold, the scavenger will tenure objects from
SurvivorSpace to OldSpace until there is room in the
SurvivorSpace.

OLDSPACE
OldSpace is many memory segments that combine to
form a virtual chunk of contiguous memory. This leads to
the external behavior shown to the hosting operating sys-
tem. A VW image will grow by chunks; once the memory
is allocated from the hosting operating system, it is not
returned. Images never shrink, they just grow. Great, but
with all that activity hidden in the VM, can NewSpace
garbage collection be controlled? Certainly. In fact, you
need to control garbage collection to solve a problem
known as the ‘Early Tenuring Issue’—the result of an
application holding objects for a few hundred millisec-
onds too long.

When this happens, objects are tenured into OldSpace
too early and promptly die, thus defeating the generation
scavenging logic. This shifts NewSpace GC work to the
OldSpace GC logic. To show how this happens, let us create
an object that will artificially hold items and cause the early
tenuring problem. We will then alter the size of
SurvivorSpace to observe how it will affect performance.
Source code will follow this article. To alter the size of
NewSpace, you must use ObjectMemory class>>sizesAtStartUp:

Eden 204,800 bytes
Survivor Space A 40,960 bytes
Survivor Space B 40,960 bytes
Large Space 204,800 bytes

SurvivorSpace size times default size

P
er

ce
nt

ag
e b

et
te

r th
an

 de
fa

ul
t

ca
se

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8

A

B
C128 Bytes

256 Bytes

512 Bytes

Figure 1. This figure shows restricted image growth, and allocation-rate improvements against default NewSpace size of 40K.

6 http://www.sigs.com

CONTROLLING VISUALWORKS

and ObjectMemory class>>thresholds: to change the default
sizes and thresholds, which were chosen by ParcPlace. The
sizesAtStartUp: method allows me to alter the amount of
memory VW allocations for each memory area at startup.
The thresholds: method dictates the thresholds for Eden,
Survivor, and LargeSpace.

Two conditions were tested. Since memory is not free,
I limited the amount of memory that the image could
allocate for one of the tests. The other had full freedom to
extend the image. For both tests, I altered the size of
NewSpace from two times the default size up to eight

times the default size. These changes allowed us to
observe the effects of a survivor space that varied from
80K to 320K.

The EarlyTenureTest object allocates an Array of 500 ele-
ments. For a certain number of seconds, a loop is per-
formed, where a new String object of a given size is allocat-
ed and placed in the Array, starting at element one. The
index is incremented, and a new string is allocated into the
next element. When the last element of the Array is
reached, it starts again at element one. If the SurvivorSpace
isn’t large enough to contain the full working set of the

Array and it’s components, some of these strings will be
tenured into OldSpace.

To show how the image behaves under different condi-
tions, and how OldSpace GC really impacts performance,
we first restrict the image’s size to 8MB.

In Figure 1, we see allocation-rate improvements
against the default NewSpace size of 40K. EarlyTenureTest
instances are created using a string size of 128, 256, and 512
bytes. These instances require a working set size of at least
64K, then 128K, and finally 256K bytes. On reviewing Figure
1, it is clear that the 128-byte allocation rate improves by
about 80%, when we go to a Survivor size of 2x (see point
A). For the 256-byte instance, the SurvivorSpace needs to
go to 4x before the allocation peak (see point B). Finally, for
the 512-byte instance, we peak at a SurvivorSpace size of
7x, with an improvement of almost 200% to the allocation
rate (see point C). The impressive improvement for the
512-byte instance happens when we avoid expensive
OldSpace GC work. In all three cases, there is a net
improvement in the overall work done by the application.
Figure 2 shows what happens if memory growth is not
restricted.

Although the increase in memory-allocation rates is
not as impressive as in our first case, image growth is
affected. Using the default size, the image grows from
8MB to 13MB. Changing the size to 7x keeps the image at
8MB, and improves allocation performance from 25% to
almost 60%. Again, points A, B, and C show the plateaus
where we get the best allocation improvement for the
128-, 256-, and 512-byte instances. Image growth may be
free, but allowing it means managing a larger OldSpace,
and this can ultimately impact performance.

For both free-growth and restricted-growth situations,

SurvivorSpace size times default size

P
er

ce
nt

ag
e b

et
te

r th
an

 de
fa

ul
t

ca
se

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

A

B

C

128 Bytes

245 Bytes

512 Bytes

Figure 2. This figure depicts unrestricted memory growth.

OldSpace is many memory
segments that combine to form

a virtual chunk of
contiguous memory.

The Smalltalk Report

the ending memory-allocation rate is roughly the same,
once we reach seven times the default SurvivorSpace size.
The image in both cases stabilizes at a dynamic footprint
of about 8MB. A larger SurvivorSpace improves memory
allocation throughput and reduces image growth. More is
better—a “win/win” situation.

In many cases, changing the size of SurvivorSpace
means tenuring problems can be traded for slightly

more time spent on NewSpace GC work. Many of the
thresholds decided by ParcPlace-Digitalk for VW date
from 1990, and CPU performance, have greatly
increased since then. One can easily increase the
amount of memory that the scavenger needs to exam-
ine, without noticing any effects on response time; and
as our examples show, you can improve your applica-
tion’s performance by 200%!

Of course, your application may not have a small work-
ing set. Even so, some tests are worth doing. Consider
altering your SurvivorSpace allocation by a factor of 10x,
and observe the final dynamic memory footprint and
time needed to complete a certain task.

This article addresses only NewSpace GC work. In an
upcoming issue, I will discuss how memory is allocated,
and what happens if you don’t have sufficient memory on
hand when you ask for another MB (or two) of that elusive
resource.

SUPPORTING CODE
From VisualWorks(R), Release 2.5 on September 26, 1995:

Object subclass: #EarlyTenureTest
instanceVariableNames: ‘holdTooLong counter

allocationSize trackAllocations logStream canStop
waitSync ‘

classVariableNames: ‘’
poolDictionaries: ‘’
category: ‘JMM-Memory-Paper’!

EarlyTenureTest comment:

©1996 John M. McIntosh, All Rights Reserved.
johnmci@ibm.net.

An object that creates the EarlyTenure problem so we
can examine NewSpace behavior:

Instance Variables:

holdTooLong <Array> holder for strings of
size allocationSize

counter <Integer> iterates over the array to place
elements

allocationSize <Integer> holds current allocation size
for Strings

trackAllocations <Integer> hold total number of alloca
tions

logStream <Stream> log of information about
test cycle

canStop <Boolean> true when I can stop

waitSync <Semaphore> used to sync workand
result log

Note: to test this you must invoke the sizesAtStartup:, then
quit and save your image. After restart of the image,
invoke thresholds: to reset the NewSpace memory thresh-
old. You may need to adjust sizesAtStartup: if your installa-
tion has already altered some of the other memory space
sizes.

ObjectMemory sizesAtStartup: #(1.0 7.0 1.0 1.0 1.0 1.0).
ObjectMemory thresholds: #(0.96 0.95 0.90)’!

!EarlyTenureTest methodsFor: ‘actions’!

createElement
self holdTooLong at: self incrementCounter

put: (String new: self allocationSize)!

incrementCounter
self trackAllocations: self trackAllocations + 1.
^counter := counter >= self defaultCounter

ifTrue: [1]
ifFalse: [counter + 1]!

runForThisManySeconds: aNumber
“Fork the delay timer, fork the work, when done return

the logStream contents”

self forkTimer: aNumber.
self forkAllocation.
self waitSync wait.
^self logStream contents!

writeSize
“Print the time, memory footprint, scavenges and total

allocations for our records”

self logStream nextPutAll: Time now printString;
space;
nextPutAll: ObjectMemory

dynamicallyAllocatedFootprint printString;
space;
nextPutAll: ObjectMemory current numScavenges

printString;

A larger SurvivorSpace improves
memory allocation throughput and

reduces image growth.

The Smalltalk Report8 http://www.sigs.com

space;
nextPutAll: trackAllocations printString;
cr! !

!EarlyTenureTest methodsFor: ‘defaults’!

defaultCounter
^500!

defaultPriority
^Processor userBackgroundPriority!

defaultSize
“Do not change over 1000 bytes “
^512! !

!EarlyTenureTest methodsFor: ‘accessing’!

allocationSize
^allocationSize isNil

ifTrue: [allocationSize := self defaultSize]
ifFalse: [allocationSize]!

allocationSize: aNumber
allocationSize := aNumber!

canStop
^canStop!

canStop: aFlag
canStop := aFlag!

holdTooLong
^holdTooLong!

holdTooLong: anArray
holdTooLong := anArray!

logStream
^logStream!

logStream: aStream
logStream := aStream!

trackAllocations
^trackAllocations!

trackAllocations: aNumber
trackAllocations := aNumber!

waitSync
^waitSync!

waitSync: aSync
waitSync := aSync! !

!EarlyTenureTest methodsFor: ‘initialize-release’!

initialize

holdTooLong := Array new: self defaultCounter.
counter := 0.
logStream := WriteStream on: (String new: 1024).
canStop := false.
trackAllocations := 0.
waitSync := Semaphore new! !

!EarlyTenureTest methodsFor: ‘forks’!

forkAllocation

[self writeSize.
[self canStop] whileFalse: [self createElement].
self writeSize.
self waitSync signal]

forkAt: self defaultPriority!

forkTimer: aNumber

[(Delay forSeconds: aNumber) wait.
self canStop: true]

forkAt: self defaultPriority + 1.! !
“— — — — — — — — — — — — — — — — — — “!

EarlyTenureTest class
instanceVariableNames: ‘’!

!EarlyTenureTest class methodsFor: ‘instance creation’!

new
^super new initialize! !

!EarlyTenureTest class methodsFor: ‘Example’!

example
^self new allocationSize: 128; runForThisManySeconds:

15.! !

References
1) Lieberman, H., and Hewitt, C., “A Real-Time Garbage Collector Based

on the Lifetimes of Objects,”CACM 26,6, June 1983, pp 419-429.

2) Ungar, D. M., “Generation Scavenging: A Non-disruptive High-

Performance Storage Reclamation Algorithm,” Proceedings of

the {ACM SIGSOFT/SIGPLAN} Software Engineering Symposium

on Practical Software Development Environments, June 1984, pp

157-167.

3) Ungar, D. M., and Jackson, F., “An Adaptive Tenuring Policy for

Generation Scavengers,” ACM Transactions on Programming

Languages and Systems, Vol. 14, No 1, January 1992, pp 1-27.

S

John McIntosh is an independent Smalltalk consultant. After
eight years of building client/server applications, he discovered
Smalltalk. It was love at first sight! He is currently building Web
applications for a Silicon Valley company. He can be contacted by
phone at 800-477-2659 or by email at johnmci@ibm.net.

CONTROLLING VISUALWORKS

November/December 1996 11http://www.sigs.com

S
malltalk lacks mechanisms for defining private class-
es and private methods. Without private classes, class
naming conflicts can occur. Without private methods,

encapsulation suffers. While global name spaces can help
resolve class naming conflicts, first-class subsystems with
private classes can resolve both problems.

Once a Smalltalk developer has learned the essentials
of object-oriented design and programming, new issues
regarding object system design and systematic reuse
begin to surface. There are two factors that contribute to
design and reuse problems in Smalltalk—both related to
visibility: 1) all classes are visible to (and usable by) all
other classes—Smalltalk has a single global name space;
and 2) all the methods of a class are visible to (and usable
by) its clients, in spite of the fact that some of its methods
may be intended for the private use of the class.

This article considers these issues and proposes a sin-
gle remedy for both problems, without changing the
Smalltalk language and with relatively minor changes to
the development environment.

The Name Space Problem
Because classes are globals in Smalltalk, they are visible to
all other classes (as well as the programmer). This visibil-
ity is excessive. It can contribute to information overload
for novice (as well as experienced) Smalltalk program-
mers. It can also cause class-naming conflicts when
teams of developers integrate class libraries that have
been developed separately.

Few Smalltalk environments include facilities and
tools for integrating and organizing large libraries of
Smalltalk classes, though some environments and third-
party products provide tools for organizing Smalltalk
source code into more manageable units (e.g., packages,
applications, and the like). While these facilities help to
reduce the number of classes immediately visible to a
programmer, they do not eliminate the problem of having
a single name space.

Adding prefixes to class names has become the com-
mon practice for dealing with this limitation. This prac-
tice helps prevent conflicts for commonly used names.

However, while class-name prefixes prevent potential
name conflicts, they degrade the readability and under-
standability of the class names. Understanding degrades
further when the prefixes abbreviate what should be
meaningful subsystem names.

Previous Approaches to Name Space Partitioning
There are only a few workable approaches to partitioning the
Smalltalk class name space. Modular Smalltalk1 addressed
some of the issues related to the name-space problem.
However, Modular Smalltalk redefined some of the funda-
mental characteristics of the language and its development
environment.

While clear benefits can be gained from a static version
of the Smalltalk language—that is, better performance at
runtime—it remains unclear whether some of the existing
benefits of Smalltalk might be sacrificed (such as dynam-
ic and rapid application development). Perhaps the best
of both worlds can be integrated into some future
Smalltalk environments. Smalltalk MT looks promising in
this regard.

Meanwhile, other commercial Smalltalk implementa-
tions still show the early origins of Smalltalk as an inter-
preted language. Objects and classes are defined and con-
structed dynamically using messages. These messages are
compiled and evaluated in the context of an image-based
object memory.

Global Behavior Pools vs. First-Class Subsystems
Another proposal for dealing with the name space problem
was explored.2 This proposal used global pool dictionaries
to supplement the name space provided by the System
Dictionary. The article showed how pool dictionaries
(which usually contain system constants) could be extend-
ed to hold classes. Then, other classes could subscribe to
these behavior pools and use the classes defined in such
pools—by including the pool names in the poolDictionaries:
portion of their class definitions.

While this proposal does help partition the class name
space, the pools themselves are still global, and the class-
es defined in such pools are still public in the sense that

Class Naming and Privacy
in Smalltalk
A single remedy for two design and reuse problems

Nik Boyd

The Smalltalk Report12

CLASS NAMING & PRIVACY

http://www.sigs.com

they are still global. Such a pool-based facility is similar to
C++ namespaces and the hierarchical namespaces
provided in QKS’ SmalltalkAgents. They provide separate
domains for class names without considering whether
those classes might need to be encapsulated in an object
system design.

In contrast, first-class subsystems support the defini-
tion of truly private behaviors. Thus, subsystem classes
support the organization and encapsulation of clusters of
related classes. This facility is similar to the C++ nested
class. Private classes are nested within the scope of a sub-
system class, which serves as the public interface for the
private classes it contains. A subsystem class can provide
or restrict access to the private classes it contains, based
on the needs of the subsystem design.

As in C++, global behavior pools and subsystems can
complement each other for resolving class name con-
flicts, and for providing behavior encapsulation. However,
the remainder of this article focuses on the benefits of
subsystems and support for their implementation in
Smalltalk.

The foundations for implementing first-class subsys-
tems in Smalltalk were established in the February 1993
issue of The Smalltalk Report, 3 in which subsystems were
called “modules.” The terms “subsystem” and “private
class” serve to better describe the intentions underlying
this technology, and will be used throughout the remain-
der of this article.

SUBSYSTEMS AND PRIVATE CLASSES
A Modeling Notation for Private Classes
Subsytems are useful for partitioning the behavior of
object systems. Objects are nothing less than small sys-
tems, and systems are nothing more than large objects.

There is no conceptual difference between the responsibili-
ties of a class, a subsystem of classes, and even an applica-
tion; it is simply a matter of scale, and the amount of rich-
ness and detail in your model.4

For these reasons, it would be convenient to have an
object model notation that shows the relationship
between objects and systems. The notations that have
been proposed previously have been internal rather than

external (for example, they depict subsystems by nesting
entities graphically). Such internal notations do not scale
well graphically when they are applied to the design of
large systems, especially when subsystems are nested (for
example, when a subsystem class contains a private sub-
system class).

First-class subsystems fully contain their private class-
es, including their definitions. Thus, private classes can be
said to be parts of their (public) subsystem class (they are
aggregated at the meta level). For this reason, the rela-
tionship between a private class and its containing sub-
system class will be depicted using a variant of the OMT
notation for aggregation.

In Figure 1, Some Subsystem is a first-class subsystem
within which Some Private Class is defined. The object mod-
els used in further discussions will depict such meta-level
aggregations of private classes using a special diamond
(as shown in Figure 1).

Defining Subsystems and Private Classes
In addition to introducing a new graphical notation for
depicting the design relationship between subsystems
and private classes, this article introduces new message
formats for defining subsystem classes and their private
classes in Smalltalk.

“Define a new subsystem.”
SomeSuperclass
subsystem: #SomeSubsystem

Object

Financial
Manager

Balance
Inquiry

Transaction

Account

Funds
Transfer

Funds
Deposit

Funds
Withdrawal

Figure 2. Financial Management Subsystem.

Object

Some
Private Class

Some
Subsystem

Figure 1. A Subsystem aggregates a Private Class.

November/December 1996 13http://www.sigs.com

instanceVariableNames: ‘...’
classVariableNames: ‘...’
poolDictionaries: ‘...’ !

Notice that subsystem classes support instance variables,
class variables, and pool dictionaries, just like ordinary
classes. Subsystems are first-class objects. A subsystem
class is just like any other class, except that its classPool
may contain private classes in addition to the usual class
variables. These details will be discussed further in the
Implementation section.

Hereafter, in order to simplify the class definitions, the
message portions after the subclass name will be elided.
However, please remember that the entire list of message
arguments is intended and supported for all such abbre-
viated class definitions. For example, the following partial
message shows the abbreviated form of a subsystem def-
inition.

“Define a new subsystem.”
SomeSuperclass
subsystem: #SomeSubsystem ... !

A private class can begin the lineage of a private class hier-
archy within a subsystem. Such a private base class must be
defined differently from the other private classes derived
from it. In particular, such a private base class must identi-
fy not only its superclass, but also the subsystem that con-
tains it. The following partial message shows the abbreviat-
ed form of such a private base class definition.

“Define a private base class.”
AnotherSuperclass
subclass: #SomePrivateClass
in: SomeSubsystem ... !

Of course, private classes can also be private subsys-
tem classes.

“Define a private subsystem class.”
AnotherSuperclass
subsystem: #SomePrivateSubsystem
in: SomeSubsystem ... !

Once a private class hierarchy has been introduced in a
subsystem, the private base class and all the subsequent-
ly derived private subclasses can be located relative to the
base of the private class hierarchy. The following partial
message shows the abbreviated form for defining derived
private classes.

“Define a private subclass.”
SomeSubsystem @ #SomePrivateClass
subclass: #SomePrivateSubclass ... !

“Define a private subsystem.”
SomeSubsystem @ #SomePrivateClass
subsystem: #SomePrivateSubsystem ... !

Visibility Rules for Classes and Subsystems
The visibility and scoping rules for private classes are sim-
ilar to those found in C++ for nested classes. The classes
defined outside a subsystem are visible to the private
classes defined inside a subsystem, while the private class-
es defined inside a subsystem are not (immediately) visi-
ble to the classes defined outside a subsystem. Also, the
classes defined within a given scope of visibility are visible
to each other. Thus, the private classes defined inside a
subsystem are visible to each other, just as the classes
defined in the System Dictionary are visible to each other.

Classes defined outside a subsystem may be used
directly by name in the methods of classes inside a sub-
system. Class names are resolved by looking first in the
local scope, and then progressing outward through the
enclosing scopes until the named class is found.

The binary message @ serves a role similar to that of
the scope resolution operator :: in C++. It can be used to
locate a private class relative to its enclosing scope(s).
Compare the following Smalltalk and C++ expressions:

Smalltalk (SampleManager @ #SamplePrivateClass)
C++ (SampleManager :: SamplePrivateClass)

DESIGNING OBJECT-ORIENTED SOFTWARE SYSTEMS
Subsystems provide a coherent way to design and organize
Smalltalk classes that collaborate closely. Several examples
of subsystem designs are included in the book, DESIGNING

OBJECT-ORIENTED SOFTWARE,5 where the organization of a sub-
system for managing transactions against financial
accounts is described. Figure 2 shows how this subsystem
may be modeled using the new notation for meta-level
aggregation.

The class definitions for the financial management
classes include the following:

Object
subsystem: #FinancialManager ... !

Object

B

Façade

A

C

Figure 3. Object Model for a Façade.

Object
subclass: #Account in: FinancialManager ... !

Object
subclass: #Transaction in: FinancialManager ... !

FinancialManager @ #Transaction
subclass: #BalanceInquiry ... !

FinancialManager @ #Transaction
subclass: #FundsDeposit ... !

FinancialManager @ #Transaction
subclass: #FundsWithdrawal ... !

FinancialManager @ #Transaction
subclass: #FundsTransfer ... !

Subsystems and the Façade Pattern
First-class subsystems can be used to implement the
Façade pattern.

The Façade pattern provides a unified interface to a set of
interfaces in a subsystem. The Façade pattern defines a high-
er-level interface that makes the subsystem easier to use. 5

Depending on the needs of clients, designers can either
expose or hide the services provided by the private classes
hidden behind the Façade.

Figure 3 shows a Façade class, which uses instances of
two private classes and an instance of one public class
(defined outside the subsystem). Each instance of the
Façade class owns an instance of one of the private class-
es, while that instance owns an instance of the other pri-
vate class, which in turn owns an instance of the public
class.

This model also serves as an example of the visibility
and scoping rules. The Façade can see classes A, B, and C.
Classes A and B can see class C (which is public), but class
C cannot see classes A and B (which are private).

Private Methods and Client Contracts
Smalltalk systems use classes to encapsulate the structure
and state of objects. However, while Smalltalk classes
encapsulate the state of their instances, they do not encap-
sulate their behavior. All the methods of a class are effec-
tively public.

Traditionally, a Smalltalk developer indicates that a
method is intended for the private use of the implement-
ing class, using the notation Private at the beginning of the
method comment. This convention requires the client
developer to inspect the source code of the method, in
order to discover whether a method is intended for public
usage.

In systems that support method organization (i.e., pro-
tocols), the method developer can organize the method in
a protocol whose name indicates that the methods are
private. However, Smalltalk does not enforce the privacy

The Smalltalk Report14

CLASS NAMING & PRIVACY

http://www.sigs.com

class

nil

class

class

class

Class MetaClass

Behavior
Undefined

Object

Object
class

MetaClass
class

Object

Figure 5. Baseline Behavior Classes.

Object

Class Filer

Private Filer

privateFiler

Figure 4. ClassFiler as a Façade.

indicated by either of these conventions. So, client devel-
opers sometimes use the private methods anyway, and
thereby create dependencies that the class designer did
not intend to permit or support.

In Smalltalk, it is not always clear what such privacy
means anyway. For example, should subclasses be
restricted from using private methods they inherit from
their superclasses? While C++ provides explicit access
control mechanisms for public, protected, and private
members, Smalltalk does not provide any mechanisms
for access control.

It can be argued that
the traditional notions of
access in object-oriented sys-
tems are simplified ways of
specifying the class of the
clients that are permitted to
use the methods of a server
class. Table 1 suggests how
access relates to clients.

This table formalizes
a notion that has appeared repeatedly in the literature on
object-oriented design: promised behavior. The classes
that collaborate closely within a subsystem often exhibit
promised behavior, especially when the classes in the sub-
system form contractual agreements regarding their ser-
vices. Thus, it would be advantageous to object system
designers if object-oriented languages incorporated and
enforced access mechanisms, based on client specifica-
tions to establish such formal contracts. Object-oriented
languages would improve their ability to model such con-
tracts if they were extended beyond the traditional support
for only private, protected, and public access (which are
supported by languages like C++ and Java). Indeed, private,
protected, and public access mechanisms can be con-
ceived of as specific kinds of promised contracts as shown
in Table 2 (with respect to a given server class).

Note that in Table 2 public methods are promised to nil
because the class Object and all other root classes are

derived from nil—all the root classes have no superclass.
Thus, public methods are available to any other defined
method, whether the method is defined in a class derived
from Object, or any other root class.

Private Classes for Private Methods
The following discussion describes how you can use pri-
vate classes to implement private methods— even without
direct language support for private methods. First, build
the public interface using an instance of a subsystem class.

The subsystem instance con-
tains a single instance vari-
able, and the instance vari-
able contains an instance of a
private class. The private
class contains those methods
you want hidden. When the
public class (the subsystem)
is instantiated, it creates and
holds an instance of the pri-
vate class. Each of the public

methods (in the public class) uses the private methods
supplied by the instance of the private class. Figure 4
shows this arrangement using an object model.

The class definitions for this Façade include the following:

Object
subsystem: #ClassFiler
instanceVariables: ‘privateFiler’
classVariables: ‘’
poolDictionaries: ‘’ !

Object
subclass: #PrivateFiler
in: ClassFiler
instanceVariables: ‘behavior’
classVariables: ‘’
poolDictionaries: ‘’ !

Implementation
This section outlines how the facility for defining
subsystems and private classes can be added to
Visual Smalltalk. We will focus on those aspects of
the Behavior classes that change when subsystems
are added. First, note how the baseline Behavior
classes are organized in Figure 5. Behavior inherits
from Object. Class and MetaClass inherit from
Behavior. Object class inherits from Class. The other
metaclasses of the subclasses of Object inherit from
Object class.
Generally speaking, the class and metaclass inher-
itance hierarchies parallel each other. Thus, for
example:

Point superclass == Object
Point class superclass == Object class.

However, there is an anomaly at class Object, where

November/December 1996 15http://www.sigs.com

Access Implied Client Specification
private only the implementing class
protected. . . . the implementing class and all derived classes
promised. . . . some specific collaborating class (which need

not be related by inheritance)
public. . . . any class (without regard for inheritance)

Access Equivalent Contract
ServerClass private ServerClass promisedTo: ServerClass only

ServerClass protected ServerClass promisedTo: ServerClass any

ServerClass public ServerClass promisedTo: nil

Table 1 represents how access relates to clients.

Table 2 represents private, protected, and public mechanisms.

Software developers need language
facilities that provide design options.

This is one of the reasons that C++
has evolved so much over

the past several years.

Object superclass == nil
Object class superclass == Class.

Subsystems and private classes require some minor alter-
ations to these baseline relationships. As noted previous-
ly, each subsystem is a class. While an ordinary class uses

a Dictionary for its classPool, a subsystem class uses a
Subsystem Dictionary. Each Subsystem Dictionary pro-
vides a unique domain for the private classes and class
variables of the subsystem. Private class names are
mapped to Private Classes, while class variable names are
mapped to class variables. Figure 6 provides a model of
these relationships.

Each Private Class knows its class (a Private MetaClass).
Each Private MetaClass knows its subsystem (a subsystem
class). Thus, indirectly, each Private Class knows the
enveloping subsystem class. Given the foregoing relation-
ships, Figure 7 shows the relationships for the new
Behaviors.

In particular, note how

Object class superclass == PrivateClass.

This relationship replaces the normal baseline relation-
ship, where

Object class superclass == Class.

Because each private metaclass knows the subsystem
to which it belongs, the compiler can identify the scopes
that enclose the private behaviors (class and metaclass).
This simplifies changes to the compiler interface to
extend the visibility rules and resolve class names into
classes.

CONCLUSION
Benefits of Subsystems and Private Classes
Software developers need language facilities that provide
design options. This is one of the reasons that C++ has
evolved so much over the past several years. Some of the
recent additions (nested classes, templates, namespaces,
and runtime type information) show progress toward fea-
tures found in pure object-oriented systems like
Smalltalk, and even some advances over features in
Smalltalk.

Two of these C++ features directly address the class
naming problem in complementary ways: namespaces
and nested classes (i.e., private classes). This article has
considered how support for private classes can be added
to Smalltalk in conjunction with first-class subsystems.
Subsystem classes provide an additional design dimen-
sion beyond that provided by ordinary classes.
Subsystems and their private classes permit you to:

• resolve class name conflicts with separate name
spaces;

• integrate separately developed class libraries;
• organize collaborations between classes into first-

class subsystems;
• implement the Façade pattern; and
• define private methods only visible to those in a

public interface (subsystem) class.

References
1. Wirfs-Brock, A., Wilkerson, B., “An Overview of Modular

Smalltalk,” OOPSLA Conference Proceedings, ACM, September
1988.

The Smalltalk Report16

CLASS NAMING & PRIVACY

http://www.sigs.com

class

class

Class
"Subsystem"

MetaClass

Private Class Private
MetaClass

Object
class

Behavior

MetaClass
class

Object

nil

class

class

Undefined
Object

Figure 7. Behavior Extensions for Private Classes.

S

classPool

classPool

class

Subsystem
Dictionary

Private
MetaClass

Class Dictionary

Private Class

"Subsystem"
Class

Figure 6. Class vs.“Subsystem” Class.

2. Beaton, W., “Name Space in Smalltalk/V for Win32,” The Smalltalk

Report 4(1), SIGS Publications, New York, NY, September 1994.
3. Boyd, N., “Modules: Encapsulating Behavior in Smalltalk,” The

Smalltalk Report 2(5), SIGS Publications, New York, NY, February 1993.
4. Wirfs-Brock, R., Wilkerson, B.,Weiner, L., DESIGNING OBJECT-

ORIENTED SOFTWARE, Prentice-Hall, Englewood Cliffs, NJ, 1990.
5. Gamma, E., Helms, R., Johnson, R., Vlissides, J., DESIGN PATTERNS:

ELEMENTS OF REUSABLE OBJECT-ORIENTED ARCHITECTURE, Addison-
Wesley, Reading, MA, 1995.

TRADEMARKS
Visual Smalltalk is a trademark of ParcPlace-Digitalk, Inc.
SmalltalkAgents is a trademark of Quasar Knowledge
System, Inc.
Smalltalk MT is a trademark of Object Connect, SARL

November/December 1996 17http://www.sigs.com

Nik Boyd has been developing object systems since 1987, when
he founded 3rd Person Software (formerly known as XoteryX). In
1993, he released Package Manager/V through The Smalltalk
Store. During 1996, he released Package Librarian/V. His experi-
ence with OOP includes work with several ParcPlace-Digitalk
Smalltalk versions and platforms, as well as work with C++. His
research interests focus on tools and techniques that support
object-oriented software engineering. Nik may be contacted at
74170.2171@CompuServe.com.

The Smalltalk Report18 http://www.sigs.com

SCENE 1:
A well-lit conference room in the offices of ABC

Corporation.Facing intense competition and a changing
marketplace,the IS department has been given the direc-
tive to re-engineer its software systems to be more flexible
and easier to maintain.

Pat (development manager): Thanks for gathering
on such short notice, team members. I’ve got good news
and bad news. As you know, today we gave a demo of our
application prototype that we built in Smalltalk to the
head of development. The good news is that manage-
ment was very impressed and decided to give the green
light to build all our new applications in Smalltalk. The
bad news is that while giving the demo, the VP of devel-
opment walked in and thought we had already finished
the application.

Chris (engineer): What gives? I hope you set him
straight.

Pat: The VP saw finished screens with apparently real
data and thought the application was running. However, I
explained that this was a prototype implemented in sin-
gle-user Smalltalk, and that the display was using dummy
data stored locally in the image.

Bobby (another engineer): So then what happened?
What made management sign off?

Pat: I think they were impressed with how quickly we
built the prototype. But I think the real kicker was when
the VP looked at the order-entry screen and said that we
were missing a field showing compatible part numbers. I
opened a browser and added an instance variable to class
OrderEntry, then added a widget to display it. In less than
two minutes, I had the new screen. The VP’s mouth just
dropped.

Terry (another engineer): Did you save the image so
you can check that code into the repository later?

Pat: Of course. So now that we’ve got the go-ahead, the
real work begins. I’m afraid the expectation level is high
on this, so we’ve got to get organized right away. Right

now, our office is organized along functional areas. Each
functional area has its own application-development
team. I’ve been reading the latest project management
and methodology books, so I’ve assigned developers from
each functional area to design and build our common
business object model.

Bobby: You’ve sent everybody to training classes, but
do you think we’re ready for prime time?

Pat: I have the highest confidence in all of you. However,
I’ve also contracted mentors from Objects-R-Us to help us
out. They’ll be on-site for both design and implementation.
They’re Smalltalk gurus and should get us through any
rough spots.

Chris: Yeah, but this is a large system. We’re talking over
twenty applications, hundreds of users, and lots of objects.
How are we gonna make sure that we scale?

Pat: Good question. Our charter is to build objects that
span the enterprise. To make sure we know what we’re
getting into, I’ve assigned you to teams to look at the fol-
lowing issues. (Pat goes to the white board and begins writ-
ing.) One team will look at overall system-performance
characteristics. We need to get a handle on object counts
and required response times. Another team will look at
the system configuration and architecture. This includes
hardware and fault-tolerance issues, as well as system
administration. The third team will look at application-
design issues. They should make recommendations for
applications to handle multiuser issues and meet perfor-
mance requirements.

Terry: These are big responsibilities. How are we going
to meet them?

Pat: Obviously, these teams do not work in isolation. I
expect a lot of cross-communication between these
teams, as well as interaction with the individual applica-
tion-development teams. The three teams I’ve described
and the common business object team have system-wide
visibility.

SCENE 2:
A small cubicle filled with books, hardware, and

Dilbert cartoons.

Terry: Hey Bobby, got a minute? I was wondering if you
could take a look at this questionnaire I created? I’m try-

Getting Real

Jay Almarode

Using Smalltalk since 1986, Jay Almarode has built CASE tools, in-
terfaces to relational databases, multi-user classes, and query sub-
systems. He is currently a senior software engineer at GemStone
Systems Inc., and can be reached at almarode@gemstone.com.

Putting It All Together

November/December 1996 19http://www.sigs.com

ing to capture the overall system characteristics. I figure
I’ll get answers for every application, then try to accumu-
late them for the system as a whole.

Bobby: Hmm, looks interesting. What is the purpose of
asking for the number and size of objects?

Terry: I’m trying to come up with some estimate of the
object repository size. I’ve got to make sure we’ve got
enough disks for all applications.

Bobby: Well, just make sure you account for growth.
Remember when forecasting built their new models last
year, and then didn’t have enough space to store them?
Also, how can someone tell how much garbage they’re
producing?

Terry: The mentor from Objects-R-Us gave me this
neat little goodie. It should be used only during develop-
ment, but it tells me which objects were created and
which would be collected when a block of code is exe-
cuted.

classmethod: System
newObjectsAndGarbageWhile: aBlock

“ Return an array of two sub-arrays: the first
containing objects that were created, and the
second containing objects that became eligible
for garbage collection during the execution
of the given block. “

System _generationScavenge.

System _hiddenSetReinit: 31. “ObjsCreated”
System _hiddenSetReinit: 32. “ObjsDisposed”
System _enableTraceObjs.

aBlock value.

System _generationScavenge.
System _disableTraceObjs.

^ #[System _hiddenSetAsArray: 31,
System _hiddenSetAsArray: 32]

(Chris enters the cubicle.)

Chris: Hey, have you heard the latest? We’ve got approval
to go three-tier. Our arguments convinced Pat that we
needed a real application server. Now we can implement
our applications in whatever vendor’s single-user
Smalltalk we want, and still share Smalltalk objects on
the server.

Bobby: How did you convince them?
Chris: Well, they recognized that we had to access

legacy data, and already knew that the object-to-rela-
tional mapping was nontrivial. We basically told them
that we couldn’t afford to send all that data over the wire
to each client, perform the mapping to create objects,

and then map changes back to SQL updates. Plus, we
couldn’t guarantee security or fault tolerance on the
client.

Terry: Great. This should make our business object mod-
elers happy. Now they have a single place to maintain their
objects. So how are those people doing?

Chris: I heard they’ve had to do a lot of work. Our orig-
inal demo did a good job of separating interface from
domain objects, but the domain objects mixed applica-
tion-specific with general behavior. They’ve been busy
figuring out which objects belong on the server and which
belong on the client.

Bobby: So how are they figuring this out?
Chris: Our mentor has given us some tips to help

them. It’s really common sense anyway. You know, large
collections, shared objects, secure objects, recoverable
objects; they all live on the server. Speaking of recover-
able objects, how’s it going with system configuration,
Terry?

Terry: We’re just getting our hands around it. We’ve
come up with an architecture diagram showing which
machines will house shared-page caches for the clients.
Our plan is to assign certain applications to certain server
machines to try to spread out the load.

We’re splitting the repository into three raw disk parti-
tions for performance. We’ll also dedicate one disk to
transaction logs, and schedule a job to run nightly, com-
pressing and copying the logs to tape. We still haven’t fig-
ured how often we’ll checkpoint the repository, though.
We haven’t heard back from all application areas on their
fault-tolerance needs. We asked each area to spell out how

User access:
What is the total number of users?
What is the average number of users logged in at any
given time?
What is the maximum number of users that may be
logged in?
How many different geographic locations?

Number and size of objects:
What is the total number of objects?
What is the average size of an object?
What will be the largest objects?
What are the sizes of the largest collections?
How much garbage is produced per transaction?

Transactions:
What is the expected transaction rate ...
per day, per hour, per minute, per second?
What is the peak transaction rate?
What is the duration of the longest transaction?
How many objects are read during each transaction?
How many objects are written during each transaction?
How many objects are created during each
transaction?

The Smalltalk Report20

GETTING REAL

http://www.sigs.com

much downtime is acceptable, and when, but I think
they’re still working on design issues.

SCENE 3:
In the nautilus gym at ABC Corporation. (What? Your

company doesn’t have a gym?)

(Terry walks over to Chris, who is puffing away on a
lifecycle.)

Terry: Hey Chris, how’s it going? Have you solved all of
our application design issues?

Chris:We’re making progress (puff, puff). I’ve been talk-
ing to the chief designers of all the applications, and we’ve
identified the shared collections. We’ve decided to use
some special multiuser collections to reduce the chance of
concurrency conflicts. We still have to worry about other
chances of conflict, so we’ve been looking at when to lock
objects and when to design for the possibility of conflict.

Terry: Oh really. How do you make that determination?
Chris: I asked developers for each application to define

their transactions, and to identify which shared objects
would be written for each kind of transaction. We catego-
rized the transactions by their priority, the probability of
conflict, and the impact of transaction failure. From there,
we began planning our strategies.

Terry: Hmm. . . interesting. How did it go?
Chris: As you can guess, some designers knew exactly

which objects they were modifying, while others didn’t
have a clue. Fortunately, we had the capability to view the
set of written objects at transaction boundaries. We ran
some test cases and saw which objects were being
touched. This really opened up some developers’ eyes
and we improved the code as a result.

Terry: I’d like to get some of your instrumentation
code. So what strategies do you come up with when you
don’t lock objects?

Chris:We’ve created a framework to keep a log of impor-
tant object modifications that should be replayed in the
event of concurrency conflicts. Basically, these are tempo-
rary objects that are created during the life of a single trans-
action. We found this was best wired into the application

rather than into the business objects, because it is the
application that defines a transaction.

Terry: So how do you make sure these objects remain
temporary?

Chris: We found in the manual something called ‘tran-
sient session state’, from which you can reference objects
so that they do not get garbage-collected, yet it doesn’t
cause them to be part of a committed state. Of course, if
you reference these objects from some other committed
object, they will become persistent.

Terry: I don’t understand. How does this all fit together?
Chris: For certain operations, we create objects that

encapsulate the modification to a business object. We hang
these objects off of a transient session state. If the transac-
tion should experience conflict, we can abort the transac-
tion, then replay the modifications. We had to design this
carefully, because sometimes concurrency conflicts are a
good thing. Our framework allows us to perform valida-
tion after the transaction is aborted, to make sure that
conditions still hold to replay the modifications.

Terry: Very clever. I hope you’re making this available
to all applications.

SCENE 4:
Six months later, in the well-lit conference room.

Pat: Thanks for gathering on such short notice, team
members. I’ve got good news and bad news. As you know,
we just deployed our last application and the user response
has been positive. There were a few glitches along the way,
but we managed to hang in there and deliver all that we
said we would. We learned a lot along the way, such as mak-
ing sure hired consultants really know Smalltalk, and plan-
ning for schema modification after applications have been
deployed. The bad news is that management has been suf-
ficiently impressed with our deliveries that it wants us to do
the same for the international offices, but in less time. In
addition, we’ll need to replicate objects across distributed
servers for local availability. I’m afraid the expectation level
is high on this, so we’ve got to get organized right away. So
here is what we’re gonna do ... S

The following is a review of ParcPlace-Digitalk’s Third
Annual International User Conference, held at the Disney-
land Hotel in Anaheim from September 9-11.

F
or a while, the news coming from PP-D was that
Jigsaw was to be the name for the new “merged”
image. Somehow, PP-D was determined to pull off

the formidable feat of combining Digitalk’s VisualSmall-
talk image with that of ParcPlace’s VisualWorks. The very
reason I described this as formidable was because of the
resounding differences that separate the two imple-
mentations. Beyond the commonality provided by the
very similar Collection and Magnitude Classes, and
assorted blue-book classes, there lay the tremendous
differences in the widget model.

Traditionally, Digitalk’s strengths have been in strong
platform ties, using native widgets. VisualWorks’ cus-
tomers have commonly sacrificed native widgets for
emulated ones. It’s not that they favor emulated widgets,
but it’s both the large range of platforms offered to them
and the low-hassle interoperability that have closed many
a sale. But many, including me, have longed for the day
when native widgets would become available for
VisualWorks. So, it was with the hope of hearing this good
news that I packed my bag and hitched a ride to the land
of Mickey Mouse.

WELCOME TO THE CLIENT/SERVER/WEB COMPANY
Of late, I wake up wondering if I’ll have to type in an URL
to get my car going in the morning. I’ve quit subscribing
to the newspaper because I surf the airlines about as often
as I do the Web. . . and that’s a lot. I can now read my
favorite newspaper and listen to my favorite radio sta-
tions by “jacking-in.” Things will never be the same in the
Smalltalk world, now that it’s caught up in the all-know-
ing, all-seeing Web.

PP-D has definitely caught Web fever. It takes no more
than a quick jump to its homepage to convince you that it
looks like it’s got more than a 24-hour flu.

And so, in opening the conference, Bill Lyons, presi-

dent and CEO of PP-D, announced that his company was
on the path to becoming a major player in the client/serv-
er/Web business, and moving away from being a client-
centric solutions provider. Indeed, the firm would place
more emphasis on server-based solutions. The high pro-
file given to VisualWave during the conference made this
fairly clear. Also, Distributed Smalltalk, which is usually a
backstage item, was demonstrated in numerous lectures.
Let’s not forget the high profile given to Parts for Java,
available at a computer store near you!

“We’re not in Kansas anymore” was a feeling I shared
with many an old-hat Smalltalker throughout the confer-
ence. This was made obvious in PC Week columnist Peter
Coffee’s keynote address titled: “Smalltalk: Surviving Its
Success.” He maintained that while OO had become
mainstream, management now had to be convinced to
go to OO in order to catch up with the competiton,
rather than as a means to increase the return on invest-
ment. His recollection of all the products that had gone
OO in the last few years reminded me of a joke about
Orville Reddenbacker coming out with “Object-
Oriented Popcorn” (P++). And with Java, it was all going
to start over with a fury unparalleled. The Java volcano
had erupted and no IT shop on earth would ever be safe
from its strange seduction. Of course, Coffee reflected—
as we all did—that Java was not yet mature, and you
really had to be a masochist to want to move away from
Smalltalk and into Java. But still, Java is a force to be
reckoned with and any tools salesperson who had not
smelled the “Coffee” on this one was taking the risk of
interacting with Job-Search Beans in line at the welfare
office.

Coffee also presented little dark secrets, surprising no
one, about how by requesting for <UnRememberedPrefix
Here...>date(96,8,9,0,0,128) gave an entirely different
answer in Sun’s Library than it did in Microsoft’s Library.
(Not even the same day!) So, if you’re feeling apprehensive
about the year 2000, you’re in for a lot more fun if you’ll be
delivering in Java in the year 2048!

So what’s ahead for Smalltalk? In response to the Java

The Smalltalk Report24 http://www.sigs.com

ParcPlace-Digitalk
User Conference Review

Ron Charron

issue, many suggested that a Smalltalk plug-in for
Netscape could help fend off the Java tide. During one of
the Parts for Java demos, I felt that the coding process that
was required, beyond wiring up Java widgets, would bring
us to something I hadn’t experienced since I started using
Methods (introduced by Digitalk in 1985). Although
Methods was text-only, you were still coding in an envi-
ronment that was as interactive as that of modern-day
Smalltalks. It is hard for me today to go back to an envi-
ronment that doesn’t have the type of tight integration of
the editor, compiler, debugger, and code browser tools
that Methods has for PC platforms. Of course, Lisp envi-
ronments did, but that’s another story. So, until Java devel-
opment environments become as friendly as Methods
USED TO BE, most Smalltalkers will feel that coding a non-
trivial Java app will feel like taking steps backwards.

THE CASCADE APP-DEVELOPMENT ENVIRONMENT
Cascade was the code name given to the application-
development environment to be used in the new Jigsaw
images. This new environment for Jigsaw will be able to
add constants (or “read-only” objects). There is also a
space for entering a string describing variables. So,
VisualWorks 4.0 customers will now have a PP-D-supplied
version-control and source-management system. The
first jigsawed image will be called VisualWorks 4.0. PP-D
has indicated that the base runtime image will be small
and headless, with just the necessary code to bind with
SLLs. Descriptions of system enhancements that support
packaging left me believing that VisualWorks customers
may have a workable alternative to ENVY/Developer. On
that subject, PP-D engineers promised to work with OTI
to facilitate support of ENVY products on the new image.
OTI says it will be receiving the beta, and will then evalu-
ate the effort involved in doing the port. The presentation
on the Cascade architecture led me to believe that this
may not be a trivial task. However, OTI is not known for
building trivial products, and if we’re lucky, we may even
see more improvements in ENVY/Manager as it is rewrit-
ten for the Cascade environment.

VISUALWORKS 4.0 OR JIGSAW?
On one side we had Bill Lyons saying that Jigsaw was to
become “a family of products,” and on the other we had
just about every engineer describing it as a new image. It
is apparent to me there have been some shifts in the way
PP-D wants to present its future to the world. The way I
pictured it from bits and pieces of lectures and conversa-
tions was: Common technology will gradually be integrat-
ed into both VisualWorks and VisualSmalltalk images.
Eventually, there may be no large, discernible differences
between images, so are we looking at “merge by attrition?”

It does make some sense to me, and I think it will make
some sense to the customer if PP-D can manage the cost
of maintaining the two product lines for a while. Gone is
the scare that clients will have to do massive rewrites to
get their code to run in the new, merged image. There are

some caveats, however. Wrappers and controllers are
going away; a new event model is coming in. If you have
invested in custom wrappers and controllers, you will
need to re-examine your work and start planning for an
event model. Make sure you get on the beta program as
soon as possible to plan your migration strategy carefully.
The feeling is that market pressures may lead PP-D to
release a beta that may indeed be a bit “Alpha-ish.” If that
is the case, expect possible important changes between
beta and general acceptance.

On the negative side of things, that means frequent
adjustments to your port strategy. On the positive side, it
means that if you are vocal and describe your needs in a
precise fashion, you may get a chance to influence the
development of the new product. If you have a massive
investment in VisualWorks technology, you could protect
your investment by making sure that you have some good
talent assigned to assessing the beta and the port impli-
cations as soon as possible.

So, by talking with PP-D engineers, the first incarnation
of Jigsaw will be the VisualWorks 4.0 image shipped with
the Cascade environment and with native widgets. Native
widgets will include Win32, and Win 95 common controls,
with other platforms retaining emulated widgets.
Datasets and the like may remain emulated, for lack of an
adequate native.

Also, answering my question during the Jigsaw tools
session, PP-D had not yet started work on native fonts and
color models. Prior to VW4.0, expect releases of VSE 3.12
and VW2.52 in ‘Q4.

WE’RE THE OO SERVER PEOPLE
With the acquisition of Distributed Smalltalk from Hewlett-
Packard, and with its own VisualWave environment, PP-D
wants to position itself as an important player in the OO
application-server business. This squarely places them
face-to-face with GemStone, which has been gaining more
market acceptance since it made this kind of shift in the
last few years. One major difference in Gemstone’s favor is
that it has a solid OODBM to back it up.

So what can make PP-D a player in the OO applica-
tion-server market? The VisualWave demonstrations
succeeded in convincing me that it had a viable tool for
the development of Web server apps serving mostly
HTML, with some support for Java-Script. However, the
audience vocalized that more Java support will have to
come quickly. Although Parts for Java offered some
interesting technology for the Jigsaw line of products,
PP-D technical management will have a formidable
challenge ahead in making all the parts fit together. If
it can put Parts for Java’s quality-code development
together with the quality server infrastructure of
VisualWave, and offer better database support, PP-D
may indeed have a winner. However, in the meantime,
we will still have to look at “some assembly required” for
many corporate applications.

Distributed Smalltalk lectures attempted to dispel the

November/December 1996 25http://www.sigs.com

myth that Smalltalk cannot perform as a server. Exhaustive
demos on load-balancing were given. Unfortunately,
despite emphasizing that 50 or 100 transactions were run-
ning, the engineers failed to explain adequately what
these transactions were. Whatever they were, the engi-
neers appeared happy. But people didn’t appear too
happy with the statement that “two tiers won’t do it. .
.three tiers won’t do it. . . You need a fully distributed sys-
tem.” That may be true someday, but I don’t see the mass-
es rushing into implementing distributed systems until
they get a better handle on building two- and three-tier
OO-based apps. “Thread safety” was an important con-
cern here, so when the subject of database access came
forward, the statement that “few database services were
thread-safe” did not give me the “warm fuzzies.” IIOP was
mentioned several times as the preferred communica-
tions protocol for the servers. This is interesting, because
this is also in line with Netscape’s plans.

BYE BYE OSI, HELLO PPD/OSI
If you’ve made WindowBuilder-Pro your home over the
last few years, you’ll probably be pleased to know that
WindowBuilder Pro for VisualWorks is being rumored.
Now that the barriers that once made it impractical are
disappearing, along with native widgets and the event
model, there is a good probability that the people who
brought us WindowBuilder Pro will help bring the new
VW Canvas Editor to life. No, it doesn’t look like PP-D
plans to port Parts to VW anytime soon. Many PP-D engi-
neers have mentioned that the Canvas Editor tools really
needed reworking, and that the ObjectShare Inc. acquisi-
tion presented PP-D with new “opportunities.” I love to
see a good virus infect a deserving host.

Since Smalltalk went corporate, programming enthusi-
asts have been deploring the lack of a low-cost Smalltalk
for learning purposes. Now, thanks to ParcPlace-Digitalk
and OSI, people wanting to learn Smalltalk will have a
decent environment to learn in, and they won’t need to
take out a second mortgage on their house either.
Smalltalk Express is the name of a (FREE) Smalltalk devel-
opment tool that includes Smalltalk/V™, Win16, and
WindowBuilder™ Pro/V. Surfing the Web all the way
down to www.objectshare.com, will give you more details.
At the comp.lang.smalltalk newsgroup, you will learn that
SE: (Smalltalk Express) has been proposed as the first

three characters of the subject. CompuServe members
will find Section 23 of the ParcPlace-Digitalk forum
(CIS:PPDFORUM) devoted to Smalltalk Express.

ALL AHEAD WARP FACTOR NINE
Robi’s Dream was entertaining as Robi (Michael Robicheaux),
one of PP-D’s top gurus and originator of the Canvas Editor
Tools, used his VRML RoboBabe as the starting menu for his
visions. He began poking and stroking parts of the ‘Babe to
fire up such phantasms as VRML Class Hierarchy
Browsers, Performance Profilers, and Business Bar Charts.
PP-D will now follow IBM’s lead and have a Developer
Certification Program.

What held my attention was OTI’s presentation of
ENVY/QA, which promises to give you professional code
reviews without the hassle of a mentor breathing down
your neck. Close to 40 metrics, code coverage, and code
publishing tools will no doubt make many large-scale
project managers happy. If you aren’t excited, then you
should be. All of the above are grossly under-addressed
problems that were begging for relief. It’s nice to see a
package addressing all of these issues coming from a
major player such as OTI.

CONCLUSION
PP-D appears to have some very good engineers here, and
I hope they manage to bring all of this marvelous technol-
ogy together. If they can pull it off, they are likely to
become a major vendor in the new OO CSW arena.

For those who are more interested in what will happen
to their investments in VisualSmalltalk or VisualWorks,
you no longer have to head for the hills in panic. Neither
VSE nor VW are going to be dropped. It may take some
time for it to happen, but the goal of a unified image
seems likely, maybe for 1998? In the meantime, thanks to
Cascade, new goodies should run on both platforms.

Oh, for those who said that they went on the Indiana
Jones ride ten times Tuesday night, I don’t believe you. . .
And, by the way, Disney—five bucks for a beer?. . . Come
on!

The Smalltalk Report26

USER CONFERENCE REVIEW

http://www.sigs.com

Ron Charron is director of corporate services at The Object
People. He has assisted major corporations in using Smalltalk in
11 countries. . . and counting!

S

T
his month we’ve just gotten off a plane, this time
returning from OOPSLA. This year was the 11th
ACM OOPSLA conference, which was held in
San Jose, California. As is often the case,

OOPSLA can surprise you in terms of the tenor of the
conference, and of the focus and interests of those in
attendance. This year was no exception.

The overriding focus of this year’s conference
appeared to be on issues dealing with architectures,
frameworks, and patterns. Unlike the past few years,
where we’ve had the feeling the conference served as a
showcase for Smalltalk technology, this conference
seemed noticeably language-neutral. This was some-
what surprising, given that virtually every other confer-
ence having anything to do with objects lately has
become a “Java conference.” We say this not as either a
good or bad thing, but rather as an observation that
most attendees appear more interested in discussing
new software architectures and their associated benefits
and limitations, than waging language wars. Certainly
Java played a large part in these discussions, as did
Smalltalk and C++, but the language was discussed as
part of the solution, rather than as the issue itself. We
believe this is a reflection of the audience, which con-
tinues to be a group very knowledgeable in object tech-
nology, and with roots spread across the academic,
research, and industrial communities. Finally, the
keynote delivered by Christopher Alexander served to
set the tone of the conference with a thought-provoking
presentation of his view of patterns—he certainly man-
aged to evoke a great deal of discussion.

OOPSLA has often served as the forum where new
products—and organizations—are introduced to the
rest of the object community. This year, however, the
exhibit area appeared smaller than past years, and
appeared to have fewer newcomers. The one exhibit
that did capture the attention of many in attendance
was the new Virtual Machine (VM) technology called
HotSpot, created by Animorphic Systems. It has adapt-
ed many of the ideas from the Self project in creating
both the Smalltalk and Java VMs, and their most notable
characteristic is speed!! They boast execution times of
up to three to five times faster than existing commercial
Smalltalk VMs. This is significant because it demon-
strates that it is possible to create such technologies, if
speed is the major factor to be considered. Speed comes

with trade-offs, though, such as execution space and a
reliance on in-lining methods, but Animorphic’s claim is
that it sacrificed relatively little in both categories to
achieve the speed. Whatever comes of the technology
itself, it certainly created quite a stir. The parade of
Smalltalk experts, including many lead engineers from
both PP-D and IBM, to Animorphic’s booth was testi-
mony to its achievement. For more details on
Animorphic’s VM technology, you can visit its Web site at
http://www.animorphic.com.

The other technology that created a great deal of
interest from the Smalltalk crowd was OTI’s new
ENVY/QA. While we plan to include a review of ENVY/
QA in an upcoming issue, we can state briefly that QA is
a suite of tools designed to provide application develop-
ers with a better understanding of the quality of their
Smalltalk code. It includes four main features: Code
Metrics, which provides a summary of various static
metrics; Code Critic, which provides feedback on the
“quality” of Smalltalk code, based on a list of standard
measures; Code Coverage; and Code Publisher, which
generates documentation-style output of an applica-
tion class library. The important feature of this tool is
that it is extensible—that is, it has been designed to
allow you to specify your own measures for quality
assurance. We suspect it will become a mainstay in
many Smalltalk developers’ toolkits. You can get more
details from OTI’s Web site at http://www.oti.com.

In the end, OOPSLA appears to be reinventing itself.
For the conference to stay relevant, it must continue to
attract people from various backgrounds and interests,
and offer them a forum to share ideas. This year’s con-
ference appeared to be taking steps toward achieving
this goal. It is still the case that activities such as the
poster sessions, the educators’ symposium, and the
Ph.D. seminar series offer a forum unmatched by other
conferences.

Finally, we’d be remiss not to mention the wild
evening spent at Great America theme park. Given that
last month we were writing about Disneyland, and
now this month about the new Top Gun roller-coaster
and “The Drop Zone,” object technology appears to
have taken a turn toward serving crowds of thrill seek-
ers. We offer no comment on this new relationship
between thrills and objects.

Enjoy the issue.

Editors’ Corner
Paul WhiteJohn Pugh

The Smalltalk Report2 http://www.sigs.com

OOPSLA—Reinventing Itself Again

	The Smalltalk Report Archive
	TOC January 1996 Volume 5, No. 4
	A hierarchy that acts like a class
	Taking out the garbage
	Getting Real: The three-tier architecture and server Smalltalk
	Managing Objects: A case for open development environments
	Smalltalk Idioms: Farewell and a wood pile
	Editors’ Corner

	TOC February 1996 Volume 5, No. 5
	The selection channel technique
	Delivering and sharing components using Smalltalk link libraries
	The Best of comp.lang.smalltalk, Principles of OO design: or, everything I needed to know in life, I learned from Dilbert*
	Managing Objects: "Special” team members
	Getting Real: Mechanisms for application partitioning
	Editors’ Corner

	TOC March-April 1996 Volume 5, No. 6
	A performance challenge
	A framework for multiple language support
	Tactical patterns for the real world: Instantiation patterns
	Sequential key allocation strategies in Smalltalk
	Managing Objects: The Demo Trap
	Getting Real: Tuning multi-user Smalltalk
	The Best of comp.lang.smalltalk: Principles of OO design, Part 2
	Editors’ Corner

	TOC May 1996 Volume 5, No. 7
	Tactical patterns for the real world: Validation and informational patterns
	Equality versus identity
	Deep in the Heart of Smalltalk: The active life is the life for me!
	Getting Real: Configuring server Smalltalk
	Managing Objects: Beware the octopus
	Editors’ Corner
	Conference overview: Smalltalk Solutions ’96: Progress and new challenges
	Product News

	TOC June 1996 Volume 5, No. 8
	Smalltalk SQA: What to test?
	A strategy for using instance variables
	Controlling image size when using GemStone
	Tactical patterns for the real world: Optimization patterns
	Managing Objects: Documents on the Web
	The Best of comp.lang.smalltalk: Smalltalk Solutions
	Getting Real: Multi-user canonicalization
	Editors’ Corner

	TOC July-August 1996 Volume 5, No. 9
	How to display an object as a string: printString and displayString
	Smalltalk SQA: The Public/Private Problem #2
	Proper use of class methods
	Implementing mixins in Smalltalk
	Managing Objects: Smalltalk as an Internet server
	Getting Real: Communicating between sessions
	Visual Programming: Reusable components
	Editors’ Corner

	TOC September 1996 Volume 6, No. 1
	Externalizing Business-Object Behavior: A Point-and Click Rule Editor
	Using Events for constraint solving
	How to display an object as a string: TypeConverter and PrintConverter
	Visual Programming: Managing Connection Complexity
	Managing Objects: SmallDoc Web Serving
	Getting Real: Fault Tolerance
	The Smalltalk Idioms: Object-Oriented Recursion
	Editors' Corner

	TOC October 1996 Volume 6, No. 2
	Unblocking the Debugger
	Externalizing Business-Object Behavior: More on a Point-and Click Rule Editor
	Just Cloning Around subclass: #CloningExtensionsa
	Visual Programming and Reusable Parts: The Marquee Part
	The Best of comp.lang.smalltalk: Two New Smalltalks
	Managing Objects: Mentoring
	Editors’ Corner: News from the PP-D Users Conference
	Product Announcements

	TOC November-December 1996 Volume 6, No. 3
	Controlling VisualWorks’ NewSpace A space for everything in its space
	Class Naming and Privacy in Smalltalk: A single remedy for two design and reuse problems
	Getting Real: Putting It All Together
	ParcPlace-Digitalk User Conference Review
	Editors’ Corner: OOPSLA—Reinventing Itself Again

